|
1
|
Zhu B, Yin D, Zhao H and Zhang L: The
immunology of Parkinson's disease. Semin Immunopathol. 44:659–672.
2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Jang JH, Yeom MJ, Ahn S, Oh JY, Ji S, Kim
TH and Park HJ: Acupuncture inhibits neuroinflammation and gut
microbial dysbiosis in a mouse model of Parkinson's disease. Brain
Behav Immun. 89:641–655. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Fields CR, Bengoa-Vergniory N and
Wade-Martins R: Targeting alpha-synuclein as a therapy for
Parkinson's disease. Front Mol Neurosci. 12(299)2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Zhao Y, Zhang Z, Qin S, Fan W, Li W, Liu
J, Wang S, Xu Z and Zhao M: Acupuncture for Parkinson's disease:
Efficacy evaluation and mechanisms in the dopaminergic neural
circuit. Neural Plast. 2021(9926445)2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Stevenson TJ, Murray HC, Turner C, Faull
RLM, Dieriks BV and Curtis MA: α-synuclein inclusions are abundant
in non-neuronal cells in the anterior olfactory nucleus of the
Parkinson's disease olfactory bulb. Sci Rep.
10(6682)2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Campo F, Carletti R, Fusconi M, Pellicano
C, Pontieri FE, Di Gioia CR and de Vincentiis M: Alpha-synuclein in
salivary gland as biomarker for Parkinson's disease. Rev Neurosci.
30:455–462. 2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Jansen van Rensburg Z, Abrahams S, Bardien
S and Kenyon C: Toxic feedback loop involving iron, reactive oxygen
species, α-synuclein and neuromelanin in Parkinson's disease and
intervention with turmeric. Mol Neurobiol. 58:5920–5936.
2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Guerrero-Ferreira R, Taylor NM, Mona D,
Ringler P, Lauer ME, Riek R, Britschgi M and Stahlberg H: Cryo-EM
structure of alpha-synuclein fibrils. Elife.
7(e36402)2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Vasquez V, Mitra J, Wang H, Hegde PM, Rao
KS and Hegde ML: A multi-faceted genotoxic network of
alpha-synuclein in the nucleus and mitochondria of dopaminergic
neurons in Parkinson's disease: Emerging concepts and challenges.
Prog Neurobiol. 185(101729)2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Burré J, Sharma M and Südhof TC: Cell
biology and pathophysiology of α-synuclein. Cold Spring Harb
Perspect Med. 8(a024091)2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Fujioka S, Ogaki K, Tacik PM, Uitti RJ,
Ross OA and Wszolek ZK: Update on novel familial forms of
Parkinson's disease and multiple system atrophy. Parkinsonism Relat
Disord. 20 (Suppl 1):S29–S34. 2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Koo HJ, Lee HJ and Im H: Sequence
determinants regulating fibrillation of human alpha-synuclein.
Biochem Biophys Res Commun. 368:772–778. 2008.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Liu W, Lim KL and Tan EK:
Intestine-derived α-synuclein initiates and aggravates pathogenesis
of Parkinson's disease in Drosophila. Transl Neurodegener.
11(44)2022.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Choi ML, Chappard A, Singh BP, Maclachlan
C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda
D, et al: Pathological structural conversion of α-synuclein at the
mitochondria induces neuronal toxicity. Nat Neurosci. 25:1134–1148.
2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Pacheco CR, Morales CN, Ramírez AE, Muñoz
FJ, Gallegos SS, Caviedes PA, Aguayo LG and Opazo CM: Extracellular
α-synuclein alters synaptic transmission in brain neurons by
perforating the neuronal plasma membrane. J Neurochem. 132:731–741.
2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Cardinale A, Calabrese V, de Iure A and
Picconi B: Alpha-synuclein as a prominent actor in the inflammatory
synaptopathy of Parkinson's disease. Int J Mol Sci.
22(6517)2021.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Chakroun T, Evsyukov V, Nykänen NP,
Höllerhage M, Schmidt A, Kamp F, Ruf VC, Wurst W, Rösler TW and
Höglinger GU: Alpha-synuclein fragments trigger distinct
aggregation pathways. Cell Death Dis. 11(84)2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Wang C, Yang T, Liang M, Xie J and Song N:
Astrocyte dysfunction in Parkinson's disease: From the perspectives
of transmitted α-synuclein and genetic modulation. Transl
Neurodegener. 10(39)2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Yu WW, Cao SN, Zang CX, Wang L, Yang HY,
Bao XQ and Zhang D: Heat shock protein 70 suppresses
neuroinflammation induced by α-synuclein in astrocytes. Mol Cell
Neurosci. 86:58–64. 2018.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kim C, Spencer B, Rockenstein E, Yamakado
H, Mante M, Adame A, Fields JA, Masliah D, Iba M, Lee HJ, et al:
Immunotherapy targeting toll-like receptor 2 alleviates
neurodegeneration in models of synucleinopathy by modulating
α-synuclein transmission and neuroinflammation. Mol Neurodegener.
13(43)2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Sian-Hulsmann J and Riederer P: The role
of alpha-synuclein as ferrireductase in neurodegeneration
associated with Parkinson's disease. J Neural Transm (Vienna).
127:749–754. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Riederer P, Monoranu C, Strobel S,
Iordache T and Sian-Hülsmann J: Iron as the concert master in the
pathogenic orchestra playing in sporadic Parkinson's disease. J
Neural Transm (Vienna). 128:1577–1598. 2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Melo TQ, Copray SJCVM and Ferrari MFR:
Alpha-synuclein toxicity on protein quality control, mitochondria
and endoplasmic reticulum. Neurochem Res. 43:2212–2223.
2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Ninkina N, Tarasova TV, Chaprov KD, Roman
AY, Kukharsky MS, Kolik LG, Ovchinnikov R, Ustyugov AA, Durnev AD
and Buchman VL: Alterations in the nigrostriatal system following
conditional inactivation of α-synuclein in neurons of adult and
aging mice. Neurobiol Aging. 91:76–87. 2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Tansey MG, Wallings RL, Houser MC, Herrick
MK, Keating CE and Joers V: Inflammation and immune dysfunction in
Parkinson disease. Nat Rev Immunol. 22:657–673. 2022.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Zhao YF, Qiong-Zhang Zhang JF, Lou ZY, Zu
HB, Wang ZG, Zeng WC and Kai-Yao and Xiao BG: The synergy of aging
and LPS exposure in a mouse model of Parkinson's disease. Aging
Dis. 9:785–797. 2018.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Russo T and Riessland M: Age-related
midbrain inflammation and senescence in Parkinson's disease. Front
Aging Neurosci. 14(917797)2022.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Su R and Zhou T: Alpha-synuclein induced
immune cells activation and associated therapy in Parkinson's
disease. Front Aging Neurosci. 13(769506)2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Tremblay ME, Cookson MR and Civiero L:
Glial phagocytic clearance in Parkinson's disease. Mol
Neurodegener. 14(16)2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Kim C, Kwon S, Iba M, Spencer B,
Rockenstein E, Mante M, Adame A, Shin SJ, Fields JA, Rissman RA, et
al: Effects of innate immune receptor stimulation on extracellular
α-synuclein uptake and degradation by brain resident cells. Exp Mol
Med. 53:281–290. 2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Fellner L, Gabassi E, Haybaeck J and
Edenhofer F: Autophagy in α-synucleinopathies-an overstrained
system. Cells. 10(3143)2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Caggiu E, Arru G, Hosseini S, Niegowska M,
Sechi G, Zarbo IR and Sechi LA: Inflammation, infectious triggers,
and Parkinson's disease. Front Neurol. 10(122)2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Salminen A, Ojala J, Kaarniranta K,
Haapasalo A, Hiltunen M and Soininen H: Astrocytes in the aging
brain express characteristics of senescence-associated secretory
phenotype. Eur J Neurosci. 34:3–11. 2011.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Coleman C and Martin I: Unraveling
Parkinson's disease neurodegeneration: Does aging hold the clues? J
Parkinsons Dis. 12:2321–2338. 2022.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Pang SY, Ho PW, Liu HF, Leung CT, Li L,
Chang EES, Ramsden DB and Ho SL: The interplay of aging, genetics
and environmental factors in the pathogenesis of Parkinson's
disease. Transl Neurodegener. 8(23)2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Wendimu MY and Hooks SB: Microglia
phenotypes in aging and neurodegenerative diseases. Cells.
11(2091)2022.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Nasrolahi A, Safari F, Farhoudi M,
Khosravi A, Farajdokht F, Bastaminejad S, Sandoghchian Shotorbani S
and Mahmoudi J: Immune system and new avenues in Parkinson's
disease research and treatment. Rev Neurosci. 30:709–727.
2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Van Den Berge N, Ferreira N, Mikkelsen TW,
Alstrup AKO, Tamgüney G, Karlsson P, Terkelsen AJ, Nyengaard JR,
Jensen PH and Borghammer P: Ageing promotes pathological
alpha-synuclein propagation and autonomic dysfunction in wild-type
rats. Brain. 144:1853–1868. 2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Challis C, Hori A, Sampson TR, Yoo BB,
Challis RC, Hamilton AM, Mazmanian SK, Volpicelli-Daley LA and
Gradinaru V: Gut-seeded α-synuclein fibrils promote gut dysfunction
and brain pathology specifically in aged mice. Nat Neurosci.
23:327–336. 2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Verma DK, Seo BA, Ghosh A, Ma SX,
Hernandez-Quijada K, Andersen JK, Ko HS and Kim YH: Alpha-synuclein
preformed fibrils induce cellular senescence in Parkinson's disease
models. Cells. 10(1694)2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Rotter A, Lenz B, Pitsch R,
Richter-Schmidinger T, Kornhuber J and Rhein C: Alpha-synuclein RNA
expression is increased in major depression. Int J Mol Sci.
20(2029)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Phan HTM, Bartz JC, Ayers J, Giasson BI,
Schubert M, Rodenhausen KB, Kananizadeh N, Li Y and Bartelt-Hunt
SL: Adsorption and decontamination of α-synuclein from medically
and environmentally-relevant surfaces. Colloids Surf B
Biointerfaces. 166:98–107. 2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
D'Onofrio M, Munari F and Assfalg M:
Alpha-synuclein-nanoparticle interactions: Understanding,
controlling and exploiting conformational plasticity. Molecules.
25(5625)2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Makasewicz K, Wennmalm S, Stenqvist B,
Fornasier M, Andersson A, Jönsson P, Linse S and Sparr E:
Cooperativity of α-synuclein binding to lipid membranes. ACS Chem
Neurosci. 12:2099–2109. 2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Davidson WS, Jonas A, Clayton DF and
George JM: Stabilization of alpha-synuclein secondary structure
upon binding to synthetic membranes. J Biol Chem. 273:9443–9449.
1998.PubMed/NCBI View Article : Google Scholar
|
|
46
|
George JM, Jin H, Woods WS and Clayton DF:
Characterization of a novel protein regulated during the critical
period for song learning in the zebra finch. Neuron. 15:361–372.
1995.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Uéda K, Fukushima H, Masliah E, Xia Y,
Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y and Saitoh T:
Molecular cloning of cDNA encoding an unrecognized component of
amyloid in Alzheimer disease. Proc Natl Acad Sci USA.
90:11282–11286. 1993.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Weinreb PH, Zhen W, Poon AW, Conway KA and
Lansbury PT Jr: NACP, a protein implicated in Alzheimer's disease
and learning, is natively unfolded. Biochemistry. 35:13709–13715.
1996.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Acquasaliente L, Pontarollo G, Radu CM,
Peterle D, Artusi I, Pagotto A, Uliana F, Negro A, Simioni P and De
Filippis V: Exogenous human α-synuclein acts in vitro as a mild
platelet antiaggregant inhibiting α-thrombin-induced platelet
activation. Sci Rep. 12(9880)2022.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Dedmon MM, Lindorff-Larsen K,
Christodoulou J, Vendruscolo M and Dobson CM: Mapping long-range
interactions in alpha-synuclein using spin-label NMR and ensemble
molecular dynamics simulations. J Am Chem Soc. 127:476–477.
2005.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Bogale TA, Faustini G, Longhena F, Mitola
S, Pizzi M and Bellucci A: Alpha-synuclein in the regulation of
brain endothelial and perivascular cells: Gaps and future
perspectives. Front Immunol. 12(611761)2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Bozelli JC Jr, Kamski-Hennekam E, Melacini
G and Epand RM: α-Synuclein and neuronal membranes: Conformational
flexibilities in health and disease. Chem Phys Lipids.
235(105034)2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Chakraborty R and Chattopadhyay K:
Cryo-electron microscopy uncovers key residues within the core of
alpha-synuclein fibrils. ACS Chem Neurosci. 10:1135–1136.
2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Walsh DM and Selkoe DJ: A critical
appraisal of the pathogenic protein spread hypothesis of
neurodegeneration. Nat Rev Neurosci. 17:251–260. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Choi ML and Gandhi S: Crucial role of
protein oligomerization in the pathogenesis of Alzheimer's and
Parkinson's diseases. FEBS J. 285:3631–3644. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Liu G, Aliaga L and Cai H: α-Synuclein,
LRRK2 and their interplay in Parkinson's disease. Future Neurol.
7:145–153. 2012.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wang R, Ren H, Kaznacheyeva E, Lu X and
Wang G: Association of glial activation and α-synuclein pathology
in Parkinson's disease. Neurosci Bull. 39:479–490. 2022.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Imbriani P, Schirinzi T, Meringolo M,
Mercuri NB and Pisani A: Centrality of early synaptopathy in
Parkinson's disease. Front Neurol. 9(103)2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kam TI, Mao X, Park H, Chou SC,
Karuppagounder SS, Umanah GE, Yun SP, Brahmachari S, Panicker N,
Chen R, et al: Poly(ADP-ribose) drives pathologic α-synuclein
neurodegeneration in Parkinson's disease. Science.
362(eaat8407)2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Bae EJ, Choi M, Kim JT, Kim DK, Jung MK,
Kim C, Kim TK, Lee JS, Jung BC, Shin SJ, et al: TNF-α promotes
α-synuclein propagation through stimulation of
senescence-associated lysosomal exocytosis. Exp Mol Med.
54:788–800. 2022.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Gelpi E, Navarro-Otano J, Tolosa E, Gaig
C, Compta Y, Rey MJ, Martí MJ, Hernández I, Valldeoriola F, Reñé R
and Ribalta T: Multiple organ involvement by alpha-synuclein
pathology in Lewy body disorders. Mov Disord. 29:1010–1018.
2014.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Donadio V, Incensi A, Piccinini C,
Cortelli P, Giannoccaro MP, Baruzzi A and Liguori R: Skin nerve
misfolded α-synuclein in pure autonomic failure and Parkinson
disease. Ann Neurol. 79:306–316. 2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Beach TG, Adler CH, Sue LI, Vedders L, Lue
L, White Iii CL, Akiyama H, Caviness JN, Shill HA, Sabbagh MN, et
al: Multi-organ distribution of phosphorylated alpha-synuclein
histopathology in subjects with Lewy body disorders. Acta
Neuropathol. 119:689–702. 2010.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Braak H, Rüb U, Gai WP and Del Tredici K:
Idiopathic Parkinson's disease: Possible routes by which vulnerable
neuronal types may be subject to neuroinvasion by an unknown
pathogen. J Neural Transm (Vienna). 110:517–536. 2003.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Braak H, Ghebremedhin E, Rüb U, Bratzke H
and Del Tredici K: Stages in the development of Parkinson's
disease-related pathology. Cell Tissue Res. 318:121–134.
2004.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Liu B, Fang F, Pedersen NL, Tillander A,
Ludvigsson JF, Ekbom A, Svenningsson P, Chen H and Wirdefeldt K:
Vagotomy and Parkinson disease: A Swedish register-based
matched-cohort study. Neurology. 88:1996–2002. 2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Ho PW, Leung CT, Liu H, Pang SY, Lam CS,
Xian J, Li L, Kung MH, Ramsden DB and Ho SL: Age-dependent
accumulation of oligomeric SNCA/α-synuclein from impaired
degradation in mutant LRRK2 knockin mouse model of Parkinson
disease: Role for therapeutic activation of chaperone-mediated
autophagy (CMA). Autophagy. 16:347–370. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Henderson MX, Trojanowski JQ and Lee VMY:
α-Synuclein pathology in Parkinson's disease and related
α-synucleinopathies. Neurosci Lett. 709(134316)2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Iba M, McDevitt RA, Kim C, Roy R,
Sarantopoulou D, Tommer E, Siegars B, Sallin M, Kwon S, Sen JM, et
al: Aging exacerbates the brain inflammatory micro-environment
contributing to α-synuclein pathology and functional deficits in a
mouse model of DLB/PD. Mol Neurodegener. 17(60)2022.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Rauschenberger L, Behnke J, Grotemeyer A,
Knorr S, Volkmann J and Ip CW: Age-dependent neurodegeneration and
neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein
mouse model of Parkinson's disease. Neurobiol Dis.
171(105798)2022.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Yang W, Li X, Li X and Yu S:
Hemoglobin-α-synuclein complex exhibited age-dependent alterations
in the human striatum and peripheral RBCs. Neurosci Lett.
736(135274)2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Ma M, Li H, Wu J, Zhang Y, Shen H, Li X,
Wang Z and Chen G: Roles of prokineticin 2 in subarachnoid
hemorrhage-induced early brain injury via regulation of phenotype
polarization in astrocytes. Mol Neurobiol. 57:3744–3758.
2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Jeon YM, Kwon Y, Jo M, Lee S, Kim S and
Kim HJ: The role of glial mitochondria in alpha-synuclein toxicity.
Front Cell Dev Biol. 8(548283)2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Li Q and Haney MS: The role of glia in
protein aggregation. Neurobiol Dis. 143(105015)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Wang P and Ye Y: Astrocytes in
neurodegenerative diseases: A perspective from tauopathy and
α-synucleinopathy. Life (Basel). 11(938)2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Liddelow SA, Guttenplan KA, Clarke LE,
Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS,
Peterson TC, et al: Neurotoxic reactive astrocytes are induced by
activated microglia. Nature. 541:481–487. 2017.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Diniz LP, Araujo APB, Matias I, Garcia MN,
Barros-Aragão FGQ, de Melo Reis RA, Foguel D, Braga C, Figueiredo
CP, Romão L and Gomes FCA: Astrocyte glutamate transporters are
increased in an early sporadic model of synucleinopathy. Neurochem
Int. 138(104758)2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Chavarria C, Ivagnes R and Souza JM:
Extracellular alpha-synuclein: Mechanisms for glial cell
internalization and activation. Biomolecules.
12(655)2022.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Vargas JY, Grudina C and Zurzolo C: The
prion-like spreading of α-synuclein: From in vitro to in vivo
models of Parkinson's disease. Ageing Res Rev. 50:89–101.
2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Wang J, Chen Z, Walston JD, Gao P, Gao M
and Leng SX: α-Synuclein activates innate immunity but suppresses
interferon-γ expression in murine astrocytes. Eur J Neurosci:
10.1111/ejn.13956, 2018 (Epub ahead of print).
|
|
81
|
Hua J, Yin N, Xu S, Chen Q, Tao T, Zhang
J, Ding J, Fan Y and Hu G: Enhancing the astrocytic clearance of
extracellular α-synuclein aggregates by ginkgolides attenuates
neural cell injury. Cell Mol Neurobiol. 39:1017–1028.
2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Chavarría C, Rodríguez-Bottero S, Quijano
C, Cassina P and Souza JM: Impact of monomeric, oligomeric and
fibrillar alpha-synuclein on astrocyte reactivity and toxicity to
neurons. Biochem J. 475:3153–3169. 2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Liscovitch N and French L: Differential
co-expression between α-synuclein and IFN-γ signaling genes across
development and in Parkinson's disease. PLoS One.
9(e115029)2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Wang J, Chen Z, Walston JD, Gao P, Gao M
and Leng SX: Interferon-γ potentiates α-synuclein-induced
neurotoxicity linked to toll-like receptors 2 and 3 and tumor
necrosis factor-α in murine astrocytes. Mol Neurobiol.
56:7664–7679. 2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Liu CY, Wang X, Liu C and Zhang HL:
Pharmacological targeting of microglial activation: New therapeutic
approach. Front Cell Neurosci. 13(514)2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L,
Sun Y, Wu J, Zhou Q, Huang J, et al: Targeting microglial
α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson's
disease. Front Immunol. 12(719807)2021.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Zhao Y and Yang G: Potential of
extracellular vesicles in the Parkinson's disease-pathological
mediators and biomarkers. Neurochem Int. 144(104974)2021.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Sarlus H and Heneka MT: Microglia in
Alzheimer's disease. J Clin Invest. 127:3240–3249. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Neefjes J, Jongsma ML, Paul P and Bakke O:
Towards a systems understanding of MHC class I and MHC class II
antigen presentation. Nat Rev Immunol. 11:823–836. 2011.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Chhatbar C and Prinz M: The roles of
microglia in viral encephalitis: From sensome to therapeutic
targeting. Cell Mol Immunol. 18:250–258. 2021.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Kong W, Wang X, Yang X, Huang W, Han S,
Yin J, Liu W, He X and Peng B: Activation of TRPV1 contributes to
recurrent febrile seizures via inhibiting the microglial M2
phenotype in the immature brain. Front Cell Neurosci.
13(442)2019.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Gordon J, Lockard G, Monsour M, Alayli A,
Choudhary H and Borlongan CV: Sequestration of inflammation in
Parkinson's Disease via stem cell therapy. Int J Mol Sci.
23(10138)2022.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Stefanova N, Fellner L, Reindl M, Masliah
E, Poewe W and Wenning GK: Toll-like receptor 4 promotes
α-synuclein clearance and survival of nigral dopaminergic neurons.
Am J Pathol. 179:954–963. 2011.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Xia Y, Zhang G, Han C, Ma K, Guo X, Wan F,
Kou L, Yin S, Liu L, Huang J, et al: Microglia as modulators of
exosomal alpha-synuclein transmission. Cell Death Dis.
10(174)2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Scheiblich H, Bousset L, Schwartz S, Griep
A, Latz E, Melki R and Heneka MT: Microglial NLRP3 inflammasome
activation upon TLR2 and TLR5 ligation by distinct α-synuclein
assemblies. J Immunol. 207:2143–2154. 2021.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Watson MB, Richter F, Lee SK, Gabby L, Wu
J, Masliah E, Effros RB and Chesselet MF: Regionally-specific
microglial activation in young mice over-expressing human wildtype
alpha-synuclein. Exp Neurol. 237:318–334. 2012.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Wallach T, Raden M, Hinkelmann L, Brehm M,
Rabsch D, Weidling H, Krüger C, Kettenmann H, Backofen R and
Lehnardt S: Distinct SARS-CoV-2 RNA fragments activate Toll-like
receptors 7 and 8 and induce cytokine release from human
macrophages and microglia. Front Immunol.
13(1066456)2023.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Du XY, Xie XX and Liu RT: The role of
α-synuclein oligomers in Parkinson's disease. Int J Mol Sci.
21(8645)2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Zhang YN, Fan JK, Gu L, Yang HM, Zhan SQ
and Zhang H: Metabotropic glutamate receptor 5 inhibits
α-synuclein-induced microglia inflammation to protect from
neurotoxicity in Parkinson's disease. J Neuroinflammation.
18(23)2021.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Kim C, Ho DH, Suk JE, You S, Michael S,
Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ and Lee SJ:
Neuron-released oligomeric α-synuclein is an endogenous agonist of
TLR2 for paracrine activation of microglia. Nat Commun.
4(1562)2013.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Heidari A, Yazdanpanah N and Rezaei N: The
role of Toll-like receptors and neuroinflammation in Parkinson's
disease. J Neuroinflammation. 19(135)2022.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Yun SP, Kam TI, Panicker N, Kim S, Oh Y,
Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, et al: Block
of A1 astrocyte conversion by microglia is neuroprotective in
models of Parkinson's disease. Nat Med. 24:931–938. 2018.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Kermorgant M, Fernagut PO, Meissner WG,
Arvanitis DN, N'Guyen D, Senard JM and Pavy-Le Traon A: Age and
Gender differences in cardiovascular autonomic failure in the
transgenic PLP-syn mouse, a model of multiple system atrophy. Front
Neurol. 13(874155)2022.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Kaji S, Maki T, Kinoshita H, Uemura N,
Ayaki T, Kawamoto Y, Furuta T, Urushitani M, Hasegawa M, Kinoshita
Y, et al: Pathological endogenous α-synuclein accumulation in
oligodendrocyte precursor cells potentially induces inclusions in
multiple system atrophy. Stem Cell Reports. 10:356–365.
2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Dutta S, Hornung S, Kruayatidee A, Maina
KN, Del Rosario I, Paul KC, Wong DY, Duarte Folle A, Markovic D,
Palma JA, et al: α-Synuclein in blood exosomes immunoprecipitated
using neuronal and oligodendroglial markers distinguishes
Parkinson's disease from multiple system atrophy. Acta Neuropathol.
142:495–511. 2021.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Wakabayashi K, Hayashi S, Yoshimoto M,
Kudo H and Takahashi H: NACP/alpha-synuclein-positive filamentous
inclusions in astrocytes and oligodendrocytes of Parkinson's
disease brains. Acta Neuropathol. 99:14–20. 2000.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Reyes JF, Rey NL, Bousset L, Melki R,
Brundin P and Angot E: Alpha-synuclein transfers from neurons to
oligodendrocytes. Glia. 62:387–398. 2014.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Kisos H, Pukaß K, Ben-Hur T,
Richter-Landsberg C and Sharon R: Increased neuronal α-synuclein
pathology associates with its accumulation in oligodendrocytes in
mice modeling α-synucleinopathies. PLoS One.
7(e46817)2012.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Ihse E, Yamakado H, van Wijk XM, Lawrence
R, Esko JD and Masliah E: Cellular internalization of
alpha-synuclein aggregates by cell surface heparan sulfate depends
on aggregate conformation and cell type. Sci Rep.
7(9008)2017.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Stefanova N, Reindl M, Neumann M, Kahle
PJ, Poewe W and Wenning GK: Microglial activation mediates
neurodegeneration related to oligodendroglial
alpha-synucleinopathy: Implications for multiple system atrophy.
Mov Disord. 22:2196–2203. 2007.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Raffaele S, Boccazzi M and Fumagalli M:
Oligodendrocyte dysfunction in amyotrophic lateral sclerosis:
Mechanisms and therapeutic perspectives. Cells.
10(565)2021.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Ratnam NM, Sonnemann HM, Frederico SC,
Chen H, Hutchinson MND, Dowdy T, Reid CM, Jung J, Zhang W, Song H,
et al: Reversing epigenetic gene silencing to overcome immune
evasion in CNS malignancies. Front Oncol. 11(719091)2021.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Tait AS, Butts CL and Sternberg EM: The
role of glucocorticoids and progestins in inflammatory, autoimmune,
and infectious disease. J Leukoc Biol. 84:924–931. 2008.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Enzmann G, Kargaran S and Engelhardt B:
Ischemia-reperfusion injury in stroke: Impact of the brain barriers
and brain immune privilege on neutrophil function. Ther Adv Neurol
Disord. 11(1756286418794184)2018.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Chandra G, Roy A, Rangasamy SB and Pahan
K: Induction of adaptive immunity leads to nigrostriatal disease
progression in MPTP mouse model of Parkinson's disease. J Immunol.
198:4312–4326. 2017.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Earls RH, Menees KB, Chung J, Barber J,
Gutekunst CA, Hazim MG and Lee JK: Intrastriatal injection of
preformed alpha-synuclein fibrils alters central and peripheral
immune cell profiles in non-transgenic mice. J Neuroinflammation.
16(250)2019.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Sun C, Jia G, Wang X, Wang Y and Liu Y:
Immunoproteasome is up-regulated in rotenone-induced Parkinson's
disease rat model. Neurosci Lett. 738(135360)2020.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Ferreira SA and Romero-Ramos M: Microglia
response during Parkinson's Disease: Alpha-synuclein intervention.
Front Cell Neurosci. 12(247)2018.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Kannarkat GT, Cook DA, Lee JK, Chang J,
Chung J, Sandy E, Paul KC, Ritz B, Bronstein J, Factor SA, et al:
Common genetic variant association with altered HLA expression,
synergy with pyrethroid exposure, and risk for Parkinson's disease:
An observational and case-control study. NPJ Parkinsons Dis.
1(15002)2015.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Galiano-Landeira J, Torra A, Vila M and
Bové J: CD8 T cell nigral infiltration precedes synucleinopathy in
early stages of Parkinson's disease. Brain. 143:3717–3733.
2020.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Rostami J, Fotaki G, Sirois J, Mzezewa R,
Bergström J, Essand M, Healy L and Erlandsson A: Astrocytes have
the capacity to act as antigen-presenting cells in the Parkinson's
disease brain. J Neuroinflammation. 17(119)2020.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Sulzer D, Alcalay RN, Garretti F, Cote L,
Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao
X, et al: T cells from patients with Parkinson's disease recognize
α-synuclein peptides. Nature. 546:656–661. 2017.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Lindestam Arlehamn CS, Dhanwani R, Pham J,
Kuan R, Frazier A, Rezende Dutra J, Phillips E, Mallal S, Roederer
M, Marder KS, et al: α-Synuclein-specific T cell reactivity is
associated with preclinical and early Parkinson's disease. Nat
Commun. 11(1875)2020.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Kwon JH, Kim M, Um S, Lee HJ, Bae YK, Choi
SJ, Hwang HH, Oh W and Jin HJ: Senescence-associated secretory
phenotype suppression mediated by small-sized mesenchymal stem
cells delays cellular senescence through TLR2 and TLR5 signaling.
Cells. 10(63)2021.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Xu Z, Qu A, Zhang H, Wang W, Hao C, Lu M,
Shi B, Xu L, Sun M, Xu C and Kuang H: Photoinduced elimination of
senescent microglia cells in vivo by chiral gold nanoparticles.
Chem Sci. 13:6642–6654. 2022.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Badanjak K, Fixemer S, Smajić S, Skupin A
and Grünewald A: The contribution of microglia to neuroinflammation
in Parkinson's disease. Int J Mol Sci. 22(4676)2021.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Chaib S, Tchkonia T and Kirkland JL:
Cellular senescence and senolytics: The path to the clinic. Nat
Med. 28:1556–1568. 2022.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Choi I, Zhang Y, Seegobin SP, Pruvost M,
Wang Q, Purtell K, Zhang B and Yue Z: Microglia clear
neuron-released α-synuclein via selective autophagy and prevent
neurodegeneration. Nat Commun. 11(1386)2020.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Menon R, Behnia F, Polettini J, Saade GR,
Campisi J and Velarde M: Placental membrane aging and HMGB1
signaling associated with human parturition. Aging (Albany NY).
8:216–230. 2016.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Wang AS, Nakamizo S, Ishida Y, Klassen G,
Chong P, Wada A, Lim JSY, Wright GD, Kabashima K and Dreesen O:
Identification and quantification of senescent cell types by lamin
B1 and HMGB1 in Actinic keratosis lesions. J Dermatol Sci.
105:61–64. 2022.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Johmura Y, Yamanaka T, Omori S, Wang TW,
Sugiura Y, Matsumoto M, Suzuki N, Kumamoto S, Yamaguchi K,
Hatakeyama S, et al: Senolysis by glutaminolysis inhibition
ameliorates various age-associated disorders. Science. 371:265–270.
2021.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Enokido Y, Yoshitake A, Ito H and Okazawa
H: Age-dependent change of HMGB1 and DNA double-strand break
accumulation in mouse brain. Biochem Biophys Res Commun.
376:128–133. 2008.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Mandke P and Vasquez KM: Interactions of
high mobility group box protein 1 (HMGB1) with nucleic acids:
Implications in DNA repair and immune responses. DNA Repair (Amst).
83(102701)2019.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Gaikwad S, Puangmalai N, Bittar A,
Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U
and Kayed R: Tau oligomer induced HMGB1 release contributes to
cellular senescence and neuropathology linked to Alzheimer's
disease and frontotemporal dementia. Cell Rep.
36(109419)2021.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Yang JH, Petty CA, Dixon-McDougall T,
Lopez MV, Tyshkovskiy A, Maybury-Lewis S, Tian X, Ibrahim N, Chen
Z, Griffin PT, et al: Chemically induced reprogramming to reverse
cellular aging. Aging (Albany NY). 15:5966–5989. 2023.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Sarkar TJ, Quarta M, Mukherjee S, Colville
A, Paine P, Doan L, Tran CM, Chu CR, Horvath S, Qi LS, et al:
Transient non-integrative expression of nuclear reprogramming
factors promotes multifaceted amelioration of aging in human cells.
Nat Commun. 11(1545)2020.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Browder KC, Reddy P, Yamamoto M, Haghani
A, Guillen IG, Sahu S, Wang C, Luque Y, Prieto J, Shi L, et al: In
vivo partial reprogramming alters age-associated molecular changes
during physiological aging in mice. Nat Aging. 2:243–253.
2022.PubMed/NCBI View Article : Google Scholar
|