Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2024 Volume 27 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2024 Volume 27 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review)

  • Authors:
    • Yan Lin
    • Xiaofeng Jin
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
    Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 33
    |
    Published online on: November 24, 2023
       https://doi.org/10.3892/etm.2023.12321
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Genomic instability is an essential hallmark of cancer, and cellular DNA damage response (DDR) defects drive tumorigenesis by disrupting genomic stability. Several studies have identified abnormalities in DDR‑associated genes, and a dysfunctional ubiquitin‑proteasome system (UPS) is the most common molecular event in metastatic castration‑resistant prostate cancer (PCa). For example, mutations in Speckle‑type BTB/POZ protein‑Ser119 result in DDR downstream target activation deficiency. Skp2 excessive upregulation inhibits homologous recombination repair and promotes cell growth and migration. Abnormally high expression of a deubiquitination enzyme, ubiquitin‑specific protease 12, stabilizes E3 ligase MDM2, which further leads to p53 degradation, causing DDR interruption and genomic instability. In the present review, the basic pathways of DDR, UPS dysfunction, and its induced DDR alterations mediated by genomic instability, and especially the potential application of UPS and DDR alterations as biomarkers and therapeutic targets in PCa treatment, were described.
View Figures

Figure 1

View References

1 

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A and Bray F: Cancer statistics for the year 2020: An overview. Int J Cancer: Apr 5, 2021 (Epub ahead of print). doi: 10.1002/ijc.33588.

2 

Álvarez Múgica M and Jalón Monzón A: Tissue biomarkers in prostate cancer. Arch Esp Urol. 75:185–194. 2022.PubMed/NCBI(In Spanish).

3 

Plata Bello A, Tamayo Jover MA, Gutierrez Nicolas F, Acosta López S, Concepción Masip T and Plata Bello J: Biomarkers for characterization and therapeutic orientation in castration-resistant prostate cancer. Arch Esp Urol. 75:195–202. 2022.PubMed/NCBI(In English, Spanish).

4 

Evans AJ: Treatment effects in prostate cancer. Mod Pathol. 31 (Suppl 1):S110–S121. 2018.PubMed/NCBI View Article : Google Scholar

5 

Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG and Williams SG: Prostate cancer. Lancet. 398:1075–1090. 2021.PubMed/NCBI View Article : Google Scholar

6 

Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. 2012.PubMed/NCBI View Article : Google Scholar

7 

Teo MY, Rathkopf DE and Kantoff P: Treatment of advanced prostate cancer. Annu Rev Med. 70:479–499. 2019.PubMed/NCBI View Article : Google Scholar

8 

Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, et al: DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 373:1697–1708. 2015.PubMed/NCBI View Article : Google Scholar

9 

Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, et al: Inherited DNA-Repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 375:443–453. 2016.PubMed/NCBI View Article : Google Scholar

10 

Gatti M, Imhof R, Huang Q, Baudis M and Altmeyer M: The ubiquitin ligase TRIP12 limits PARP1 trapping and constrains PARP inhibitor efficiency. Cell Rep. 32(107985)2020.PubMed/NCBI View Article : Google Scholar

11 

Jin X, Qing S, Li Q, Zhuang H, Shen L, Li J, Qi H, Lin T, Lin Z, Wang J, et al: Prostate cancer-associated SPOP mutations lead to genomic instability through disruption of the SPOP-HIPK2 axis. Nucleic Acids Res. 49:6788–6803. 2021.PubMed/NCBI View Article : Google Scholar

12 

Zhang H, Cao X, Wang J, Li Q, Zhao Y and Jin X: LZTR1: A promising adaptor of the CUL3 family. Oncol Lett. 22(564)2021.PubMed/NCBI View Article : Google Scholar

13 

Zhai F, Li J, Ye M and Jin X: The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene. 832(146562)2022.PubMed/NCBI View Article : Google Scholar

14 

Lindahl T and Barnes DE: Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65:127–133. 2000.PubMed/NCBI View Article : Google Scholar

15 

Tubbs A and Nussenzweig A: Endogenous DNA damage as a source of genomic instability in cancer. Cell. 168:644–656. 2017.PubMed/NCBI View Article : Google Scholar

16 

Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009.PubMed/NCBI View Article : Google Scholar

17 

Lord CJ and Ashworth A: The DNA damage response and cancer therapy. Nature. 481:287–294. 2012.PubMed/NCBI View Article : Google Scholar

18 

Chou WC, Wang HC, Wong FH, Ding SL, Wu PE, Shieh SY and Shen CY: Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J. 27:3140–3150. 2008.PubMed/NCBI View Article : Google Scholar

19 

Iyer RR and Pluciennik A: DNA Mismatch repair and its role in Huntington's disease. J Huntingtons Dis. 10:75–94. 2021.PubMed/NCBI View Article : Google Scholar

20 

Li Z, Pearlman AH and Hsieh P: DNA mismatch repair and the DNA damage response. DNA Repair (Amst). 38:94–101. 2016.PubMed/NCBI View Article : Google Scholar

21 

Scully R, Panday A, Elango R and Willis NA: DNA double-strand Break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019.PubMed/NCBI View Article : Google Scholar

22 

van Wilpe S, Tolmeijer SH, Koornstra RHT, de Vries IJM, Gerritsen WR, Ligtenberg M and Mehra N: Homologous recombination repair deficiency and implications for tumor immunogenicity. Cancers (Basel). 13(2249)2021.PubMed/NCBI View Article : Google Scholar

23 

Huselid E and Bunting SF: The regulation of homologous recombination by helicases. Genes (Basel). 11(498)2020.PubMed/NCBI View Article : Google Scholar

24 

The Molecular Taxonomy of Primary Prostate Cancer. Cell. 163:1011–1025. 2015.PubMed/NCBI View Article : Google Scholar

25 

Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard GM, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 161:1215–1228. 2015.PubMed/NCBI View Article : Google Scholar

26 

Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, Mahmud N, Dadaev T, Govindasami K, Guy M, et al: Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 31:1748–1757. 2013.PubMed/NCBI View Article : Google Scholar

27 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar

28 

Wengner AM, Scholz A and Haendler B: Targeting DNA damage response in prostate and breast cancer. Int J Mol Sci. 21(8273)2020.PubMed/NCBI View Article : Google Scholar

29 

Santana Dos Santos E, Lallemand F, Petitalot A, Caputo SM and Rouleau E: HRness in breast and ovarian cancers. Int J Mol Sci. 21(3850)2020.PubMed/NCBI View Article : Google Scholar

30 

Söderlund Leifler K, Queseth S, Fornander T and Askmalm MS: Low expression of Ku70/80, but high expression of DNA-PKcs, predict good response to radiotherapy in early breast cancer. Int J Oncol. 37:1547–1554. 2010.PubMed/NCBI View Article : Google Scholar

31 

Lui GYL, Grandori C and Kemp CJ: CDK12: An emerging therapeutic target for cancer. J Clin Pathol. 71:957–962. 2018.PubMed/NCBI View Article : Google Scholar

32 

Sun J, Wang C, Zhang Y, Xu L, Fang W, Zhu Y, Zheng Y, Chen X, Xie X, Hu X, et al: Genomic signatures reveal DNA damage response deficiency in colorectal cancer brain metastases. Nat Commun. 10(3190)2019.PubMed/NCBI View Article : Google Scholar

33 

Jiricny J: The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 7:335–346. 2006.PubMed/NCBI View Article : Google Scholar

34 

Zhang M, Xiang S, Joo HY, Wang L, Williams KA, Liu W, Hu C, Tong D, Haakenson J, Wang C, et al: HDAC6 deacetylates and ubiquitinates MSH2 to maintain proper levels of MutSα. Mol Cell. 55:31–46. 2014.PubMed/NCBI View Article : Google Scholar

35 

Staniszewska M, Iking J, Lückerath K, Hadaschik B, Herrmann K, Ferdinandus J and Fendler WP: Drug and molecular radiotherapy combinations for metastatic castration resistant prostate cancer. Nucl Med Biol. 96-97:101–111. 2021.PubMed/NCBI View Article : Google Scholar

36 

Slade D: PARP and PARG inhibitors in cancer treatment. Genes Dev. 34:360–394. 2020.PubMed/NCBI View Article : Google Scholar

37 

Burdak-Rothkamm S, Mansour WY and Rothkamm K: DNA damage repair deficiency in prostate cancer. Trends Cancer. 6:974–984. 2020.PubMed/NCBI View Article : Google Scholar

38 

Zhang W, van Gent DC, Incrocci L, van Weerden WM and Nonnekens J: Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis. 23:24–37. 2020.PubMed/NCBI View Article : Google Scholar

39 

Wu YM, Cieślik M, Lonigro RJ, Vats P, Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, et al: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 173:1770–1782.e14. 2018.PubMed/NCBI View Article : Google Scholar

40 

Viswanathan SR, Ha G, Hoff AM, Wala JA, Carrot-Zhang J, Whelan CW, Haradhvala NJ, Freeman SS, Reed SC, Rhoades J, et al: Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell. 174:433–447.e19. 2018.PubMed/NCBI View Article : Google Scholar

41 

Nombela P, Lozano R, Aytes A, Mateo J, Olmos D and Castro E: BRCA2 and other DDR genes in prostate cancer. Cancers (Basel). 11(352)2019.PubMed/NCBI View Article : Google Scholar

42 

Fradet-Turcotte A, Sitz J, Grapton D and Orthwein A: BRCA2 functions: From DNA repair to replication fork stabilization. Endocr Relat Cancer. 23:T1–T17. 2016.PubMed/NCBI View Article : Google Scholar

43 

Mesman RLS, Calleja F, Hendriks G, Morolli B, Misovic B, Devilee P, van Asperen CJ, Vrieling H and Vreeswijk MPG: The functional impact of variants of uncertain significance in BRCA2. Genet Med. 21:293–302. 2019.PubMed/NCBI View Article : Google Scholar

44 

Lockett KL, Snowhite IV and Hu JJ: Nucleotide-excision repair and prostate cancer risk. Cancer Lett. 220:125–135. 2005.PubMed/NCBI View Article : Google Scholar

45 

Gayther SA, de Foy KA, Harrington P, Pharoah P, Dunsmuir WD, Edwards SM, Gillett C, Ardern-Jones A, Dearnaley DP, Easton DF, et al: The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. Cancer Res. 60:4513–4518. 2000.PubMed/NCBI

46 

Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, Qian C, Marks AF, Slager SL, Peterson BJ, et al: Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 72:270–280. 2003.PubMed/NCBI View Article : Google Scholar

47 

Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G and Witte JS: DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 13:23–29. 2004.PubMed/NCBI View Article : Google Scholar

48 

Norris AM, Woodruff RD, D'Agostino RB Jr, Clodfelter JE and Scarpinato KD: Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer. Prostate. 67:214–225. 2007.PubMed/NCBI View Article : Google Scholar

49 

Sun X, Chen C, Vessella RL and Dong JT: Microsatellite instability and mismatch repair target gene mutations in cell lines and xenografts of prostate cancer. Prostate. 66:660–666. 2006.PubMed/NCBI View Article : Google Scholar

50 

Martin L, Coffey M, Lawler M, Hollywood D and Marignol L: DNA mismatch repair and the transition to hormone independence in breast and prostate cancer. Cancer Lett. 291:142–149. 2010.PubMed/NCBI View Article : Google Scholar

51 

Schwertman P, Bekker-Jensen S and Mailand N: Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol. 17:379–394. 2016.PubMed/NCBI View Article : Google Scholar

52 

Brinkmann K, Schell M, Hoppe T and Kashkar H: Regulation of the DNA damage response by ubiquitin conjugation. Front Genet. 6(98)2015.PubMed/NCBI View Article : Google Scholar

53 

Ou HL and Schumacher B: DNA damage responses and p53 in the aging process. Blood. 131:488–495. 2018.PubMed/NCBI View Article : Google Scholar

54 

Li J and Kurokawa M: Regulation of MDM2 stability after DNA damage. J Cell Physiol. 230:2318–2327. 2015.PubMed/NCBI View Article : Google Scholar

55 

Chan P, Möller A, Liu MC, Sceneay JE, Wong CS, Waddell N, Huang KT, Dobrovic A, Millar EK, O'Toole SA, et al: The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression. Breast Cancer Res. 13(R19)2011.PubMed/NCBI View Article : Google Scholar

56 

Wang D, Ma J, Botuyan MV, Cui G, Yan Y, Ding D, Zhou Y, Krueger EW, Pei J, Wu X, et al: ATM-phosphorylated SPOP contributes to 53BP1 exclusion from chromatin during DNA replication. Sci Adv. 7(eabd9208)2021.PubMed/NCBI View Article : Google Scholar

57 

Sharma A, Alswillah T, Singh K, Chatterjee P, Willard B, Venere M, Summers MK and Almasan A: USP14 regulates DNA damage repair by targeting RNF168-dependent ubiquitination. Autophagy. 14:1976–1990. 2018.PubMed/NCBI View Article : Google Scholar

58 

Qu H, Liu H, Jin Y, Cui Z and Han G: HUWE1 upregulation has tumor suppressive effect in human prostate cancer cell lines through c-Myc. Biomed Pharmacother. 106:309–315. 2018.PubMed/NCBI View Article : Google Scholar

59 

Gewirtz DA, Alotaibi M, Yakovlev VA and Povirk LF: Tumor cell recovery from senescence induced by radiation with PARP inhibition. Radiat Res. 186:327–332. 2016.PubMed/NCBI View Article : Google Scholar

60 

Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei W: The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 17:339–350. 2020.PubMed/NCBI View Article : Google Scholar

61 

An J, Wang C, Deng Y, Yu L and Huang H: Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 6:657–669. 2014.PubMed/NCBI View Article : Google Scholar

62 

Hjorth-Jensen K, Maya-Mendoza A, Dalgaard N, Sigurethsson JO, Bartek J, Iglesias-Gato D, Olsen JV and Flores-Morales A: SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. Nucleic Acids Res. 46:9484–9495. 2018.PubMed/NCBI View Article : Google Scholar

63 

Kuwano Y, Nishida K, Akaike Y, Kurokawa K, Nishikawa T, Masuda K and Rokutan K: Homeodomain-interacting protein Kinase-2: A critical regulator of the DNA damage response and the Epigenome. Int J Mol Sci. 17(1638)2016.PubMed/NCBI View Article : Google Scholar

64 

Youle RJ and Strasser A: The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 9:47–59. 2008.PubMed/NCBI View Article : Google Scholar

65 

McClurg UL, Chit N, Azizyan M, Edwards J, Nabbi A, Riabowol KT, Nakjang S, McCracken SR and Robson CN: Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene. 37:4679–4691. 2018.PubMed/NCBI View Article : Google Scholar

66 

Aron R, Pellegrini P, Green EW, Maddison DC, Opoku-Nsiah K, Oliveira AO, Wong JS, Daub AC, Giorgini F and Finkbeiner S: Publisher Correction: Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington's disease. Nat Commun. 9(4333)2018.PubMed/NCBI View Article : Google Scholar

67 

Joo HY, Jones A, Yang C, Zhai L, Smith ADt, Zhang Z, Chandrasekharan MB, Sun ZW, Renfrow MB, Wang Y, et al: Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46. J Biol Chem. 286:7190–7201. 2011.PubMed/NCBI View Article : Google Scholar

68 

Adimoolam S and Ford JM: p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA. 99:12985–12990. 2002.PubMed/NCBI View Article : Google Scholar

69 

Scherer SJ, Maier SM, Seifert M, Hanselmann RG, Zang KD, Muller-Hermelink HK, Angel P, Welter C and Schartl M: p53 and c-Jun functionally synergize in the regulation of the DNA repair gene hMSH2 in response to UV. J Biol Chem. 275:37469–37473. 2000.PubMed/NCBI View Article : Google Scholar

70 

Achanta G and Huang P: Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 64:6233–6239. 2004.PubMed/NCBI View Article : Google Scholar

71 

Roe JS, Kim HR, Hwang IY, Cho EJ and Youn HD: Von Hippel-Lindau protein promotes Skp2 destabilization on DNA damage. Oncogene. 30:3127–3138. 2011.PubMed/NCBI View Article : Google Scholar

72 

Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M and Pavletich NP: Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 408:381–386. 2000.PubMed/NCBI View Article : Google Scholar

73 

Zhao H, Bauzon F, Fu H, Lu Z, Cui J, Nakayama K, Nakayama KI, Locker J and Zhu L: Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell. 24:645–659. 2013.PubMed/NCBI View Article : Google Scholar

74 

Zhao H, Lu Z, Bauzon F, Fu H, Cui J, Locker J and Zhu L: p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer. Oncogene. 36:60–70. 2017.PubMed/NCBI View Article : Google Scholar

75 

Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, Yang WL, Wang J, Egia A, Nakayama KI, et al: Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 464:374–379. 2010.PubMed/NCBI View Article : Google Scholar

76 

Lu W, Liu S, Li B, Xie Y, Izban MG, Ballard BR, Sathyanarayana SA, Adunyah SE, Matusik RJ, Chen Z, et al: SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene. 36:1364–1373. 2017.PubMed/NCBI View Article : Google Scholar

77 

Li B, Lu W, Yang Q, Yu X, Matusik RJ and Chen Z: Skp2 regulates androgen receptor through ubiquitin-mediated degradation independent of Akt/mTOR pathways in prostate cancer. Prostate. 74:421–432. 2014.PubMed/NCBI View Article : Google Scholar

78 

Lu W, Liu S, Li B, Xie Y, Adhiambo C, Yang Q, Ballard BR, Nakayama KI, Matusik RJ and Chen Z: SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination. Oncotarget. 6:771–788. 2015.PubMed/NCBI View Article : Google Scholar

79 

Arbini AA, Greco M, Yao JL, Bourne P, Marra E, Hsieh JT, di Sant'agnese PA and Moro L: Skp2 overexpression is associated with loss of BRCA2 protein in human prostate cancer. Am J Pathol. 178:2367–2376. 2011.PubMed/NCBI View Article : Google Scholar

80 

Moynahan ME, Pierce AJ and Jasin M: BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 7:263–272. 2001.PubMed/NCBI View Article : Google Scholar

81 

Wang F, Ning S, Yu B and Wang Y: USP14: Structure, function, and target inhibition. Front Pharmacol. 12(801328)2021.PubMed/NCBI View Article : Google Scholar

82 

Liao Y, Liu N, Hua X, Cai J, Xia X, Wang X, Huang H and Liu J: Proteasome-associated deubiquitinase ubiquitin-specific protease 14 regulates prostate cancer proliferation by deubiquitinating and stabilizing androgen receptor. Cell Death Dis. 8(e2585)2017.PubMed/NCBI View Article : Google Scholar

83 

Gao L, Zhang W, Zhang J, Liu J, Sun F, Liu H, Hu J, Wang X, Wang X, Su P, et al: KIF15-mediated stabilization of AR and AR-V7 contributes to Enzalutamide resistance in prostate cancer. Cancer Res. 81:1026–1039. 2021.PubMed/NCBI View Article : Google Scholar

84 

Liu Y, Yu C, Shao Z, Xia X, Hu T, Kong W, He X, Sun W, Deng Y and Huang H: Selective degradation of AR-V7 to overcome castration resistance of prostate cancer. Cell Death Dis. 12(857)2021.PubMed/NCBI View Article : Google Scholar

85 

Geng L, Chen X, Zhang M and Luo Z: Ubiquitin-specific protease 14 promotes prostate cancer progression through deubiquitinating the transcriptional factor ATF2. Biochem Biophys Res Commun. 524:16–21. 2020.PubMed/NCBI View Article : Google Scholar

86 

Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K, Li X, Wang L, Wang J, Zhang H, et al: Autophagy regulates chromatin Ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell. 63:34–48. 2016.PubMed/NCBI View Article : Google Scholar

87 

Sander B, Xu W, Eilers M, Popov N and Lorenz S: A conformational switch regulates the ubiquitin ligase HUWE1. ELife. 6(e21036)2017.PubMed/NCBI View Article : Google Scholar

88 

Zhong Q, Gao W, Du F and Wang X: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 121:1085–1095. 2005.PubMed/NCBI View Article : Google Scholar

89 

Gong X, Du D, Deng Y, Zhou Y, Sun L and Yuan S: The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer. Invest New Drugs. 38:515–524. 2020.PubMed/NCBI View Article : Google Scholar

90 

Myant KB, Cammareri P, Hodder MC, Wills J, Von Kriegsheim A, Győrffy B, Rashid M, Polo S, Maspero E, Vaughan L, et al: HUWE1 is a critical colonic tumour suppressor gene that prevents MYC signalling, DNA damage accumulation and tumour initiation. EMBO Mol Med. 9:181–197. 2017.PubMed/NCBI View Article : Google Scholar

91 

Yang D, Cheng D, Tu Q, Yang H, Sun B, Yan L, Dai H, Luo J, Mao B, Cao Y, et al: HUWE1 controls the development of non-small cell lung cancer through down-regulation of p53. Theranostics. 8:3517–3529. 2018.PubMed/NCBI View Article : Google Scholar

92 

Fan L, Xu S, Zhang F, Cui X, Fazli L, Gleave M, Clark DJ, Yang A, Hussain A, Rassool F and Qi J: Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death Dis. 11(214)2020.PubMed/NCBI View Article : Google Scholar

93 

Shen D, Luo J, Chen L, Ma W, Mao X, Zhang Y, Zheng J, Wang Y, Wan J, Wang S, et al: PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer. Cancer Lett. 550(215919)2022.PubMed/NCBI View Article : Google Scholar

94 

Lesueur P, Lequesne J, Grellard JM, Dugué A, Coquan E, Brachet PE, Geffrelot J, Kao W, Emery E, Berro DH, et al: Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol. BMC cancer. 19(198)2019.PubMed/NCBI View Article : Google Scholar

95 

D'Andrea AD: Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 71:172–176. 2018.PubMed/NCBI View Article : Google Scholar

96 

Messina C, Cattrini C, Soldato D, Vallome G, Caffo O, Castro E, Olmos D, Boccardo F and Zanardi E: BRCA mutations in prostate cancer: Prognostic and predictive implications. J Oncol. 2020(4986365)2020.PubMed/NCBI View Article : Google Scholar

97 

de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, et al: Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 382:2091–2102. 2020.PubMed/NCBI View Article : Google Scholar

98 

Wu C, Peng S, Pilie PG, Geng C, Park S, Manyam GC, Lu Y, Yang G, Tang Z, Kondraganti S, et al: PARP and CDK4/6 inhibitor combination therapy induces apoptosis and suppresses neuroendocrine differentiation in prostate cancer. Mol Cancer Ther. 20:1680–1691. 2021.PubMed/NCBI View Article : Google Scholar

99 

Zhou S, Dai Z, Wang L, Gao X, Yang L, Wang Z, Wang Q and Liu Z: MET inhibition enhances PARP inhibitor efficacy in castration-resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways. J Cell Mol Med. 25:11157–11169. 2021.PubMed/NCBI View Article : Google Scholar

100 

Enriquez-Rios V, Dumitrache LC, Downing SM, Li Y, Brown EJ, Russell HR and McKinnon PJ: DNA-PKcs, ATM, and ATR interplay maintains genome integrity during neurogenesis. J Neurosci. 37:893–905. 2017.PubMed/NCBI View Article : Google Scholar

101 

Tang Z, Pilié PG, Geng C, Manyam GC, Yang G, Park S, Wang D, Peng S, Wu C, Peng G, et al: ATR inhibition induces CDK1-SPOP signaling and enhances Anti-PD-L1 cytotoxicity in prostate cancer. Clin Cancer Res. 27:4898–4909. 2021.PubMed/NCBI View Article : Google Scholar

102 

Mota JM, Barnett E, Nauseef JT, Nguyen B, Stopsack KH, Wibmer A, Flynn JR, Heller G, Danila DC, Rathkopf D, et al: Platinum-Based chemotherapy in metastatic prostate cancer with DNA repair gene alterations. JCO Precis Oncol. 4:355–366. 2020.PubMed/NCBI View Article : Google Scholar

103 

Schmid S, Omlin A, Higano C, Sweeney C, Martinez Chanza N, Mehra N, Kuppen MCP, Beltran H, Conteduca V, Vargas Pivato de Almeida D, et al: Activity of Platinum-Based chemotherapy in patients with advanced prostate cancer with and without DNA repair gene aberrations. JAMA Netw Open. 3(e2021692)2020.PubMed/NCBI View Article : Google Scholar

104 

Su YX, Yu CF, Xue P, Li LL, Xiao KM, Chu XL and Zhu SJ: Research progress on the treatment of advanced prostate cancer with Olaparib. Neoplasma. 68:1132–1138. 2021.PubMed/NCBI View Article : Google Scholar

105 

Kim H, Xu H, George E, Hallberg D, Kumar S, Jagannathan V, Medvedev S, Kinose Y, Devins K, Verma P, et al: Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun. 11(3726)2020.PubMed/NCBI View Article : Google Scholar

106 

Karzai F, VanderWeele D, Madan RA, Owens H, Cordes LM, Hankin A, Couvillon A, Nichols E, Bilusic M, Beshiri ML, et al: Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 6(141)2018.PubMed/NCBI View Article : Google Scholar

107 

Bizzaro F, Fuso Nerini I, Taylor MA, Anastasia A, Russo M, Damia G, Guffanti F, Guana F, Ostano P, Minoli L, et al: VEGF pathway inhibition potentiates PARP inhibitor efficacy in ovarian cancer independent of BRCA status. J Hematol Oncol. 14(186)2021.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lin Y and Jin X: Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review). Exp Ther Med 27: 33, 2024.
APA
Lin, Y., & Jin, X. (2024). Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review). Experimental and Therapeutic Medicine, 27, 33. https://doi.org/10.3892/etm.2023.12321
MLA
Lin, Y., Jin, X."Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review)". Experimental and Therapeutic Medicine 27.1 (2024): 33.
Chicago
Lin, Y., Jin, X."Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review)". Experimental and Therapeutic Medicine 27, no. 1 (2024): 33. https://doi.org/10.3892/etm.2023.12321
Copy and paste a formatted citation
x
Spandidos Publications style
Lin Y and Jin X: Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review). Exp Ther Med 27: 33, 2024.
APA
Lin, Y., & Jin, X. (2024). Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review). Experimental and Therapeutic Medicine, 27, 33. https://doi.org/10.3892/etm.2023.12321
MLA
Lin, Y., Jin, X."Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review)". Experimental and Therapeutic Medicine 27.1 (2024): 33.
Chicago
Lin, Y., Jin, X."Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review)". Experimental and Therapeutic Medicine 27, no. 1 (2024): 33. https://doi.org/10.3892/etm.2023.12321
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team