Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2024 Volume 27 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2024 Volume 27 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
    • Supplementary_Data3.pdf
Article Open Access

CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating KIF1B expression

  • Authors:
    • Chaochao Dai
    • Xiaopei Cui
    • Jie Wang
    • Bo Dong
    • Haiqing Gao
    • Mei Cheng
    • Fan Jiang
  • View Affiliations / Copyright

    Affiliations: Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
    Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 107
    |
    Published online on: January 18, 2024
       https://doi.org/10.3892/etm.2024.12395
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The selective RNA polymerase I inhibitor CX‑5461 has been shown to be effective in treating some types of leukemic disorders. Emerging evidence suggests that combined treatments with CX‑5461 and other chemotherapeutic agents may achieve enhanced effectiveness as compared with monotherapies. Currently, pharmacodynamic properties of the combination of CX‑5461 with tyrosine kinase inhibitors remain to be explored. The present study tested whether CX‑5461 could potentiate the effect of imatinib in the human chronic myeloid leukemia cell line K562, which is p53‑deficient. It was demonstrated that CX‑5461 at 100 nM, which was non‑cytotoxic in K562 cells, potentiated the pro‑apoptotic effect of imatinib. Mechanistically, the present study identified that the upregulated expression of kinesin family member 1B (KIF1B) gene might be involved in mediating the pro‑apoptotic effect of imatinib/CX‑5461 combination. Under the present experimental settings, however, neither CX‑5461 nor imatinib alone exhibited a significant effect on KIF1B expression. Moreover, using other leukemic cell lines, it was demonstrated that regulation of KIF1B expression by imatinib/CX‑5461 was not a ubiquitous phenomenon in leukemic cells and should be studied in a cell type‑specific manner. In conclusion, the results suggested that the synergistic interaction between CX‑5461 and imatinib may be of potential clinical value for the treatment of tyrosine kinase inhibitor‑resistant chronic myeloid leukemia.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Butturini A, Arlinghaus RB and Gale RP: BCR/ABL and leukemia. Leuk Res. 20:523–529. 1996.PubMed/NCBI View Article : Google Scholar

2 

Kurzrock R, Kantarjian HM, Druker BJ and Talpaz M: Philadelphia chromosome-positive leukemias: From basic mechanisms to molecular therapeutics. Ann Intern Med. 138:819–830. 2003.PubMed/NCBI View Article : Google Scholar

3 

Maru Y: Molecular biology of chronic myeloid leukemia. Cancer Sci. 103:1601–1610. 2012.PubMed/NCBI View Article : Google Scholar

4 

Patel AB, O'Hare T and Deininger MW: Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors. Hematol Oncol Clin North Am. 31:589–612. 2017.PubMed/NCBI View Article : Google Scholar

5 

de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, Bua M, Szydlo R, Olavarria E, Kaeda J, Goldman JM and Marin D: Imatinib for newly diagnosed patients with chronic myeloid leukemia: Incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol. 26:3358–3363. 2008.PubMed/NCBI View Article : Google Scholar

6 

Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Müller-Brüsselbach S, Ottmann OG, Duyster J, Hochhaus A and Neubauer A: Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia. 19:1774–1782. 2005.PubMed/NCBI View Article : Google Scholar

7 

Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, Veach DR, Bornmann WG, Clarkson B, McCombie WR, et al: Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci USA. 103:7444–7449. 2006.PubMed/NCBI View Article : Google Scholar

8 

Li L, Wang L, Wang Z, Ho Y, McDonald T, Holyoake TL, Chen W and Bhatia R: Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 21:266–281. 2012.PubMed/NCBI View Article : Google Scholar

9 

Peterson LF, Lo MC, Liu Y, Giannola D, Mitrikeska E, Donato NJ, Johnson CN, Wang S, Mercer J and Talpaz M: Induction of p53 suppresses chronic myeloid leukemia. Leuk Lymphoma. 58:1–14. 2017.PubMed/NCBI View Article : Google Scholar

10 

Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, Korfi K, Baquero P, Park LE, Scott MT, et al: Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature. 534:341–346. 2016.PubMed/NCBI View Article : Google Scholar

11 

Guinn BA, Smith M, Padua RA, Burnett A and Mills K: Changing p53 mutations with the evolution of chronic myeloid leukaemia from the chronic phase to blast crisis. Leuk Res. 19:519–525. 1995.PubMed/NCBI View Article : Google Scholar

12 

Marasca R, Longo G, Luppi M, Barozzi P and Torelli G: Double P53 point mutation in extramedullary blast crisis of chronic myelogenous leukemia. Leuk Lymphoma. 16:171–175. 1994.PubMed/NCBI View Article : Google Scholar

13 

Stuppia L, Calabrese G, Peila R, Guanciali-Franchi P, Morizio E, Spadano A and Palka G: p53 loss and point mutations are associated with suppression of apoptosis and progression of CML into myeloid blastic crisis. Cancer Genet Cytogenet. 98:28–35. 1997.PubMed/NCBI View Article : Google Scholar

14 

Mitelman F: The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma. 11 (Suppl 1):S11–S15. 1993.PubMed/NCBI View Article : Google Scholar

15 

Luo J, Solimini NL and Elledge SJ: Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell. 136:823–837. 2009.PubMed/NCBI View Article : Google Scholar

16 

Janczar S, Nautiyal J, Xiao Y, Curry E, Sun M, Zanini E, Paige AJ and Gabra H: WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response. Cell Death Dis. 8(e2955)2017.PubMed/NCBI View Article : Google Scholar

17 

Nguyen HG, Conn CS, Kye Y, Xue L, Forester CM, Cowan JE, Hsieh AC, Cunningham JT, Truillet C, Tameire F, et al: Development of a stress response therapy targeting aggressive prostate cancer. Sci Transl Med. 10(eaar2036)2018.PubMed/NCBI View Article : Google Scholar

18 

Boulon S, Westman BJ, Hutten S, Boisvert FM and Lamond AI: The nucleolus under stress. Mol Cell. 40:216–227. 2010.PubMed/NCBI View Article : Google Scholar

19 

James A, Wang Y, Raje H, Rosby R and DiMario P: Nucleolar stress with and without p53. Nucleus. 5:402–426. 2014.PubMed/NCBI View Article : Google Scholar

20 

Drygin D, Lin A, Bliesath J, Ho CB, O'Brien SE, Proffitt C, Omori M, Haddach M, Schwaebe MK, Siddiqui-Jain A, et al: Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 71:1418–1430. 2011.PubMed/NCBI View Article : Google Scholar

21 

Hein N, Cameron DP, Hannan KM, Nguyen NN, Fong CY, Sornkom J, Wall M, Pavy M, Cullinane C, Diesch J, et al: Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood. 129:2882–2895. 2017.PubMed/NCBI View Article : Google Scholar

22 

Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, et al: Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 22:51–65. 2012.PubMed/NCBI View Article : Google Scholar

23 

Law JC, Ritke MK, Yalowich JC, Leder GH and Ferrell RE: Mutational inactivation of the p53 gene in the human erythroid leukemic K562 cell line. Leuk Res. 17:1045–1050. 1993.PubMed/NCBI View Article : Google Scholar

24 

Di Bacco AM and Cotter TG: p53 expression in K562 cells is associated with caspase-mediated cleavage of c-ABL and BCR-ABL protein kinases. Br J Haematol. 117:588–597. 2002.PubMed/NCBI View Article : Google Scholar

25 

Bi S, Hughes T, Bungey J, Chase A, de Fabritiis P and Goldman JM: p53 in chronic myeloid leukemia cell lines. Leukemia. 6:839–842. 1992.PubMed/NCBI

26 

Chylicki K, Ehinger M, Svedberg H, Bergh G, Olsson I and Gullberg U: p53-mediated differentiation of the erythroleukemia cell line K562. Cell Growth Differ. 11:315–324. 2000.PubMed/NCBI

27 

ENCODE Guidelines and Best Practices for RNA-Seq. https://www.encodeproject.org/about/experiment-guidelines.

28 

Real-time PCR handbook. https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-time-pcr-handbook.pdf.

29 

Foucquier J and Guedj M: Analysis of drug combinations: Current methodological landscape. Pharmacol Res Perspect. 3(e00149)2015.PubMed/NCBI View Article : Google Scholar

30 

Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA, Lassalle R, Marit G, Reiffers J, Begaud B, et al: Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 109:3496–3499. 2007.PubMed/NCBI View Article : Google Scholar

31 

Arya AD, Wilson DI, Baralle D and Raponi M: RBFOX2 protein domains and cellular activities. Biochem Soc Trans. 42:1180–1183. 2014.PubMed/NCBI View Article : Google Scholar

32 

Braeutigam C, Rago L, Rolke A, Waldmeier L, Christofori G and Winter J: The RNA-binding protein Rbfox2: An essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene. 33:1082–1092. 2014.PubMed/NCBI View Article : Google Scholar

33 

Quentmeier H, Pommerenke C, Bernhart SH, Dirks WG, Hauer V, Hoffmann S, Nagel S, Siebert R, Uphoff CC, Zaborski M, et al: RBFOX2 and alternative splicing in B-cell lymphoma. Blood Cancer J. 8(77)2018.PubMed/NCBI View Article : Google Scholar

34 

Munirajan AK, Ando K, Mukai A, Takahashi M, Suenaga Y, Ohira M, Koda T, Hirota T, Ozaki T and Nakagawara A: KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J Biol Chem. 283:24426–24434. 2008.PubMed/NCBI View Article : Google Scholar

35 

Schlisio S, Kenchappa RS, Vredeveld LC, George RE, Stewart R, Greulich H, Shahriari K, Nguyen NV, Pigny P, Dahia PL, et al: The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 22:884–893. 2008.PubMed/NCBI View Article : Google Scholar

36 

Choo Z, Koh RY, Wallis K, Koh TJ, Kuick CH, Sobrado V, Kenchappa RS, Loh AH, Soh SY, Schlisio S, et al: XAF1 promotes neuroblastoma tumor suppression and is required for KIF1Bβ-mediated apoptosis. Oncotarget. 7:34229–34239. 2016.PubMed/NCBI View Article : Google Scholar

37 

Li S, Fell SM, Surova O, Smedler E, Wallis K, Chen ZX, Hellman U, Johnsen JI, Martinsson T, Kenchappa RS, et al: The 1p36 tumor suppressor KIF 1Bβ is required for calcineurin activation, controlling mitochondrial fission and apoptosis. Dev Cell. 36:164–178. 2016.PubMed/NCBI View Article : Google Scholar

38 

Ando K, Yokochi T, Mukai A, Wei G, Li Y, Kramer S, Ozaki T, Maehara Y and Nakagawara A: Tumor suppressor KIF1Bβ regulates mitochondrial apoptosis in collaboration with YME1L1. Mol Carcinog. 58:1134–1144. 2019.PubMed/NCBI View Article : Google Scholar

39 

Chen ZX, Wallis K, Fell SM, Sobrado VR, Hemmer MC, Ramsköld D, Hellman U, Sandberg R, Kenchappa RS, Martinson T, et al: RNA helicase A is a downstream mediator of KIF1Bβ tumor-suppressor function in neuroblastoma. Cancer Discov. 4:434–451. 2014.PubMed/NCBI View Article : Google Scholar

40 

Gordon MA, Babbs B, Cochrane DR, Bitler BG and Richer JK: The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol Carcinog. 58:196–205. 2019.PubMed/NCBI View Article : Google Scholar

41 

Wolf D, Tilg H, Rumpold H, Gastl G and Wolf AM: The kinase inhibitor imatinib-an immunosuppressive drug? Curr Cancer Drug Targets. 7:251–258. 2007.PubMed/NCBI View Article : Google Scholar

42 

Ferreira R, Schneekloth JS Jr, Panov KI, Hannan KM and Hannan RD: Targeting the RNA polymerase I transcription for cancer therapy comes of age. Cells. 9(266)2020.PubMed/NCBI View Article : Google Scholar

43 

Quin J, Chan KT, Devlin JR, Cameron DP, Diesch J, Cullinane C, Ahern J, Khot A, Hein N, George AJ, et al: Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget. 7:49800–49818. 2016.PubMed/NCBI View Article : Google Scholar

44 

Mars JC, Tremblay MG, Valere M, Sibai DS, Sabourin-Felix M, Lessard F and Moss T: The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability. NAR Cancer. 2(zcaa032)2020.PubMed/NCBI View Article : Google Scholar

45 

Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O'Neil NJ, Santos ND, Silvester J, Wei V, Garcia J, et al: CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 8(14432)2017.PubMed/NCBI View Article : Google Scholar

46 

Bruno PM, Lu M, Dennis KA, Inam H, Moore CJ, Sheehe J, Elledge SJ, Hemann MT and Pritchard JR: The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. Proc Natl Acad Sci USA. 117:4053–4060. 2020.PubMed/NCBI View Article : Google Scholar

47 

Lipton JH, Brümmendorf TH, Gambacorti-Passerini C, Garcia-Gutiérrez V, Deininger MW and Cortes JE: Long-term safety review of tyrosine kinase inhibitors in chronic myeloid leukemia-What to look for when treatment-free remission is not an option. Blood Rev. 56(100968)2022.PubMed/NCBI View Article : Google Scholar

48 

Honda H, Ushijima T, Wakazono K, Oda H, Tanaka Y, Aizawa Si, Ishikawa T, Yazaki Y and Hirai H: Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: A transgenic study for blast crisis of human CML. Blood. 95:1144–1150. 2000.PubMed/NCBI

49 

Yan S, Xuan J, Brajanovski N, Tancock MRC, Madhamshettiwar PB, Simpson KJ, Ellis S, Kang J, Cullinane C, Sheppard KE, et al: The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. Br J Cancer. 124:616–627. 2021.PubMed/NCBI View Article : Google Scholar

50 

Shi S, Luo H, Wang L, Li H, Liang Y, Xia J, Wang Z, Cheng B, Huang L, Liao G and Xu B: Combined inhibition of RNA polymerase I and mTORC1/2 synergize to combat oral squamous cell carcinoma. Biomed Pharmacother. 133(110906)2021.PubMed/NCBI View Article : Google Scholar

51 

Devlin JR, Hannan KM, Hein N, Cullinane C, Kusnadi E, Ng PY, George AJ, Shortt J, Bywater MJ, Poortinga G, et al: Combination therapy targeting ribosome biogenesis and mRNA translation synergistically extends survival in MYC-driven lymphoma. Cancer Discov. 6:59–70. 2016.PubMed/NCBI View Article : Google Scholar

52 

Lawrence MG, Porter LH, Choo N, Pook D, Grummet JP, Pezaro CJ, Sandhu S, Ramm S, Luu J, Bakshi A, et al: CX-5461 sensitizes DNA damage repair-proficient castrate-resistant prostate cancer to PARP inhibition. Mol Cancer Ther. 20:2140–2150. 2021.PubMed/NCBI View Article : Google Scholar

53 

Rebello RJ, Kusnadi E, Cameron DP, Pearson HB, Lesmana A, Devlin JR, Drygin D, Clark AK, Porter L, Pedersen J, et al: The dual inhibition of RNA Pol I transcription and PIM kinase as a new therapeutic approach to treat advanced prostate cancer. Clin Cancer Res. 22:5539–5552. 2016.PubMed/NCBI View Article : Google Scholar

54 

Lehman SL, Schwartz KR, Maheshwari S, Camphausen K and Tofilon PJ: CX-5461 induces radiosensitization through modification of the DNA damage response and not inhibition of RNA polymerase I. Sci Rep. 12(4059)2022.PubMed/NCBI View Article : Google Scholar

55 

Khot A, Brajanovski N, Cameron DP, Hein N, Maclachlan KH, Sanij E, Lim J, Soong J, Link E, Blombery P, et al: First-in-Human RNA polymerase I transcription inhibitor CX-5461 in patients with advanced hematologic cancers: Results of a phase I dose-escalation study. Cancer Discov. 9:1036–1049. 2019.PubMed/NCBI View Article : Google Scholar

56 

Lindqvist CM, Nordlund J, Ekman D, Johansson A, Moghadam BT, Raine A, Övernäs E, Dahlberg J, Wahlberg P, Henriksson N, et al: The mutational landscape in pediatric acute lymphoblastic leukemia deciphered by whole genome sequencing. Hum Mutat. 36:118–128. 2015.PubMed/NCBI View Article : Google Scholar

57 

Ochiai H, Takenobu H, Nakagawa A, Yamaguchi Y, Kimura M, Ohira M, Okimoto Y, Fujimura Y, Koseki H, Kohno Y, et al: Bmi1 is a MYCN target gene that regulates tumorigenesis through repression of KIF1Bbeta and TSLC1 in neuroblastoma. Oncogene. 29:2681–2690. 2010.PubMed/NCBI View Article : Google Scholar

58 

Astolfi A, Vendemini F, Urbini M, Melchionda F, Masetti R, Franzoni M, Libri V, Serravalle S, Togni M, Paone G, et al: MYCN is a novel oncogenic target in pediatric T-cell acute lymphoblastic leukemia. Oncotarget. 5:120–130. 2014.PubMed/NCBI View Article : Google Scholar

59 

Taylor JS, Zeki J, Ornell K, Coburn J, Shimada H, Ikegaki N and Chiu B: Down-regulation of MYCN protein by CX-5461 leads to neuroblastoma tumor growth suppression. J Pediatr Surg. 54:1192–1197. 2019.PubMed/NCBI View Article : Google Scholar

60 

Wetzel R, Goss VL, Norris B, Popova L, Melnick M and Smith BL: Evaluation of CML model cell lines and imatinib mesylate response: Determinants of signaling profiles. J Immunol Methods. 305:59–66. 2005.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dai C, Cui X, Wang J, Dong B, Gao H, Cheng M and Jiang F: CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating <em>KIF1B</em> expression. Exp Ther Med 27: 107, 2024.
APA
Dai, C., Cui, X., Wang, J., Dong, B., Gao, H., Cheng, M., & Jiang, F. (2024). CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating <em>KIF1B</em> expression. Experimental and Therapeutic Medicine, 27, 107. https://doi.org/10.3892/etm.2024.12395
MLA
Dai, C., Cui, X., Wang, J., Dong, B., Gao, H., Cheng, M., Jiang, F."CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating <em>KIF1B</em> expression". Experimental and Therapeutic Medicine 27.3 (2024): 107.
Chicago
Dai, C., Cui, X., Wang, J., Dong, B., Gao, H., Cheng, M., Jiang, F."CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating <em>KIF1B</em> expression". Experimental and Therapeutic Medicine 27, no. 3 (2024): 107. https://doi.org/10.3892/etm.2024.12395
Copy and paste a formatted citation
x
Spandidos Publications style
Dai C, Cui X, Wang J, Dong B, Gao H, Cheng M and Jiang F: CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating <em>KIF1B</em> expression. Exp Ther Med 27: 107, 2024.
APA
Dai, C., Cui, X., Wang, J., Dong, B., Gao, H., Cheng, M., & Jiang, F. (2024). CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating <em>KIF1B</em> expression. Experimental and Therapeutic Medicine, 27, 107. https://doi.org/10.3892/etm.2024.12395
MLA
Dai, C., Cui, X., Wang, J., Dong, B., Gao, H., Cheng, M., Jiang, F."CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating <em>KIF1B</em> expression". Experimental and Therapeutic Medicine 27.3 (2024): 107.
Chicago
Dai, C., Cui, X., Wang, J., Dong, B., Gao, H., Cheng, M., Jiang, F."CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating <em>KIF1B</em> expression". Experimental and Therapeutic Medicine 27, no. 3 (2024): 107. https://doi.org/10.3892/etm.2024.12395
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team