|
1
|
Perrin JM, Bloom SR and Gortmaker SL: The
increase of childhood chronic conditions in the United States.
JAMA. 297:2755–2759. 2007.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Janse AJ, Uiterwaal CSPM, Gemke RJBJ,
Kimpen JLL and Sinnema G: A difference in perception of quality of
life in chronically ill children was found between parents and
pediatricians. J Clin Epidemiol. 58:495–502. 2005.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Omran A, Elimam D and Yin F: MicroRNAs:
New insights into chronic childhood diseases. Biomed Res Int.
2013(291826)2013.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Dong H, Lei J, Ding L, Wen Y, Ju H and
Zhang X: MicroRNA: Function, detection, and bioanalysis. Chem Rev.
113:6207–6233. 2013.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Mohr AM and Mott JL: Overview of MicroRNA
biology. Semin Liver Dis. 35:3–11. 2015.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wu Y, Li Q, Zhang R, Dai X, Chen W and
Xing D: Circulating microRNAs: Biomarkers of disease. Clin Chim
Acta. 516:46–54. 2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Yoon JH, Abdelmohsen K and Gorospe M:
Functional interactions among microRNAs and long noncoding RNAs.
Semin Cell Dev Biol. 34:9–14. 2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Calderari S, Diawara MR, Garaud A and
Gauguier D: Biological roles of microRNAs in the control of insulin
secretion and action. Physiol Genomics. 49:1–10. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Romakina VV, Zhirov IV, Nasonova SN,
Zaseeva AV, Kochetov AG, Liang OV and Tereshchenko SN: MicroRNAs as
biomarkers of cardiovascular diseases. Kardiologiya. 58:66–71.
2018.PubMed/NCBI View Article : Google Scholar : (In Russian).
|
|
10
|
Ward BP, Tsongalis GJ and Kaur P:
MicroRNAs in chronic lymphocytic leukemia. Exp Mol Pathol.
90:173–178. 2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Cao RY, Li Q, Miao Y, Zhang Y, Yuan W, Fan
L, Liu G, Mi Q and Yang J: The emerging role of MicroRNA-155 in
cardiovascular diseases. Biomed Res Int.
2016(9869208)2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Lukiw WJ: microRNA-146a signaling in
Alzheimer's disease (AD) and prion disease (PrD). Front Neurol.
11(462)2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Fernandez-Valverde SL, Taft RJ and Mattick
JS: MicroRNAs in β-cell biology, insulin resistance, diabetes and
its complications. Diabetes. 60:1825–1831. 2011.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Wang K: The ubiquitous existence of
MicroRNA in body fluids. Clin Chem. 63:784–785. 2017.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Sims EK, Lakhter AJ, Anderson-Baucum E,
Kono T, Tong X and Evans-Molina C: MicroRNA 21 targets BCL2 mRNA to
increase apoptosis in rat and human beta cells. Diabetologia.
60:1057–1065. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Nielsen LB, Wang C, Sørensen K,
Bang-Berthelsen CH, Hansen L, Andersen ML, Hougaard P, Juul A,
Zhang CY, Pociot F and Mortensen HB: Circulating levels of microRNA
from children with newly diagnosed type 1 diabetes and healthy
controls: Evidence that miR-25 associates to residual beta-cell
function and glycaemic control during disease progression. Exp
Diabetes Res. 2012:896362. 2012.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Erener S, Mojibian M, Fox JK, Denroche HC
and Kieffer TJ: Circulating miR-375 as a biomarker of β-cell death
and diabetes in mice. Endocrinology. 154:603–608. 2013.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Osipova J, Fischer DC, Dangwal S, Volkmann
I, Widera C, Schwarz K, Lorenzen JM, Schreiver C, Jacoby U,
Heimhalt M, et al: Diabetes-associated microRNAs in pediatric
patients with type 1 diabetes mellitus: a cross-sectional cohort
study. J Clin Endocrinol Metab. 99:E1661–E1665. 2014.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Wu X, Wang Y, Sun Z, Ren S, Yang W, Deng
Y, Tian C, Yu Y and Gao B: Molecular expression and functional
analysis of genes in children with temporal lobe epilepsy. J Integr
Neurosci. 18:71–77. 2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Han S, Wang WJ, Duan L, Hou ZL, Zeng JY,
Li L, Meng MY, Zhang YY, Wang Y, Xie YH, et al: MicroRNA profiling
of patients with sporadic atrial septal defect. Biotechnol
Biotechnol Equip. 33:510–519. 2019.
|
|
21
|
Sánchez-Gómez MC, García-Mejía KA,
Pérez-Díaz Conti M, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R,
Klünder-Klünder M, Botello-Flores JA, Balderrábano-Saucedo NA and
Contreras-Ramos A: MicroRNAs association in the cardiac hypertrophy
secondary to complex congenital heart disease in children. Pediatr
Cardiol. 38:991–1003. 2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Xiao Y, Wang J, Chen Y, Zhou K, Wen J,
Wang Y, Zhou Y, Pan W and Cai W: Up-regulation of miR-200b in
biliary atresia patients accelerates proliferation and migration of
hepatic stallate cells by activating PI3K/Akt signaling. Cell
Signal. 26:925–932. 2014.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Shen W, Chen G, Dong R, Zhao R and Zheng
S: MicroRNA-21/PTEN/Akt axis in the fibrogenesis of biliary
atresia. J Pediatr Surg. 49:1738–1741. 2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Hand NJ, Horner AM, Master ZR, Boateng LA,
LeGuen C, Uvaydova M and Friedman JR: MicroRNA profiling identifies
miR-29 as a regulator of disease-associated pathways in
experimental biliary atresia. J Pediatr Gastroenterol Nutr.
54:186–192. 2012.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Shen WJ, Dong R, Chen G and Zheng S:
microRNA-222 modulates liver fibrosis in a murine model of biliary
atresia. Biochem Biophys Res Commun. 446:155–159. 2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Xiao Y, Wang J, Yan W, Zhou Y, Chen Y,
Zhou K, Wen J, Wang Y and Cai W: Dysregulated miR-124 and miR-200
expression contribute to cholangiocyte proliferation in the
cholestatic liver by targeting IL-6/STAT3 signalling. J Hepatol.
62:889–896. 2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Yu DS, An FM, Gong BD, Xiang XG, Lin LY,
Wang H and Xie Q: The regulatory role of microRNA-1187 in
TNF-α-mediated hepatocyte apoptosis in acute liver failure. Int J
Mol Med. 29:663–668. 2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
An F, Gong B, Wang H, Yu D, Zhao G, Lin L,
Tang W, Yu H, Bao S and Xie Q: miR-15b and miR-16 regulate TNF
mediated hepatocyte apoptosis via BCL2 in acute liver failure.
Apoptosis. 17:702–716. 2012.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Salehi S, Brereton HC, Arno MJ, Darling D,
Quaglia A, O'Grady J, Heaton N and Aluvihare VR: Human liver
regeneration is characterized by the coordinated expression of
distinct microRNA governing cell cycle fate. Am J Transplant.
13:1282–1295. 2013.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Dattaroy D, Pourhoseini S, Das S, Alhasson
F, Seth RK, Nagarkatti M, Michelotti GA, Diehl AM and Chatterjee S:
Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via
leptin-mediated NADPH oxidase in experimental and human
nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver
Physiol. 308:G298–G312. 2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Israelow B, Mullokandov G, Agudo J,
Sourisseau M, Bashir A, Maldonado AY, Dar AC, Brown BD and Evans
MJ: Hepatitis C virus genetics affects miR-122 requirements and
response to miR-122 inhibitors. Nat Commun. 5(5408)2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Karam RA and Abd Elrahman DM: Differential
expression of miR-155 and Let-7a in the plasma of childhood asthma:
Potential biomarkers for diagnosis and severity. Clin Biochem.
68:30–36. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Zhang Y, Sun E, Li X, Zhang M, Tang Z, He
L and Lv K: miR-155 contributes to Df1-induced asthma by increasing
the proliferative response of Th cells via CTLA-4 downregulation.
Cell Immunol. 314:1–9. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zhou Y, Yang Q, Xu H, Zhang J, Deng H, Gao
H, Yang J, Zhao D and Liu F: miRNA-221-3p enhances the secretion of
interleukin-4 in mast cells through the phosphatase and tensin
homolog/p38/nuclear factor-kappaB pathway. PLoS One.
11(e0148821)2016.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Tsitsiou E, Williams AE, Moschos SA, Patel
K, Rossios C, Jiang X, Adams OD, Macedo P, Booton R, Gibeon D, et
al: Transcriptome analysis shows activation of circulating CD8+ T
cells in patients with severe asthma. J Allergy Clin Immunol.
129:95–103. 2012.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kärner J, Wawrzyniak M, Tankov S, Runnel
T, Aints A, Kisand K, Altraja A, Kingo K, Akdis CA, Akdis M and
Rebane A: Increased microRNA-323-3p in IL-22/IL-17-producing T
cells and asthma: A role in the regulation of the TGF-β pathway and
IL-22 production. Allergy. 72:55–65. 2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Liu F, Qin HB, Xu B, Zhou H and Zhao DY:
Profiling of miRNAs in pediatric asthma: Upregulation of miRNA-221
and miRNA-485-3p. Mol Med Rep. 6:1178–1182. 2012.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Tian M, Zhou Y, Jia H, Zhu X and Cui Y:
The clinical significance of changes in the expression levels of
MicroRNA-1 and inflammatory factors in the peripheral blood of
children with acute-stage asthma. Biomed Res Int.
2018(7632487)2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Liang Y, Feng Y, Wu W, Chang C, Chen D,
Chen S and Zhen G: microRNA-218-5p plays a protective role in
eosinophilic airway inflammation via targeting δ-catenin, a novel
catenin in asthma. Clin Exp Allergy. 50:29–40. 2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Ren L, Zhu R and Li X: Silencing miR-181a
produces neuroprotection against hippocampus neuron cell apoptosis
post-status epilepticus in a rat model and in children with
temporal lobe epilepsy. Genet Mol Res. 15:2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Peng J, Omran A, Ashhab MU, Kong H, Gan N,
He F and Yin F: Expression patterns of miR-124, miR-134, miR-132,
and miR-21 in an immature rat model and children with mesial
temporal lobe epilepsy. J Mol Neurosci. 50:291–297. 2013.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Risbud RM, Lee C and Porter BE:
Neurotrophin-3 mRNA a putative target of miR21 following status
epilepticus. Brain Res. 1424:53–59. 2011.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Li N, Pan J, Liu W, Li Y, Li F and Liu M:
MicroRNA-15a-5p serves as a potential biomarker and regulates the
viability and apoptosis of hippocampus neuron in children with
temporal lobe epilepsy. Diagn Pathol. 15(46)2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Achkar NP, Cambiagno DA and Manavella PA:
miRNA biogenesis: A dynamic pathway. Trends Plant Sci.
21:1034–1044. 2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Kandhavelu M and Kandhavelu J: Pre-piRNA
biogenesis mimics the pathway of miRNA. Biochem Syst Ecol.
43:200–204. 2012.
|
|
46
|
Murchison EP and Hannon GJ: miRNAs on the
move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol.
16:223–229. 2004.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Saj A and Lai EC: Control of microRNA
biogenesis and transcription by cell signaling pathways. Curr Opin
Genet Dev. 21:504–510. 2011.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Suzuki HI and Miyazono K: Dynamics of
microRNA biogenesis: Crosstalk between p53 network and microRNA
processing pathway. J Mol Med (Berl). 88:1085–1094. 2010.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Winter J, Jung S, Keller S, Gregory RI and
Diederichs S: Many roads to maturity: microRNA biogenesis pathways
and their regulation. Nat Cell Biol. 11:228–234. 2009.PubMed/NCBI View Article : Google Scholar
|
|
50
|
American Diabetes Association. 2.
Classification and diagnosis of diabetes. Diabetes Care. 38 (Suppl
1):S8–S16. 2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
American Diabetes Association. Diagnosis
and classification of diabetes mellitus. Diabetes Care. 37 (Suppl
1):S81–S90. 2014.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Tuomi T, Santoro N, Caprio S, Cai M, Weng
J and Groop L: The many faces of diabetes: A disease with
increasing heterogeneity. Lancet. 383:1084–1094. 2014.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ma RCW: Epidemiology of diabetes and
diabetic complications in China. Diabetologia. 61:1249–1260.
2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Moheet A, Mangia S and Seaquist ER: Impact
of diabetes on cognitive function and brain structure. In: Year in
Diabetes and Obesity. Powers AC and Ahima RS (eds). pp60-71,
2015.
|
|
55
|
Baroukh N, Ravier MA, Loder MK, Hill EV,
Bounacer A, Scharfmann R, Rutter GA and Van Obberghen E:
MicroRNA-124a regulates Foxa2 expression and intracellular
signaling in pancreatic beta-cell lines. J Biol Chem.
282:19575–19588. 2007.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Keller DM, Clark EA and Goodman RH:
Regulation of microRNA-375 by cAMP in pancreatic β-cells. Mol
Endocrinol. 26:989–999. 2012.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Poy MN, Hausser J, Trajkovski M, Braun M,
Collins S, Rorsman P, Zavolan M and Stoffel M: miR-375 maintains
normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci
USA. 106:5813–5818. 2009.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Regazzi R: MicroRNAs as therapeutic
targets for the treatment of diabetes mellitus and its
complications. Expert Opin Ther Targets. 22:153–160.
2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ
and Liu ZM: MicroRNA-15a positively regulates insulin synthesis by
inhibiting uncoupling protein-2 expression. Diabetes Res Clin
Pract. 91:94–100. 2011.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Shen Z, Yu Y, Yang Y, Xiao X, Sun T, Chang
X, Tang W, Zhu Y and Han X: miR-25 and miR-92b regulate insulin
biosynthesis and pancreatic β-cell apoptosis. Endocrine.
76:526–535. 2022.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Poy MN, Eliasson L, Krutzfeldt J, Kuwajima
S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P
and Stoffel M: A pancreatic islet-specific microRNA regulates
insulin secretion. Nature. 432:226–230. 2004.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Corno AF, Koerner TS and Salazar JD:
Innovative treatments for congenital heart defects. World J
Pediatr. 19:1–6. 2023.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Wu Y, Ma XJ, Wang HJ, Li WC, Chen L, Ma D
and Huang GY: Expression of Cx43-related microRNAs in patients with
tetralogy of Fallot. World J Pediatr. 10:138–144. 2014.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Dueñas A, Exposit A, Aranega A and Franco
D: The role of non-coding RNA in congenital heart diseases. J
Cardiovasc Dev Dis. 6(15)2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Gu H, Chen L, Xue J, Huang T, Wei X, Liu
D, Ma W, Cao S and Yuan Z: Expression profile of maternal
circulating microRNAs as non-invasive biomarkers for prenatal
diagnosis of congenital heart defects. Biomed Pharmacother.
109:823–830. 2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Hoelscher SC, Doppler SA, Dreßen M, Lahm
H, Lange R and Krane M: MicroRNAs: Pleiotropic players in
congenital heart disease and regeneration. J Thorac Dis. 9 (Suppl
1):S64–S81. 2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Kalayinia S, Arjmand F, Maleki M,
Malakootian M and Singh CP: MicroRNAs: Roles in cardiovascular
development and disease. Cardiovasc Pathol.
50(107296)2021.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Arabian M, Mirzadeh Azad F, Maleki M and
Malakootian M: Insights into role of microRNAs in cardiac
development, cardiac diseases, and developing novel therapies. Iran
J Basic Med Sci. 23:961–969. 2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Paul S, Ruiz-Manriquez LM, Ledesma-Pacheco
SJ, Benavides-Aguilar JA, Torres-Copado A, Morales-Rodríguez JI, De
Donato M and Srivastava A: Roles of microRNAs in chronic pediatric
diseases and their use as potential biomarkers: A review. Arch
Biochem Biophys. 699(108763)2021.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Smith T, Rajakaruna C, Caputo M and
Emanueli C: MicroRNAs in congenital heart disease. Ann Transl Med.
3(333)2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Tian J, An X and Niu L: Role of microRNAs
in cardiac development and disease. Exp Ther Med. 13:3–8.
2017.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Xie WQ, Zhou L, Chen Y and Ni B:
Circulating microRNAs as potential biomarkers for diagnosis of
congenital heart defects. World J Emerg Med. 7:85–89.
2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Yan HL and Hua YM: Research advances on
role of microRNAs in congenital heart diseases. Zhongguo Dang Dai
Er Ke Za Zhi. 16:1070–1074. 2014.PubMed/NCBI(In Chinese).
|
|
74
|
Zajkowska A and Małecki M: microRNAs role
in heart development. Postepy Biol Komorki. 42:107–126. 2015.
|
|
75
|
Wei Y, Peng S, Wu M, Sachidanandam R, Tu
Z, Zhang S, Falce C, Sobie EA, Lebeche D and Zhao Y: Multifaceted
roles of miR-1s in repressing the fetal gene program in the heart.
Cell Res. 24:278–292. 2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Xin M, Olson EN and Bassel-Duby R: Mending
broken hearts: Cardiac development as a basis for adult heart
regeneration and repair. Nat Rev Mol Cell Biol. 14:529–541.
2013.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Bruneau BG: The developmental genetics of
congenital heart disease. Nature. 451:943–948. 2008.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ho PTB, Clark IM and Le LTT:
MicroRNA-based diagnosis and therapy. Int J Mol Sci.
23(7167)2022.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Yu Z, Han S, Hu P, Zhu C, Wang X, Qian L
and Guo X: Potential role of maternal serum microRNAs as a
biomarker for fetal congenital heart defects. Med Hypotheses.
76:424–426. 2011.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian
L, Zhu C, Hu X, Li M, Guo X, et al: Identification of maternal
serum microRNAs as novel non-invasive biomarkers for prenatal
detection of fetal congenital heart defects. Clin Chim Acta.
424:66–72. 2013.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Della Corte C, Mosca A, Vania A, Alterio
A, Alisi A and Nobili V: Pediatric liver diseases: Current
challenges and future perspectives. Expert Rev Gastroenterol
Hepatol. 10:255–265. 2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Calvopina DA, Coleman MA, Lewindon PJ and
Ramm GA: Function and regulation of MicroRNAs and their potential
as biomarkers in paediatric liver disease. Int J Mol Sci.
17(1795)2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Makri E, Goulas A and Polyzos SA:
Epidemiology, pathogenesis, diagnosis and emerging treatment of
nonalcoholic fatty liver disease. Arch Med Res. 52:25–37.
2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Gheorghe G, Bungău S, Ceobanu G, Ilie M,
Bacalbaşa N, Bratu OG, Vesa CM, Găman MA and Diaconu CC: The
non-invasive assessment of hepatic fibrosis. J Formos Med Assoc.
120:794–803. 2021.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Tadokoro T, Morishita A and Masaki T:
Diagnosis and therapeutic management of liver fibrosis by MicroRNA.
Int J Mol Sci. 22(8139)2021.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wang X, He Y, Mackowiak B and Gao B:
MicroRNAs as regulators, biomarkers and therapeutic targets in
liver diseases. Gut. 70:784–795. 2021.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Hartley JL, Davenport M and Kelly DA:
Biliary atresia. Lancet. 374:1704–1713. 2009.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Bezerra JA, Wells RG, Mack CL, Karpen SJ,
Hoofnagle JH, Doo E and Sokol RJ: Biliary atresia: Clinical and
research challenges for the twenty-first century. Hepatology.
68:1163–1173. 2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Sokol RJ, Shepherd RW, Superina R, Bezerra
JA, Robuck P and Hoofnagle JH: Screening and outcomes in biliary
atresia: Summary of a national institutes of health workshop.
Hepatology. 46:566–581. 2007.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Balasubramaniyan N, Devereaux MW, Orlicky
DJ, Sokol RJ and Suchy FJ: Up-regulation of miR-let7a-5p leads to
decreased expression of ABCC2 in obstructive cholestasis. Hepatol
Commun. 3:1674–1686. 2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Zhao R, Dong R, Yang Y, Wang Y, Ma J, Wang
J, Li H and Zheng S: MicroRNA-155 modulates bile duct inflammation
by targeting the suppressor of cytokine signaling 1 in biliary
atresia. Pediatr Res. 82:1007–1016. 2017.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Dong R, Zheng Y, Chen G, Zhao R, Zhou Z
and Zheng S: miR-222 overexpression may contribute to liver
fibrosis in biliary atresia by targeting PPP2R2A. J Pediatr
Gastroenterol Nutr. 60:84–90. 2015.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Zhao D, Luo Y, Xia Y, Zhang JJ and Xia Q:
MicroRNA-19b expression in human biliary atresia specimens and its
role in BA-related fibrosis. Dig Dis Sci. 62:689–698.
2017.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Yoneyama T, Ueno T, Masahata K, Toyama C,
Maeda A, Tazuke Y, Oue T, Miyagawa S and Okuyama H: Elevation of
microRNA-214 is associated with progression of liver fibrosis in
patients with biliary atresia. Pediatr Surg Int. 38:115–122.
2022.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Chang J, Liang J, Chai C, Liu F, Tao B,
Wang H, Tong Y, Wang Z and Xia H: MiR-100 rs1834306 A>G
increases biliary atresia risk in Southern Han Chinese children.
Biomed Res Int. 2023(4835839)2023.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Su L, Tian Y, Fu M, Zhang RZ, Ou XF, Xia
HM and Li RZ: Association of miRNA-492 rs2289030 G>C and
miRNA-938 rs2505901 T>C gene polymorphisms with biliary atresia
susceptibility. Biomed Environ Sci. 34:577–580. 2021.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Shan Y, Shen N, Han L, Chen Q, Zhang J,
Long X and Xia Q: MicroRNA-499 Rs3746444 polymorphism and biliary
atresia. Dig Liver Dis. 48:423–428. 2016.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Cook NL, Pereira TN, Lewindon PJ, Shepherd
RW and Ramm GA: Circulating microRNAs as noninvasive diagnostic
biomarkers of liver disease in children with cystic fibrosis. J
Pediatr Gastroenterol Nutr. 60:247–254. 2015.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Boonpiyathad T, Sözener ZC, Satitsuksanoa
P and Akdis CA: Immunologic mechanisms in asthma. Semin Immunol.
46(101333)2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Papi A, Brightling C, Pedersen SE and
Reddel HK: Asthma. Lancet. 391:783–800. 2018.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Liang J, Liu XH, Chen XM, Song XL, Li W
and Huang Y: Emerging roles of non-coding RNAs in childhood asthma.
Front Pharmacol. 13(856104)2022.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Kai W, Qian XU and Qun WUZ: MicroRNAs and
asthma regulation. Iran J Allergy Asthma Immunol. 14:120–125.
2015.PubMed/NCBI
|
|
103
|
Midyat L, Gulen F, Karaca E, Ozkinay F,
Tanac R, Demir E, Cogulu O, Aslan A, Ozkinay C, Onay H and Atasever
M: MicroRNA expression profiling in children with different asthma
phenotypes. Pediatr Pulmonol. 51:582–587. 2016.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Mousavi SR, Ahmadi A, Jamalkandi SA and
Salimian J: Involvement of microRNAs in physiological and
pathological processes in asthma. J Cell Physiol. 234:21547–21559.
2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Jat KR and Kabra SK: Awareness about
childhood asthma. Indian J Med Res. 145:581–583. 2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Foster PS, Maltby S, Rosenberg HF, Tay HL,
Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK and
Mattes J: Modeling TH 2 responses and airway
inflammation to understand fundamental mechanisms regulating the
pathogenesis of asthma. Immunol Rev. 278:20–40. 2017.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Specjalski K and Niedoszytko M: MicroRNAs:
Future biomarkers and targets of therapy in asthma? Curr Opin Pulm
Med. 26:285–292. 2020.PubMed/NCBI View Article : Google Scholar
|
|
108
|
van den Berge M and Tasena H: Role of
microRNAs and exosomes in asthma. Curr Opin Pulm Med. 25:87–93.
2019.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Cañas JA, Rodrigo-Muñoz JM, Sastre B,
Gil-Martinez M, Redondo N and Del Pozo V: MicroRNAs as potential
regulators of immune response networks in asthma and chronic
obstructive pulmonary disease. Front Immunol.
11(608666)2021.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Xu L, Yi M, Tan Y, Yi Z and Zhang Y: A
comprehensive analysis of microRNAs as diagnostic biomarkers for
asthma. Ther Adv Respir Dis. 14(1753466620981863)2020.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Chiba Y: Non-coding RNAs and bronchial
smooth muscle hyperresponsiveness in allergic bronchial asthma.
Nihon Yakurigaku Zasshi. 155:364–368. 2020.PubMed/NCBI View Article : Google Scholar : (In Japanese).
|
|
112
|
Lukiw WJ: Circular RNA (circRNA) in
Alzheimer's disease (AD). Front Genet. 4(307)2013.PubMed/NCBI View Article : Google Scholar
|
|
113
|
He X, Jing Z and Cheng G: MicroRNAs: New
regulators of Toll-like receptor signalling pathways. Biomed Res
Int. 2014(945169)2014.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Katyayan A and Diaz-Medina G: Epilepsy:
Epileptic syndromes and treatment. Neurol Clin. 39:779–795.
2021.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Paul S, Reyes PR, Garza BS and Sharma A:
MicroRNAs and child neuropsychiatric disorders: A brief review.
Neurochem Res. 45:232–240. 2020.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Ma Y: The challenge of microRNA as a
biomarker of epilepsy. Curr Neuropharmacol. 16:37–42.
2018.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Brennan GP and Henshall DC: microRNAs in
the pathophysiology of epilepsy. Neurosci Lett. 667:47–52.
2018.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Cava C, Manna I, Gambardella A, Bertoli G
and Castiglioni I: Potential role of miRNAs as theranostic
biomarkers of epilepsy. Mol Ther Nucleic Acids. 13:275–290.
2018.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Ghafouri-Fard S, Hussen BM, Abak A, Taheri
M and Jalili Khoshnoud R: Aberrant expression of miRNAs in
epilepsy. Mol Biol Rep. 49:5057–5074. 2022.PubMed/NCBI View Article : Google Scholar
|
|
120
|
van der Lee JH, Mokkink LB, Grootenhuis
MA, Heymans HS and Offringa M: Definitions and measurement of
chronic health conditions in childhood: A systematic review. JAMA.
297:2741–2751. 2007.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Diener C, Keller A and Meese E: Emerging
concepts of miRNA therapeutics: From cells to clinic. Trends Genet.
38:613–626. 2022.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Groot M and Lee H: Sorting mechanisms for
MicroRNAs into extracellular vesicles and their associated
diseases. Cells. 9(1044)2020.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Laggerbauer B and Engelhardt S: MicroRNAs
as therapeutic targets in cardiovascular disease. J Clin Invest.
132(e159179)2022.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Vegter EL, van der Meer P, de Windt LJ,
Pinto YM and Voors AA: MicroRNAs in heart failure: From biomarker
to target for therapy. Eur J Heart Fail. 18:457–468.
2016.PubMed/NCBI View Article : Google Scholar
|