|
1
|
Ferlay J, Colombet M, Soerjomataram I,
Parkin DM, Pineros M, Znaor A and Bray F: Cancer statistics for the
year 2020: An overview. Int J Cancer: Apr 5, 2021 (Epub ahead of
print). doi: 10.1002/ijc.33588.
|
|
2
|
Álvarez Múgica M and Jalón Monzón A:
Tissue biomarkers in prostate cancer. Arch Esp Urol. 75:185–194.
2022.PubMed/NCBI(In Spanish).
|
|
3
|
Plata Bello A, Tamayo Jover MA, Gutierrez
Nicolas F, Acosta López S, Concepción Masip T and Plata Bello J:
Biomarkers for characterization and therapeutic orientation in
castration-resistant prostate cancer. Arch Esp Urol. 75:195–202.
2022.PubMed/NCBI(In English, Spanish).
|
|
4
|
Evans AJ: Treatment effects in prostate
cancer. Mod Pathol. 31 (Suppl 1):S110–S121. 2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Sandhu S, Moore CM, Chiong E, Beltran H,
Bristow RG and Williams SG: Prostate cancer. Lancet. 398:1075–1090.
2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Grasso CS, Wu YM, Robinson DR, Cao X,
Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC,
et al: The mutational landscape of lethal castration-resistant
prostate cancer. Nature. 487:239–243. 2012.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Teo MY, Rathkopf DE and Kantoff P:
Treatment of advanced prostate cancer. Annu Rev Med. 70:479–499.
2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Mateo J, Carreira S, Sandhu S, Miranda S,
Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A,
Tunariu N, et al: DNA-repair defects and olaparib in metastatic
prostate cancer. N Engl J Med. 373:1697–1708. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Pritchard CC, Mateo J, Walsh MF, De Sarkar
N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R,
et al: Inherited DNA-Repair gene mutations in men with metastatic
prostate cancer. N Engl J Med. 375:443–453. 2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Gatti M, Imhof R, Huang Q, Baudis M and
Altmeyer M: The ubiquitin ligase TRIP12 limits PARP1 trapping and
constrains PARP inhibitor efficiency. Cell Rep.
32(107985)2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Jin X, Qing S, Li Q, Zhuang H, Shen L, Li
J, Qi H, Lin T, Lin Z, Wang J, et al: Prostate cancer-associated
SPOP mutations lead to genomic instability through disruption of
the SPOP-HIPK2 axis. Nucleic Acids Res. 49:6788–6803.
2021.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhang H, Cao X, Wang J, Li Q, Zhao Y and
Jin X: LZTR1: A promising adaptor of the CUL3 family. Oncol Lett.
22(564)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Zhai F, Li J, Ye M and Jin X: The
functions and effects of CUL3-E3 ligases mediated non-degradative
ubiquitination. Gene. 832(146562)2022.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lindahl T and Barnes DE: Repair of
endogenous DNA damage. Cold Spring Harb Symp Quant Biol.
65:127–133. 2000.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Tubbs A and Nussenzweig A: Endogenous DNA
damage as a source of genomic instability in cancer. Cell.
168:644–656. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Jackson SP and Bartek J: The DNA-damage
response in human biology and disease. Nature. 461:1071–1078.
2009.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Lord CJ and Ashworth A: The DNA damage
response and cancer therapy. Nature. 481:287–294. 2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chou WC, Wang HC, Wong FH, Ding SL, Wu PE,
Shieh SY and Shen CY: Chk2-dependent phosphorylation of XRCC1 in
the DNA damage response promotes base excision repair. EMBO J.
27:3140–3150. 2008.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Iyer RR and Pluciennik A: DNA Mismatch
repair and its role in Huntington's disease. J Huntingtons Dis.
10:75–94. 2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Li Z, Pearlman AH and Hsieh P: DNA
mismatch repair and the DNA damage response. DNA Repair (Amst).
38:94–101. 2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Scully R, Panday A, Elango R and Willis
NA: DNA double-strand Break repair-pathway choice in somatic
mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
van Wilpe S, Tolmeijer SH, Koornstra RHT,
de Vries IJM, Gerritsen WR, Ligtenberg M and Mehra N: Homologous
recombination repair deficiency and implications for tumor
immunogenicity. Cancers (Basel). 13(2249)2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Huselid E and Bunting SF: The regulation
of homologous recombination by helicases. Genes (Basel).
11(498)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
The Molecular Taxonomy of Primary Prostate
Cancer. Cell. 163:1011–1025. 2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Robinson D, Van Allen EM, Wu YM, Schultz
N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC,
Attard GM, et al: Integrative clinical genomics of advanced
prostate cancer. Cell. 161:1215–1228. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Castro E, Goh C, Olmos D, Saunders E,
Leongamornlert D, Tymrakiewicz M, Mahmud N, Dadaev T, Govindasami
K, Guy M, et al: Germline BRCA mutations are associated with higher
risk of nodal involvement, distant metastasis, and poor survival
outcomes in prostate cancer. J Clin Oncol. 31:1748–1757.
2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Wengner AM, Scholz A and Haendler B:
Targeting DNA damage response in prostate and breast cancer. Int J
Mol Sci. 21(8273)2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Santana Dos Santos E, Lallemand F,
Petitalot A, Caputo SM and Rouleau E: HRness in breast and ovarian
cancers. Int J Mol Sci. 21(3850)2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Söderlund Leifler K, Queseth S, Fornander
T and Askmalm MS: Low expression of Ku70/80, but high expression of
DNA-PKcs, predict good response to radiotherapy in early breast
cancer. Int J Oncol. 37:1547–1554. 2010.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Lui GYL, Grandori C and Kemp CJ: CDK12: An
emerging therapeutic target for cancer. J Clin Pathol. 71:957–962.
2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Sun J, Wang C, Zhang Y, Xu L, Fang W, Zhu
Y, Zheng Y, Chen X, Xie X, Hu X, et al: Genomic signatures reveal
DNA damage response deficiency in colorectal cancer brain
metastases. Nat Commun. 10(3190)2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Jiricny J: The multifaceted
mismatch-repair system. Nat Rev Mol Cell Biol. 7:335–346.
2006.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zhang M, Xiang S, Joo HY, Wang L, Williams
KA, Liu W, Hu C, Tong D, Haakenson J, Wang C, et al: HDAC6
deacetylates and ubiquitinates MSH2 to maintain proper levels of
MutSα. Mol Cell. 55:31–46. 2014.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Staniszewska M, Iking J, Lückerath K,
Hadaschik B, Herrmann K, Ferdinandus J and Fendler WP: Drug and
molecular radiotherapy combinations for metastatic castration
resistant prostate cancer. Nucl Med Biol. 96-97:101–111.
2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Slade D: PARP and PARG inhibitors in
cancer treatment. Genes Dev. 34:360–394. 2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Burdak-Rothkamm S, Mansour WY and Rothkamm
K: DNA damage repair deficiency in prostate cancer. Trends Cancer.
6:974–984. 2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Zhang W, van Gent DC, Incrocci L, van
Weerden WM and Nonnekens J: Role of the DNA damage response in
prostate cancer formation, progression and treatment. Prostate
Cancer Prostatic Dis. 23:24–37. 2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Wu YM, Cieślik M, Lonigro RJ, Vats P,
Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, et al:
Inactivation of CDK12 delineates a distinct immunogenic class of
advanced prostate cancer. Cell. 173:1770–1782.e14. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Viswanathan SR, Ha G, Hoff AM, Wala JA,
Carrot-Zhang J, Whelan CW, Haradhvala NJ, Freeman SS, Reed SC,
Rhoades J, et al: Structural alterations driving
castration-resistant prostate cancer revealed by linked-read genome
sequencing. Cell. 174:433–447.e19. 2018.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Nombela P, Lozano R, Aytes A, Mateo J,
Olmos D and Castro E: BRCA2 and other DDR genes in prostate cancer.
Cancers (Basel). 11(352)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Fradet-Turcotte A, Sitz J, Grapton D and
Orthwein A: BRCA2 functions: From DNA repair to replication fork
stabilization. Endocr Relat Cancer. 23:T1–T17. 2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Mesman RLS, Calleja F, Hendriks G, Morolli
B, Misovic B, Devilee P, van Asperen CJ, Vrieling H and Vreeswijk
MPG: The functional impact of variants of uncertain significance in
BRCA2. Genet Med. 21:293–302. 2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Lockett KL, Snowhite IV and Hu JJ:
Nucleotide-excision repair and prostate cancer risk. Cancer Lett.
220:125–135. 2005.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Gayther SA, de Foy KA, Harrington P,
Pharoah P, Dunsmuir WD, Edwards SM, Gillett C, Ardern-Jones A,
Dearnaley DP, Easton DF, et al: The frequency of germ-line
mutations in the breast cancer predisposition genes BRCA1 and BRCA2
in familial prostate cancer. The Cancer Research Campaign/British
Prostate Group United Kingdom Familial Prostate Cancer Study
Collaborators. Cancer Res. 60:4513–4518. 2000.PubMed/NCBI
|
|
46
|
Dong X, Wang L, Taniguchi K, Wang X,
Cunningham JM, McDonnell SK, Qian C, Marks AF, Slager SL, Peterson
BJ, et al: Mutations in CHEK2 associated with prostate cancer risk.
Am J Hum Genet. 72:270–280. 2003.PubMed/NCBI View
Article : Google Scholar
|
|
47
|
Rybicki BA, Conti DV, Moreira A, Cicek M,
Casey G and Witte JS: DNA repair gene XRCC1 and XPD polymorphisms
and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev.
13:23–29. 2004.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Norris AM, Woodruff RD, D'Agostino RB Jr,
Clodfelter JE and Scarpinato KD: Elevated levels of the mismatch
repair protein PMS2 are associated with prostate cancer. Prostate.
67:214–225. 2007.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Sun X, Chen C, Vessella RL and Dong JT:
Microsatellite instability and mismatch repair target gene
mutations in cell lines and xenografts of prostate cancer.
Prostate. 66:660–666. 2006.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Martin L, Coffey M, Lawler M, Hollywood D
and Marignol L: DNA mismatch repair and the transition to hormone
independence in breast and prostate cancer. Cancer Lett.
291:142–149. 2010.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Schwertman P, Bekker-Jensen S and Mailand
N: Regulation of DNA double-strand break repair by ubiquitin and
ubiquitin-like modifiers. Nat Rev Mol Cell Biol. 17:379–394.
2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Brinkmann K, Schell M, Hoppe T and Kashkar
H: Regulation of the DNA damage response by ubiquitin conjugation.
Front Genet. 6(98)2015.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ou HL and Schumacher B: DNA damage
responses and p53 in the aging process. Blood. 131:488–495.
2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Li J and Kurokawa M: Regulation of MDM2
stability after DNA damage. J Cell Physiol. 230:2318–2327.
2015.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Chan P, Möller A, Liu MC, Sceneay JE, Wong
CS, Waddell N, Huang KT, Dobrovic A, Millar EK, O'Toole SA, et al:
The expression of the ubiquitin ligase SIAH2 (seven in absentia
homolog 2) is mediated through gene copy number in breast cancer
and is associated with a basal-like phenotype and p53 expression.
Breast Cancer Res. 13(R19)2011.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wang D, Ma J, Botuyan MV, Cui G, Yan Y,
Ding D, Zhou Y, Krueger EW, Pei J, Wu X, et al: ATM-phosphorylated
SPOP contributes to 53BP1 exclusion from chromatin during DNA
replication. Sci Adv. 7(eabd9208)2021.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Sharma A, Alswillah T, Singh K, Chatterjee
P, Willard B, Venere M, Summers MK and Almasan A: USP14 regulates
DNA damage repair by targeting RNF168-dependent ubiquitination.
Autophagy. 14:1976–1990. 2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Qu H, Liu H, Jin Y, Cui Z and Han G: HUWE1
upregulation has tumor suppressive effect in human prostate cancer
cell lines through c-Myc. Biomed Pharmacother. 106:309–315.
2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Gewirtz DA, Alotaibi M, Yakovlev VA and
Povirk LF: Tumor cell recovery from senescence induced by radiation
with PARP inhibition. Radiat Res. 186:327–332. 2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei
W: The diverse roles of SPOP in prostate cancer and kidney cancer.
Nat Rev Urol. 17:339–350. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
An J, Wang C, Deng Y, Yu L and Huang H:
Destruction of full-length androgen receptor by wild-type SPOP, but
not prostate-cancer-associated mutants. Cell Rep. 6:657–669.
2014.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hjorth-Jensen K, Maya-Mendoza A, Dalgaard
N, Sigurethsson JO, Bartek J, Iglesias-Gato D, Olsen JV and
Flores-Morales A: SPOP promotes transcriptional expression of DNA
repair and replication factors to prevent replication stress and
genomic instability. Nucleic Acids Res. 46:9484–9495.
2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Kuwano Y, Nishida K, Akaike Y, Kurokawa K,
Nishikawa T, Masuda K and Rokutan K: Homeodomain-interacting
protein Kinase-2: A critical regulator of the DNA damage response
and the Epigenome. Int J Mol Sci. 17(1638)2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Youle RJ and Strasser A: The BCL-2 protein
family: Opposing activities that mediate cell death. Nat Rev Mol
Cell Biol. 9:47–59. 2008.PubMed/NCBI View Article : Google Scholar
|
|
65
|
McClurg UL, Chit N, Azizyan M, Edwards J,
Nabbi A, Riabowol KT, Nakjang S, McCracken SR and Robson CN:
Molecular mechanism of the TP53-MDM2-AR-AKT signalling network
regulation by USP12. Oncogene. 37:4679–4691. 2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Aron R, Pellegrini P, Green EW, Maddison
DC, Opoku-Nsiah K, Oliveira AO, Wong JS, Daub AC, Giorgini F and
Finkbeiner S: Publisher Correction: Deubiquitinase Usp12 functions
noncatalytically to induce autophagy and confer neuroprotection in
models of Huntington's disease. Nat Commun. 9(4333)2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Joo HY, Jones A, Yang C, Zhai L, Smith
ADt, Zhang Z, Chandrasekharan MB, Sun ZW, Renfrow MB, Wang Y, et
al: Regulation of histone H2A and H2B deubiquitination and Xenopus
development by USP12 and USP46. J Biol Chem. 286:7190–7201.
2011.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Adimoolam S and Ford JM: p53 and DNA
damage-inducible expression of the xeroderma pigmentosum group C
gene. Proc Natl Acad Sci USA. 99:12985–12990. 2002.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Scherer SJ, Maier SM, Seifert M,
Hanselmann RG, Zang KD, Muller-Hermelink HK, Angel P, Welter C and
Schartl M: p53 and c-Jun functionally synergize in the regulation
of the DNA repair gene hMSH2 in response to UV. J Biol Chem.
275:37469–37473. 2000.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Achanta G and Huang P: Role of p53 in
sensing oxidative DNA damage in response to reactive oxygen
species-generating agents. Cancer Res. 64:6233–6239.
2004.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Roe JS, Kim HR, Hwang IY, Cho EJ and Youn
HD: Von Hippel-Lindau protein promotes Skp2 destabilization on DNA
damage. Oncogene. 30:3127–3138. 2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Schulman BA, Carrano AC, Jeffrey PD, Bowen
Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M and
Pavletich NP: Insights into SCF ubiquitin ligases from the
structure of the Skp1-Skp2 complex. Nature. 408:381–386.
2000.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Zhao H, Bauzon F, Fu H, Lu Z, Cui J,
Nakayama K, Nakayama KI, Locker J and Zhu L: Skp2 deletion unmasks
a p27 safeguard that blocks tumorigenesis in the absence of pRb and
p53 tumor suppressors. Cancer Cell. 24:645–659. 2013.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Zhao H, Lu Z, Bauzon F, Fu H, Cui J,
Locker J and Zhu L: p27T187A knockin identifies Skp2/Cks1 pocket
inhibitors for advanced prostate cancer. Oncogene. 36:60–70.
2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Lin HK, Chen Z, Wang G, Nardella C, Lee
SW, Chan CH, Yang WL, Wang J, Egia A, Nakayama KI, et al: Skp2
targeting suppresses tumorigenesis by Arf-p53-independent cellular
senescence. Nature. 464:374–379. 2010.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Lu W, Liu S, Li B, Xie Y, Izban MG,
Ballard BR, Sathyanarayana SA, Adunyah SE, Matusik RJ, Chen Z, et
al: SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated
ubiquitination to suppress prostate cancer. Oncogene. 36:1364–1373.
2017.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Li B, Lu W, Yang Q, Yu X, Matusik RJ and
Chen Z: Skp2 regulates androgen receptor through ubiquitin-mediated
degradation independent of Akt/mTOR pathways in prostate cancer.
Prostate. 74:421–432. 2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Lu W, Liu S, Li B, Xie Y, Adhiambo C, Yang
Q, Ballard BR, Nakayama KI, Matusik RJ and Chen Z: SKP2
inactivation suppresses prostate tumorigenesis by mediating JARID1B
ubiquitination. Oncotarget. 6:771–788. 2015.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Arbini AA, Greco M, Yao JL, Bourne P,
Marra E, Hsieh JT, di Sant'agnese PA and Moro L: Skp2
overexpression is associated with loss of BRCA2 protein in human
prostate cancer. Am J Pathol. 178:2367–2376. 2011.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Moynahan ME, Pierce AJ and Jasin M: BRCA2
is required for homology-directed repair of chromosomal breaks. Mol
Cell. 7:263–272. 2001.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Wang F, Ning S, Yu B and Wang Y: USP14:
Structure, function, and target inhibition. Front Pharmacol.
12(801328)2021.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Liao Y, Liu N, Hua X, Cai J, Xia X, Wang
X, Huang H and Liu J: Proteasome-associated deubiquitinase
ubiquitin-specific protease 14 regulates prostate cancer
proliferation by deubiquitinating and stabilizing androgen
receptor. Cell Death Dis. 8(e2585)2017.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Gao L, Zhang W, Zhang J, Liu J, Sun F, Liu
H, Hu J, Wang X, Wang X, Su P, et al: KIF15-mediated stabilization
of AR and AR-V7 contributes to Enzalutamide resistance in prostate
cancer. Cancer Res. 81:1026–1039. 2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Liu Y, Yu C, Shao Z, Xia X, Hu T, Kong W,
He X, Sun W, Deng Y and Huang H: Selective degradation of AR-V7 to
overcome castration resistance of prostate cancer. Cell Death Dis.
12(857)2021.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Geng L, Chen X, Zhang M and Luo Z:
Ubiquitin-specific protease 14 promotes prostate cancer progression
through deubiquitinating the transcriptional factor ATF2. Biochem
Biophys Res Commun. 524:16–21. 2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma
K, Li X, Wang L, Wang J, Zhang H, et al: Autophagy regulates
chromatin Ubiquitination in DNA damage response through elimination
of SQSTM1/p62. Mol Cell. 63:34–48. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Sander B, Xu W, Eilers M, Popov N and
Lorenz S: A conformational switch regulates the ubiquitin ligase
HUWE1. ELife. 6(e21036)2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Zhong Q, Gao W, Du F and Wang X:
Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the
polyubiquitination of Mcl-1 and regulates apoptosis. Cell.
121:1085–1095. 2005.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Gong X, Du D, Deng Y, Zhou Y, Sun L and
Yuan S: The structure and regulation of the E3 ubiquitin ligase
HUWE1 and its biological functions in cancer. Invest New Drugs.
38:515–524. 2020.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Myant KB, Cammareri P, Hodder MC, Wills J,
Von Kriegsheim A, Győrffy B, Rashid M, Polo S, Maspero E, Vaughan
L, et al: HUWE1 is a critical colonic tumour suppressor gene that
prevents MYC signalling, DNA damage accumulation and tumour
initiation. EMBO Mol Med. 9:181–197. 2017.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Yang D, Cheng D, Tu Q, Yang H, Sun B, Yan
L, Dai H, Luo J, Mao B, Cao Y, et al: HUWE1 controls the
development of non-small cell lung cancer through down-regulation
of p53. Theranostics. 8:3517–3529. 2018.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Fan L, Xu S, Zhang F, Cui X, Fazli L,
Gleave M, Clark DJ, Yang A, Hussain A, Rassool F and Qi J: Histone
demethylase JMJD1A promotes expression of DNA repair factors and
radio-resistance of prostate cancer cells. Cell Death Dis.
11(214)2020.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Shen D, Luo J, Chen L, Ma W, Mao X, Zhang
Y, Zheng J, Wang Y, Wan J, Wang S, et al: PARPi treatment enhances
radiotherapy-induced ferroptosis and antitumor immune responses via
the cGAS signaling pathway in colorectal cancer. Cancer Lett.
550(215919)2022.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Lesueur P, Lequesne J, Grellard JM, Dugué
A, Coquan E, Brachet PE, Geffrelot J, Kao W, Emery E, Berro DH, et
al: Phase I/IIa study of concomitant radiotherapy with olaparib and
temozolomide in unresectable or partially resectable glioblastoma:
OLA-TMZ-RTE-01 trial protocol. BMC cancer. 19(198)2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
D'Andrea AD: Mechanisms of PARP inhibitor
sensitivity and resistance. DNA Repair (Amst). 71:172–176.
2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Messina C, Cattrini C, Soldato D, Vallome
G, Caffo O, Castro E, Olmos D, Boccardo F and Zanardi E: BRCA
mutations in prostate cancer: Prognostic and predictive
implications. J Oncol. 2020(4986365)2020.PubMed/NCBI View Article : Google Scholar
|
|
97
|
de Bono J, Mateo J, Fizazi K, Saad F,
Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, et al:
Olaparib for metastatic castration-resistant prostate cancer. N
Engl J Med. 382:2091–2102. 2020.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Wu C, Peng S, Pilie PG, Geng C, Park S,
Manyam GC, Lu Y, Yang G, Tang Z, Kondraganti S, et al: PARP and
CDK4/6 inhibitor combination therapy induces apoptosis and
suppresses neuroendocrine differentiation in prostate cancer. Mol
Cancer Ther. 20:1680–1691. 2021.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Zhou S, Dai Z, Wang L, Gao X, Yang L, Wang
Z, Wang Q and Liu Z: MET inhibition enhances PARP inhibitor
efficacy in castration-resistant prostate cancer by suppressing the
ATM/ATR and PI3K/AKT pathways. J Cell Mol Med. 25:11157–11169.
2021.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Enriquez-Rios V, Dumitrache LC, Downing
SM, Li Y, Brown EJ, Russell HR and McKinnon PJ: DNA-PKcs, ATM, and
ATR interplay maintains genome integrity during neurogenesis. J
Neurosci. 37:893–905. 2017.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Tang Z, Pilié PG, Geng C, Manyam GC, Yang
G, Park S, Wang D, Peng S, Wu C, Peng G, et al: ATR inhibition
induces CDK1-SPOP signaling and enhances Anti-PD-L1 cytotoxicity in
prostate cancer. Clin Cancer Res. 27:4898–4909. 2021.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Mota JM, Barnett E, Nauseef JT, Nguyen B,
Stopsack KH, Wibmer A, Flynn JR, Heller G, Danila DC, Rathkopf D,
et al: Platinum-Based chemotherapy in metastatic prostate cancer
with DNA repair gene alterations. JCO Precis Oncol. 4:355–366.
2020.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Schmid S, Omlin A, Higano C, Sweeney C,
Martinez Chanza N, Mehra N, Kuppen MCP, Beltran H, Conteduca V,
Vargas Pivato de Almeida D, et al: Activity of Platinum-Based
chemotherapy in patients with advanced prostate cancer with and
without DNA repair gene aberrations. JAMA Netw Open.
3(e2021692)2020.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Su YX, Yu CF, Xue P, Li LL, Xiao KM, Chu
XL and Zhu SJ: Research progress on the treatment of advanced
prostate cancer with Olaparib. Neoplasma. 68:1132–1138.
2021.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Kim H, Xu H, George E, Hallberg D, Kumar
S, Jagannathan V, Medvedev S, Kinose Y, Devins K, Verma P, et al:
Combining PARP with ATR inhibition overcomes PARP inhibitor and
platinum resistance in ovarian cancer models. Nat Commun.
11(3726)2020.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Karzai F, VanderWeele D, Madan RA, Owens
H, Cordes LM, Hankin A, Couvillon A, Nichols E, Bilusic M, Beshiri
ML, et al: Activity of durvalumab plus olaparib in metastatic
castration-resistant prostate cancer in men with and without DNA
damage repair mutations. J Immunother Cancer. 6(141)2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Bizzaro F, Fuso Nerini I, Taylor MA,
Anastasia A, Russo M, Damia G, Guffanti F, Guana F, Ostano P,
Minoli L, et al: VEGF pathway inhibition potentiates PARP inhibitor
efficacy in ovarian cancer independent of BRCA status. J Hematol
Oncol. 14(186)2021.PubMed/NCBI View Article : Google Scholar
|