Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2024 Volume 27 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2024 Volume 27 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review)

  • Authors:
    • Nianping Zhang
    • Zhaoli Yan
    • Hua Xin
    • Shuai Shao
    • Song Xue
    • Raymond Cespuglio
    • Shijun Wang
  • View Affiliations / Copyright

    Affiliations: Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China, Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China, Department of Reproductive Medicine, Jingmen People's Hospital, Jingmen, Hubei 448000, P.R. China, Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, Neuroscience Research Center of Lyon (CNRL), Claude‑Bernard Lyon‑1 University, 69500 Lyon, France, Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 23
    |
    Published online on: November 21, 2023
       https://doi.org/10.3892/etm.2023.12311
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Parkinson's disease (PD) is a common neurodegenerative pathology whose major clinical symptoms are movement disorders. The main pathological characteristics of PD are the selective death of dopaminergic (DA) neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α‑synuclein (α‑Syn) within these neurons. PD is associated with numerous risk factors, including environmental factors, genetic mutations and aging. In many cases, the complex interplay of numerous risk factors leads to the onset of PD. The mutated α‑Syn gene, which expresses pathologicalα‑Syn protein, can cause PD. Another important feature of PD is neuroinflammation, which is conducive to neuronal death. α‑Syn is able to interact with certain cell types in the brain, including through phagocytosis and degradation of α‑Syn by glial cells, activation of inflammatory pathways by α‑Syn in glial cells, transmission of α‑Syn between glial cells and neurons, and interactions between peripheral immune cells and α‑Syn. In addition to the aforementioned risk factors, PD may also be associated with aging, as the prevalence of PD increases with advancing age. The aging process impairs the cellular clearance mechanism, which leads to chronic inflammation and the accumulation of intracellular α‑Syn, which results in DA neuronal death. In the present review, the age‑associated α‑Syn pathogenicity and the interactions between α‑Syn and certain types of cells within the brain are discussed to facilitate understanding of the mechanisms of PD pathogenesis, which may potentially provide insight for the future clinical treatment of PD.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Zhu B, Yin D, Zhao H and Zhang L: The immunology of Parkinson's disease. Semin Immunopathol. 44:659–672. 2022.PubMed/NCBI View Article : Google Scholar

2 

Jang JH, Yeom MJ, Ahn S, Oh JY, Ji S, Kim TH and Park HJ: Acupuncture inhibits neuroinflammation and gut microbial dysbiosis in a mouse model of Parkinson's disease. Brain Behav Immun. 89:641–655. 2020.PubMed/NCBI View Article : Google Scholar

3 

Fields CR, Bengoa-Vergniory N and Wade-Martins R: Targeting alpha-synuclein as a therapy for Parkinson's disease. Front Mol Neurosci. 12(299)2019.PubMed/NCBI View Article : Google Scholar

4 

Zhao Y, Zhang Z, Qin S, Fan W, Li W, Liu J, Wang S, Xu Z and Zhao M: Acupuncture for Parkinson's disease: Efficacy evaluation and mechanisms in the dopaminergic neural circuit. Neural Plast. 2021(9926445)2021.PubMed/NCBI View Article : Google Scholar

5 

Stevenson TJ, Murray HC, Turner C, Faull RLM, Dieriks BV and Curtis MA: α-synuclein inclusions are abundant in non-neuronal cells in the anterior olfactory nucleus of the Parkinson's disease olfactory bulb. Sci Rep. 10(6682)2020.PubMed/NCBI View Article : Google Scholar

6 

Campo F, Carletti R, Fusconi M, Pellicano C, Pontieri FE, Di Gioia CR and de Vincentiis M: Alpha-synuclein in salivary gland as biomarker for Parkinson's disease. Rev Neurosci. 30:455–462. 2019.PubMed/NCBI View Article : Google Scholar

7 

Jansen van Rensburg Z, Abrahams S, Bardien S and Kenyon C: Toxic feedback loop involving iron, reactive oxygen species, α-synuclein and neuromelanin in Parkinson's disease and intervention with turmeric. Mol Neurobiol. 58:5920–5936. 2021.PubMed/NCBI View Article : Google Scholar

8 

Guerrero-Ferreira R, Taylor NM, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M and Stahlberg H: Cryo-EM structure of alpha-synuclein fibrils. Elife. 7(e36402)2018.PubMed/NCBI View Article : Google Scholar

9 

Vasquez V, Mitra J, Wang H, Hegde PM, Rao KS and Hegde ML: A multi-faceted genotoxic network of alpha-synuclein in the nucleus and mitochondria of dopaminergic neurons in Parkinson's disease: Emerging concepts and challenges. Prog Neurobiol. 185(101729)2020.PubMed/NCBI View Article : Google Scholar

10 

Burré J, Sharma M and Südhof TC: Cell biology and pathophysiology of α-synuclein. Cold Spring Harb Perspect Med. 8(a024091)2018.PubMed/NCBI View Article : Google Scholar

11 

Fujioka S, Ogaki K, Tacik PM, Uitti RJ, Ross OA and Wszolek ZK: Update on novel familial forms of Parkinson's disease and multiple system atrophy. Parkinsonism Relat Disord. 20 (Suppl 1):S29–S34. 2014.PubMed/NCBI View Article : Google Scholar

12 

Koo HJ, Lee HJ and Im H: Sequence determinants regulating fibrillation of human alpha-synuclein. Biochem Biophys Res Commun. 368:772–778. 2008.PubMed/NCBI View Article : Google Scholar

13 

Liu W, Lim KL and Tan EK: Intestine-derived α-synuclein initiates and aggravates pathogenesis of Parkinson's disease in Drosophila. Transl Neurodegener. 11(44)2022.PubMed/NCBI View Article : Google Scholar

14 

Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda D, et al: Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci. 25:1134–1148. 2022.PubMed/NCBI View Article : Google Scholar

15 

Pacheco CR, Morales CN, Ramírez AE, Muñoz FJ, Gallegos SS, Caviedes PA, Aguayo LG and Opazo CM: Extracellular α-synuclein alters synaptic transmission in brain neurons by perforating the neuronal plasma membrane. J Neurochem. 132:731–741. 2015.PubMed/NCBI View Article : Google Scholar

16 

Cardinale A, Calabrese V, de Iure A and Picconi B: Alpha-synuclein as a prominent actor in the inflammatory synaptopathy of Parkinson's disease. Int J Mol Sci. 22(6517)2021.PubMed/NCBI View Article : Google Scholar

17 

Chakroun T, Evsyukov V, Nykänen NP, Höllerhage M, Schmidt A, Kamp F, Ruf VC, Wurst W, Rösler TW and Höglinger GU: Alpha-synuclein fragments trigger distinct aggregation pathways. Cell Death Dis. 11(84)2020.PubMed/NCBI View Article : Google Scholar

18 

Wang C, Yang T, Liang M, Xie J and Song N: Astrocyte dysfunction in Parkinson's disease: From the perspectives of transmitted α-synuclein and genetic modulation. Transl Neurodegener. 10(39)2021.PubMed/NCBI View Article : Google Scholar

19 

Yu WW, Cao SN, Zang CX, Wang L, Yang HY, Bao XQ and Zhang D: Heat shock protein 70 suppresses neuroinflammation induced by α-synuclein in astrocytes. Mol Cell Neurosci. 86:58–64. 2018.PubMed/NCBI View Article : Google Scholar

20 

Kim C, Spencer B, Rockenstein E, Yamakado H, Mante M, Adame A, Fields JA, Masliah D, Iba M, Lee HJ, et al: Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol Neurodegener. 13(43)2018.PubMed/NCBI View Article : Google Scholar

21 

Sian-Hulsmann J and Riederer P: The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson's disease. J Neural Transm (Vienna). 127:749–754. 2020.PubMed/NCBI View Article : Google Scholar

22 

Riederer P, Monoranu C, Strobel S, Iordache T and Sian-Hülsmann J: Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna). 128:1577–1598. 2021.PubMed/NCBI View Article : Google Scholar

23 

Melo TQ, Copray SJCVM and Ferrari MFR: Alpha-synuclein toxicity on protein quality control, mitochondria and endoplasmic reticulum. Neurochem Res. 43:2212–2223. 2018.PubMed/NCBI View Article : Google Scholar

24 

Ninkina N, Tarasova TV, Chaprov KD, Roman AY, Kukharsky MS, Kolik LG, Ovchinnikov R, Ustyugov AA, Durnev AD and Buchman VL: Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice. Neurobiol Aging. 91:76–87. 2020.PubMed/NCBI View Article : Google Scholar

25 

Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE and Joers V: Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 22:657–673. 2022.PubMed/NCBI View Article : Google Scholar

26 

Zhao YF, Qiong-Zhang Zhang JF, Lou ZY, Zu HB, Wang ZG, Zeng WC and Kai-Yao and Xiao BG: The synergy of aging and LPS exposure in a mouse model of Parkinson's disease. Aging Dis. 9:785–797. 2018.PubMed/NCBI View Article : Google Scholar

27 

Russo T and Riessland M: Age-related midbrain inflammation and senescence in Parkinson's disease. Front Aging Neurosci. 14(917797)2022.PubMed/NCBI View Article : Google Scholar

28 

Su R and Zhou T: Alpha-synuclein induced immune cells activation and associated therapy in Parkinson's disease. Front Aging Neurosci. 13(769506)2021.PubMed/NCBI View Article : Google Scholar

29 

Tremblay ME, Cookson MR and Civiero L: Glial phagocytic clearance in Parkinson's disease. Mol Neurodegener. 14(16)2019.PubMed/NCBI View Article : Google Scholar

30 

Kim C, Kwon S, Iba M, Spencer B, Rockenstein E, Mante M, Adame A, Shin SJ, Fields JA, Rissman RA, et al: Effects of innate immune receptor stimulation on extracellular α-synuclein uptake and degradation by brain resident cells. Exp Mol Med. 53:281–290. 2021.PubMed/NCBI View Article : Google Scholar

31 

Fellner L, Gabassi E, Haybaeck J and Edenhofer F: Autophagy in α-synucleinopathies-an overstrained system. Cells. 10(3143)2021.PubMed/NCBI View Article : Google Scholar

32 

Caggiu E, Arru G, Hosseini S, Niegowska M, Sechi G, Zarbo IR and Sechi LA: Inflammation, infectious triggers, and Parkinson's disease. Front Neurol. 10(122)2019.PubMed/NCBI View Article : Google Scholar

33 

Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M and Soininen H: Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci. 34:3–11. 2011.PubMed/NCBI View Article : Google Scholar

34 

Coleman C and Martin I: Unraveling Parkinson's disease neurodegeneration: Does aging hold the clues? J Parkinsons Dis. 12:2321–2338. 2022.PubMed/NCBI View Article : Google Scholar

35 

Pang SY, Ho PW, Liu HF, Leung CT, Li L, Chang EES, Ramsden DB and Ho SL: The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson's disease. Transl Neurodegener. 8(23)2019.PubMed/NCBI View Article : Google Scholar

36 

Wendimu MY and Hooks SB: Microglia phenotypes in aging and neurodegenerative diseases. Cells. 11(2091)2022.PubMed/NCBI View Article : Google Scholar

37 

Nasrolahi A, Safari F, Farhoudi M, Khosravi A, Farajdokht F, Bastaminejad S, Sandoghchian Shotorbani S and Mahmoudi J: Immune system and new avenues in Parkinson's disease research and treatment. Rev Neurosci. 30:709–727. 2019.PubMed/NCBI View Article : Google Scholar

38 

Van Den Berge N, Ferreira N, Mikkelsen TW, Alstrup AKO, Tamgüney G, Karlsson P, Terkelsen AJ, Nyengaard JR, Jensen PH and Borghammer P: Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain. 144:1853–1868. 2021.PubMed/NCBI View Article : Google Scholar

39 

Challis C, Hori A, Sampson TR, Yoo BB, Challis RC, Hamilton AM, Mazmanian SK, Volpicelli-Daley LA and Gradinaru V: Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci. 23:327–336. 2020.PubMed/NCBI View Article : Google Scholar

40 

Verma DK, Seo BA, Ghosh A, Ma SX, Hernandez-Quijada K, Andersen JK, Ko HS and Kim YH: Alpha-synuclein preformed fibrils induce cellular senescence in Parkinson's disease models. Cells. 10(1694)2021.PubMed/NCBI View Article : Google Scholar

41 

Rotter A, Lenz B, Pitsch R, Richter-Schmidinger T, Kornhuber J and Rhein C: Alpha-synuclein RNA expression is increased in major depression. Int J Mol Sci. 20(2029)2019.PubMed/NCBI View Article : Google Scholar

42 

Phan HTM, Bartz JC, Ayers J, Giasson BI, Schubert M, Rodenhausen KB, Kananizadeh N, Li Y and Bartelt-Hunt SL: Adsorption and decontamination of α-synuclein from medically and environmentally-relevant surfaces. Colloids Surf B Biointerfaces. 166:98–107. 2018.PubMed/NCBI View Article : Google Scholar

43 

D'Onofrio M, Munari F and Assfalg M: Alpha-synuclein-nanoparticle interactions: Understanding, controlling and exploiting conformational plasticity. Molecules. 25(5625)2020.PubMed/NCBI View Article : Google Scholar

44 

Makasewicz K, Wennmalm S, Stenqvist B, Fornasier M, Andersson A, Jönsson P, Linse S and Sparr E: Cooperativity of α-synuclein binding to lipid membranes. ACS Chem Neurosci. 12:2099–2109. 2021.PubMed/NCBI View Article : Google Scholar

45 

Davidson WS, Jonas A, Clayton DF and George JM: Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem. 273:9443–9449. 1998.PubMed/NCBI View Article : Google Scholar

46 

George JM, Jin H, Woods WS and Clayton DF: Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron. 15:361–372. 1995.PubMed/NCBI View Article : Google Scholar

47 

Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y and Saitoh T: Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA. 90:11282–11286. 1993.PubMed/NCBI View Article : Google Scholar

48 

Weinreb PH, Zhen W, Poon AW, Conway KA and Lansbury PT Jr: NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry. 35:13709–13715. 1996.PubMed/NCBI View Article : Google Scholar

49 

Acquasaliente L, Pontarollo G, Radu CM, Peterle D, Artusi I, Pagotto A, Uliana F, Negro A, Simioni P and De Filippis V: Exogenous human α-synuclein acts in vitro as a mild platelet antiaggregant inhibiting α-thrombin-induced platelet activation. Sci Rep. 12(9880)2022.PubMed/NCBI View Article : Google Scholar

50 

Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M and Dobson CM: Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc. 127:476–477. 2005.PubMed/NCBI View Article : Google Scholar

51 

Bogale TA, Faustini G, Longhena F, Mitola S, Pizzi M and Bellucci A: Alpha-synuclein in the regulation of brain endothelial and perivascular cells: Gaps and future perspectives. Front Immunol. 12(611761)2021.PubMed/NCBI View Article : Google Scholar

52 

Bozelli JC Jr, Kamski-Hennekam E, Melacini G and Epand RM: α-Synuclein and neuronal membranes: Conformational flexibilities in health and disease. Chem Phys Lipids. 235(105034)2021.PubMed/NCBI View Article : Google Scholar

53 

Chakraborty R and Chattopadhyay K: Cryo-electron microscopy uncovers key residues within the core of alpha-synuclein fibrils. ACS Chem Neurosci. 10:1135–1136. 2019.PubMed/NCBI View Article : Google Scholar

54 

Walsh DM and Selkoe DJ: A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci. 17:251–260. 2016.PubMed/NCBI View Article : Google Scholar

55 

Choi ML and Gandhi S: Crucial role of protein oligomerization in the pathogenesis of Alzheimer's and Parkinson's diseases. FEBS J. 285:3631–3644. 2018.PubMed/NCBI View Article : Google Scholar

56 

Liu G, Aliaga L and Cai H: α-Synuclein, LRRK2 and their interplay in Parkinson's disease. Future Neurol. 7:145–153. 2012.PubMed/NCBI View Article : Google Scholar

57 

Wang R, Ren H, Kaznacheyeva E, Lu X and Wang G: Association of glial activation and α-synuclein pathology in Parkinson's disease. Neurosci Bull. 39:479–490. 2022.PubMed/NCBI View Article : Google Scholar

58 

Imbriani P, Schirinzi T, Meringolo M, Mercuri NB and Pisani A: Centrality of early synaptopathy in Parkinson's disease. Front Neurol. 9(103)2018.PubMed/NCBI View Article : Google Scholar

59 

Kam TI, Mao X, Park H, Chou SC, Karuppagounder SS, Umanah GE, Yun SP, Brahmachari S, Panicker N, Chen R, et al: Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease. Science. 362(eaat8407)2018.PubMed/NCBI View Article : Google Scholar

60 

Bae EJ, Choi M, Kim JT, Kim DK, Jung MK, Kim C, Kim TK, Lee JS, Jung BC, Shin SJ, et al: TNF-α promotes α-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Exp Mol Med. 54:788–800. 2022.PubMed/NCBI View Article : Google Scholar

61 

Gelpi E, Navarro-Otano J, Tolosa E, Gaig C, Compta Y, Rey MJ, Martí MJ, Hernández I, Valldeoriola F, Reñé R and Ribalta T: Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord. 29:1010–1018. 2014.PubMed/NCBI View Article : Google Scholar

62 

Donadio V, Incensi A, Piccinini C, Cortelli P, Giannoccaro MP, Baruzzi A and Liguori R: Skin nerve misfolded α-synuclein in pure autonomic failure and Parkinson disease. Ann Neurol. 79:306–316. 2016.PubMed/NCBI View Article : Google Scholar

63 

Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, Akiyama H, Caviness JN, Shill HA, Sabbagh MN, et al: Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 119:689–702. 2010.PubMed/NCBI View Article : Google Scholar

64 

Braak H, Rüb U, Gai WP and Del Tredici K: Idiopathic Parkinson's disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 110:517–536. 2003.PubMed/NCBI View Article : Google Scholar

65 

Braak H, Ghebremedhin E, Rüb U, Bratzke H and Del Tredici K: Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 318:121–134. 2004.PubMed/NCBI View Article : Google Scholar

66 

Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, Svenningsson P, Chen H and Wirdefeldt K: Vagotomy and Parkinson disease: A Swedish register-based matched-cohort study. Neurology. 88:1996–2002. 2017.PubMed/NCBI View Article : Google Scholar

67 

Ho PW, Leung CT, Liu H, Pang SY, Lam CS, Xian J, Li L, Kung MH, Ramsden DB and Ho SL: Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: Role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 16:347–370. 2020.PubMed/NCBI View Article : Google Scholar

68 

Henderson MX, Trojanowski JQ and Lee VMY: α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett. 709(134316)2019.PubMed/NCBI View Article : Google Scholar

69 

Iba M, McDevitt RA, Kim C, Roy R, Sarantopoulou D, Tommer E, Siegars B, Sallin M, Kwon S, Sen JM, et al: Aging exacerbates the brain inflammatory micro-environment contributing to α-synuclein pathology and functional deficits in a mouse model of DLB/PD. Mol Neurodegener. 17(60)2022.PubMed/NCBI View Article : Google Scholar

70 

Rauschenberger L, Behnke J, Grotemeyer A, Knorr S, Volkmann J and Ip CW: Age-dependent neurodegeneration and neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein mouse model of Parkinson's disease. Neurobiol Dis. 171(105798)2022.PubMed/NCBI View Article : Google Scholar

71 

Yang W, Li X, Li X and Yu S: Hemoglobin-α-synuclein complex exhibited age-dependent alterations in the human striatum and peripheral RBCs. Neurosci Lett. 736(135274)2020.PubMed/NCBI View Article : Google Scholar

72 

Ma M, Li H, Wu J, Zhang Y, Shen H, Li X, Wang Z and Chen G: Roles of prokineticin 2 in subarachnoid hemorrhage-induced early brain injury via regulation of phenotype polarization in astrocytes. Mol Neurobiol. 57:3744–3758. 2020.PubMed/NCBI View Article : Google Scholar

73 

Jeon YM, Kwon Y, Jo M, Lee S, Kim S and Kim HJ: The role of glial mitochondria in alpha-synuclein toxicity. Front Cell Dev Biol. 8(548283)2020.PubMed/NCBI View Article : Google Scholar

74 

Li Q and Haney MS: The role of glia in protein aggregation. Neurobiol Dis. 143(105015)2020.PubMed/NCBI View Article : Google Scholar

75 

Wang P and Ye Y: Astrocytes in neurodegenerative diseases: A perspective from tauopathy and α-synucleinopathy. Life (Basel). 11(938)2021.PubMed/NCBI View Article : Google Scholar

76 

Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, et al: Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 541:481–487. 2017.PubMed/NCBI View Article : Google Scholar

77 

Diniz LP, Araujo APB, Matias I, Garcia MN, Barros-Aragão FGQ, de Melo Reis RA, Foguel D, Braga C, Figueiredo CP, Romão L and Gomes FCA: Astrocyte glutamate transporters are increased in an early sporadic model of synucleinopathy. Neurochem Int. 138(104758)2020.PubMed/NCBI View Article : Google Scholar

78 

Chavarria C, Ivagnes R and Souza JM: Extracellular alpha-synuclein: Mechanisms for glial cell internalization and activation. Biomolecules. 12(655)2022.PubMed/NCBI View Article : Google Scholar

79 

Vargas JY, Grudina C and Zurzolo C: The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Res Rev. 50:89–101. 2019.PubMed/NCBI View Article : Google Scholar

80 

Wang J, Chen Z, Walston JD, Gao P, Gao M and Leng SX: α-Synuclein activates innate immunity but suppresses interferon-γ expression in murine astrocytes. Eur J Neurosci: 10.1111/ejn.13956, 2018 (Epub ahead of print).

81 

Hua J, Yin N, Xu S, Chen Q, Tao T, Zhang J, Ding J, Fan Y and Hu G: Enhancing the astrocytic clearance of extracellular α-synuclein aggregates by ginkgolides attenuates neural cell injury. Cell Mol Neurobiol. 39:1017–1028. 2019.PubMed/NCBI View Article : Google Scholar

82 

Chavarría C, Rodríguez-Bottero S, Quijano C, Cassina P and Souza JM: Impact of monomeric, oligomeric and fibrillar alpha-synuclein on astrocyte reactivity and toxicity to neurons. Biochem J. 475:3153–3169. 2018.PubMed/NCBI View Article : Google Scholar

83 

Liscovitch N and French L: Differential co-expression between α-synuclein and IFN-γ signaling genes across development and in Parkinson's disease. PLoS One. 9(e115029)2014.PubMed/NCBI View Article : Google Scholar

84 

Wang J, Chen Z, Walston JD, Gao P, Gao M and Leng SX: Interferon-γ potentiates α-synuclein-induced neurotoxicity linked to toll-like receptors 2 and 3 and tumor necrosis factor-α in murine astrocytes. Mol Neurobiol. 56:7664–7679. 2019.PubMed/NCBI View Article : Google Scholar

85 

Liu CY, Wang X, Liu C and Zhang HL: Pharmacological targeting of microglial activation: New therapeutic approach. Front Cell Neurosci. 13(514)2019.PubMed/NCBI View Article : Google Scholar

86 

Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L, Sun Y, Wu J, Zhou Q, Huang J, et al: Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson's disease. Front Immunol. 12(719807)2021.PubMed/NCBI View Article : Google Scholar

87 

Zhao Y and Yang G: Potential of extracellular vesicles in the Parkinson's disease-pathological mediators and biomarkers. Neurochem Int. 144(104974)2021.PubMed/NCBI View Article : Google Scholar

88 

Sarlus H and Heneka MT: Microglia in Alzheimer's disease. J Clin Invest. 127:3240–3249. 2017.PubMed/NCBI View Article : Google Scholar

89 

Neefjes J, Jongsma ML, Paul P and Bakke O: Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 11:823–836. 2011.PubMed/NCBI View Article : Google Scholar

90 

Chhatbar C and Prinz M: The roles of microglia in viral encephalitis: From sensome to therapeutic targeting. Cell Mol Immunol. 18:250–258. 2021.PubMed/NCBI View Article : Google Scholar

91 

Kong W, Wang X, Yang X, Huang W, Han S, Yin J, Liu W, He X and Peng B: Activation of TRPV1 contributes to recurrent febrile seizures via inhibiting the microglial M2 phenotype in the immature brain. Front Cell Neurosci. 13(442)2019.PubMed/NCBI View Article : Google Scholar

92 

Gordon J, Lockard G, Monsour M, Alayli A, Choudhary H and Borlongan CV: Sequestration of inflammation in Parkinson's Disease via stem cell therapy. Int J Mol Sci. 23(10138)2022.PubMed/NCBI View Article : Google Scholar

93 

Stefanova N, Fellner L, Reindl M, Masliah E, Poewe W and Wenning GK: Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am J Pathol. 179:954–963. 2011.PubMed/NCBI View Article : Google Scholar

94 

Xia Y, Zhang G, Han C, Ma K, Guo X, Wan F, Kou L, Yin S, Liu L, Huang J, et al: Microglia as modulators of exosomal alpha-synuclein transmission. Cell Death Dis. 10(174)2019.PubMed/NCBI View Article : Google Scholar

95 

Scheiblich H, Bousset L, Schwartz S, Griep A, Latz E, Melki R and Heneka MT: Microglial NLRP3 inflammasome activation upon TLR2 and TLR5 ligation by distinct α-synuclein assemblies. J Immunol. 207:2143–2154. 2021.PubMed/NCBI View Article : Google Scholar

96 

Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E, Effros RB and Chesselet MF: Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol. 237:318–334. 2012.PubMed/NCBI View Article : Google Scholar

97 

Wallach T, Raden M, Hinkelmann L, Brehm M, Rabsch D, Weidling H, Krüger C, Kettenmann H, Backofen R and Lehnardt S: Distinct SARS-CoV-2 RNA fragments activate Toll-like receptors 7 and 8 and induce cytokine release from human macrophages and microglia. Front Immunol. 13(1066456)2023.PubMed/NCBI View Article : Google Scholar

98 

Du XY, Xie XX and Liu RT: The role of α-synuclein oligomers in Parkinson's disease. Int J Mol Sci. 21(8645)2020.PubMed/NCBI View Article : Google Scholar

99 

Zhang YN, Fan JK, Gu L, Yang HM, Zhan SQ and Zhang H: Metabotropic glutamate receptor 5 inhibits α-synuclein-induced microglia inflammation to protect from neurotoxicity in Parkinson's disease. J Neuroinflammation. 18(23)2021.PubMed/NCBI View Article : Google Scholar

100 

Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ and Lee SJ: Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun. 4(1562)2013.PubMed/NCBI View Article : Google Scholar

101 

Heidari A, Yazdanpanah N and Rezaei N: The role of Toll-like receptors and neuroinflammation in Parkinson's disease. J Neuroinflammation. 19(135)2022.PubMed/NCBI View Article : Google Scholar

102 

Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, et al: Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med. 24:931–938. 2018.PubMed/NCBI View Article : Google Scholar

103 

Kermorgant M, Fernagut PO, Meissner WG, Arvanitis DN, N'Guyen D, Senard JM and Pavy-Le Traon A: Age and Gender differences in cardiovascular autonomic failure in the transgenic PLP-syn mouse, a model of multiple system atrophy. Front Neurol. 13(874155)2022.PubMed/NCBI View Article : Google Scholar

104 

Kaji S, Maki T, Kinoshita H, Uemura N, Ayaki T, Kawamoto Y, Furuta T, Urushitani M, Hasegawa M, Kinoshita Y, et al: Pathological endogenous α-synuclein accumulation in oligodendrocyte precursor cells potentially induces inclusions in multiple system atrophy. Stem Cell Reports. 10:356–365. 2018.PubMed/NCBI View Article : Google Scholar

105 

Dutta S, Hornung S, Kruayatidee A, Maina KN, Del Rosario I, Paul KC, Wong DY, Duarte Folle A, Markovic D, Palma JA, et al: α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson's disease from multiple system atrophy. Acta Neuropathol. 142:495–511. 2021.PubMed/NCBI View Article : Google Scholar

106 

Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H and Takahashi H: NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson's disease brains. Acta Neuropathol. 99:14–20. 2000.PubMed/NCBI View Article : Google Scholar

107 

Reyes JF, Rey NL, Bousset L, Melki R, Brundin P and Angot E: Alpha-synuclein transfers from neurons to oligodendrocytes. Glia. 62:387–398. 2014.PubMed/NCBI View Article : Google Scholar

108 

Kisos H, Pukaß K, Ben-Hur T, Richter-Landsberg C and Sharon R: Increased neuronal α-synuclein pathology associates with its accumulation in oligodendrocytes in mice modeling α-synucleinopathies. PLoS One. 7(e46817)2012.PubMed/NCBI View Article : Google Scholar

109 

Ihse E, Yamakado H, van Wijk XM, Lawrence R, Esko JD and Masliah E: Cellular internalization of alpha-synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. Sci Rep. 7(9008)2017.PubMed/NCBI View Article : Google Scholar

110 

Stefanova N, Reindl M, Neumann M, Kahle PJ, Poewe W and Wenning GK: Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: Implications for multiple system atrophy. Mov Disord. 22:2196–2203. 2007.PubMed/NCBI View Article : Google Scholar

111 

Raffaele S, Boccazzi M and Fumagalli M: Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: Mechanisms and therapeutic perspectives. Cells. 10(565)2021.PubMed/NCBI View Article : Google Scholar

112 

Ratnam NM, Sonnemann HM, Frederico SC, Chen H, Hutchinson MND, Dowdy T, Reid CM, Jung J, Zhang W, Song H, et al: Reversing epigenetic gene silencing to overcome immune evasion in CNS malignancies. Front Oncol. 11(719091)2021.PubMed/NCBI View Article : Google Scholar

113 

Tait AS, Butts CL and Sternberg EM: The role of glucocorticoids and progestins in inflammatory, autoimmune, and infectious disease. J Leukoc Biol. 84:924–931. 2008.PubMed/NCBI View Article : Google Scholar

114 

Enzmann G, Kargaran S and Engelhardt B: Ischemia-reperfusion injury in stroke: Impact of the brain barriers and brain immune privilege on neutrophil function. Ther Adv Neurol Disord. 11(1756286418794184)2018.PubMed/NCBI View Article : Google Scholar

115 

Chandra G, Roy A, Rangasamy SB and Pahan K: Induction of adaptive immunity leads to nigrostriatal disease progression in MPTP mouse model of Parkinson's disease. J Immunol. 198:4312–4326. 2017.PubMed/NCBI View Article : Google Scholar

116 

Earls RH, Menees KB, Chung J, Barber J, Gutekunst CA, Hazim MG and Lee JK: Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. J Neuroinflammation. 16(250)2019.PubMed/NCBI View Article : Google Scholar

117 

Sun C, Jia G, Wang X, Wang Y and Liu Y: Immunoproteasome is up-regulated in rotenone-induced Parkinson's disease rat model. Neurosci Lett. 738(135360)2020.PubMed/NCBI View Article : Google Scholar

118 

Ferreira SA and Romero-Ramos M: Microglia response during Parkinson's Disease: Alpha-synuclein intervention. Front Cell Neurosci. 12(247)2018.PubMed/NCBI View Article : Google Scholar

119 

Kannarkat GT, Cook DA, Lee JK, Chang J, Chung J, Sandy E, Paul KC, Ritz B, Bronstein J, Factor SA, et al: Common genetic variant association with altered HLA expression, synergy with pyrethroid exposure, and risk for Parkinson's disease: An observational and case-control study. NPJ Parkinsons Dis. 1(15002)2015.PubMed/NCBI View Article : Google Scholar

120 

Galiano-Landeira J, Torra A, Vila M and Bové J: CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson's disease. Brain. 143:3717–3733. 2020.PubMed/NCBI View Article : Google Scholar

121 

Rostami J, Fotaki G, Sirois J, Mzezewa R, Bergström J, Essand M, Healy L and Erlandsson A: Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson's disease brain. J Neuroinflammation. 17(119)2020.PubMed/NCBI View Article : Google Scholar

122 

Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao X, et al: T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature. 546:656–661. 2017.PubMed/NCBI View Article : Google Scholar

123 

Lindestam Arlehamn CS, Dhanwani R, Pham J, Kuan R, Frazier A, Rezende Dutra J, Phillips E, Mallal S, Roederer M, Marder KS, et al: α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson's disease. Nat Commun. 11(1875)2020.PubMed/NCBI View Article : Google Scholar

124 

Kwon JH, Kim M, Um S, Lee HJ, Bae YK, Choi SJ, Hwang HH, Oh W and Jin HJ: Senescence-associated secretory phenotype suppression mediated by small-sized mesenchymal stem cells delays cellular senescence through TLR2 and TLR5 signaling. Cells. 10(63)2021.PubMed/NCBI View Article : Google Scholar

125 

Xu Z, Qu A, Zhang H, Wang W, Hao C, Lu M, Shi B, Xu L, Sun M, Xu C and Kuang H: Photoinduced elimination of senescent microglia cells in vivo by chiral gold nanoparticles. Chem Sci. 13:6642–6654. 2022.PubMed/NCBI View Article : Google Scholar

126 

Badanjak K, Fixemer S, Smajić S, Skupin A and Grünewald A: The contribution of microglia to neuroinflammation in Parkinson's disease. Int J Mol Sci. 22(4676)2021.PubMed/NCBI View Article : Google Scholar

127 

Chaib S, Tchkonia T and Kirkland JL: Cellular senescence and senolytics: The path to the clinic. Nat Med. 28:1556–1568. 2022.PubMed/NCBI View Article : Google Scholar

128 

Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, Zhang B and Yue Z: Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 11(1386)2020.PubMed/NCBI View Article : Google Scholar

129 

Menon R, Behnia F, Polettini J, Saade GR, Campisi J and Velarde M: Placental membrane aging and HMGB1 signaling associated with human parturition. Aging (Albany NY). 8:216–230. 2016.PubMed/NCBI View Article : Google Scholar

130 

Wang AS, Nakamizo S, Ishida Y, Klassen G, Chong P, Wada A, Lim JSY, Wright GD, Kabashima K and Dreesen O: Identification and quantification of senescent cell types by lamin B1 and HMGB1 in Actinic keratosis lesions. J Dermatol Sci. 105:61–64. 2022.PubMed/NCBI View Article : Google Scholar

131 

Johmura Y, Yamanaka T, Omori S, Wang TW, Sugiura Y, Matsumoto M, Suzuki N, Kumamoto S, Yamaguchi K, Hatakeyama S, et al: Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science. 371:265–270. 2021.PubMed/NCBI View Article : Google Scholar

132 

Enokido Y, Yoshitake A, Ito H and Okazawa H: Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem Biophys Res Commun. 376:128–133. 2008.PubMed/NCBI View Article : Google Scholar

133 

Mandke P and Vasquez KM: Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair (Amst). 83(102701)2019.PubMed/NCBI View Article : Google Scholar

134 

Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U and Kayed R: Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep. 36(109419)2021.PubMed/NCBI View Article : Google Scholar

135 

Yang JH, Petty CA, Dixon-McDougall T, Lopez MV, Tyshkovskiy A, Maybury-Lewis S, Tian X, Ibrahim N, Chen Z, Griffin PT, et al: Chemically induced reprogramming to reverse cellular aging. Aging (Albany NY). 15:5966–5989. 2023.PubMed/NCBI View Article : Google Scholar

136 

Sarkar TJ, Quarta M, Mukherjee S, Colville A, Paine P, Doan L, Tran CM, Chu CR, Horvath S, Qi LS, et al: Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat Commun. 11(1545)2020.PubMed/NCBI View Article : Google Scholar

137 

Browder KC, Reddy P, Yamamoto M, Haghani A, Guillen IG, Sahu S, Wang C, Luque Y, Prieto J, Shi L, et al: In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat Aging. 2:243–253. 2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang N, Yan Z, Xin H, Shao S, Xue S, Cespuglio R and Wang S: Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review). Exp Ther Med 27: 23, 2024.
APA
Zhang, N., Yan, Z., Xin, H., Shao, S., Xue, S., Cespuglio, R., & Wang, S. (2024). Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review). Experimental and Therapeutic Medicine, 27, 23. https://doi.org/10.3892/etm.2023.12311
MLA
Zhang, N., Yan, Z., Xin, H., Shao, S., Xue, S., Cespuglio, R., Wang, S."Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review)". Experimental and Therapeutic Medicine 27.1 (2024): 23.
Chicago
Zhang, N., Yan, Z., Xin, H., Shao, S., Xue, S., Cespuglio, R., Wang, S."Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review)". Experimental and Therapeutic Medicine 27, no. 1 (2024): 23. https://doi.org/10.3892/etm.2023.12311
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang N, Yan Z, Xin H, Shao S, Xue S, Cespuglio R and Wang S: Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review). Exp Ther Med 27: 23, 2024.
APA
Zhang, N., Yan, Z., Xin, H., Shao, S., Xue, S., Cespuglio, R., & Wang, S. (2024). Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review). Experimental and Therapeutic Medicine, 27, 23. https://doi.org/10.3892/etm.2023.12311
MLA
Zhang, N., Yan, Z., Xin, H., Shao, S., Xue, S., Cespuglio, R., Wang, S."Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review)". Experimental and Therapeutic Medicine 27.1 (2024): 23.
Chicago
Zhang, N., Yan, Z., Xin, H., Shao, S., Xue, S., Cespuglio, R., Wang, S."Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review)". Experimental and Therapeutic Medicine 27, no. 1 (2024): 23. https://doi.org/10.3892/etm.2023.12311
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team