|
1
|
Yi F, Xin L and Feng L: Potential
mechanism of circRNA_000585 in cholangiocarcinoma. J Int Med Res.
49(3000605211024501)2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Niu X, Chang W, Liu R, Hou R, Li J, Wang
C, Li X and Zhang K: mRNA and protein expression of the
angiogenesis-related genes EDIL3, AMOT and ECM1 in mesenchymal stem
cells in psoriatic dermis. Clin Exp Dermatol. 41:533–540.
2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Troyanovsky B, Levchenko T, Månsson G,
Matvijenko O and Holmgren L: Angiomotin: An angiostatin binding
protein that regulates endothelial cell migration and tube
formation. J Cell Biol. 152:1247–1254. 2001.PubMed/NCBI View Article : Google Scholar
|
|
4
|
O'Reilly MS, Holmgren L, Shing Y, Chen C,
Rosenthal RA, Cao Y, Moses M, Lane WS, Sage EH and Folkman J:
Angiostatin: A circulating endothelial cell inhibitor that
suppresses angiogenesis and tumor growth. Cold Spring Harb Symp
Quant Biol. 59:471–482. 1994.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Bratt A, Wilson WJ, Troyanovsky B, Aase K,
Kessler R, Van Meir EG and Holmgren L: Angiomotin belongs to a
novel protein family with conserved coiled-coil and PDZ binding
domains. Gene. 298:69–77. 2002.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Bratt A, Birot O, Sinha I, Veitonmäki N,
Aase K, Ernkvist M and Holmgren L: Angiomotin regulates endothelial
cell-cell junctions and cell motility. J Biol Chem.
280:34859–34869. 2005.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Li Z, Wang Y, Zhang M, Xu P, Huang H, Wu D
and Meng A: The Amotl2 gene inhibits Wnt/β-catenin signaling and
regulates embryonic development in zebrafish. J Biol Chem.
287:13005–13015. 2012.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Ernkvist M, Birot O, Sinha I, Veitonmaki
N, Nyström S, Aase K and Holmgren L: Differential roles of p80- and
p130-angiomotin in the switch between migration and stabilization
of endothelial cells. Biochim Biophys Acta. 1783:429–437.
2008.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Wang Y, Li Z, Xu P, Huang L, Tong J, Huang
H and Meng A: Angiomotin-like2 gene (amotl2) is required for
migration and proliferation of endothelial cells during
angiogenesis. J Biol Chem. 286:41095–41104. 2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Wigerius M, Quinn D and Fawcett JP:
Emerging roles for angiomotin in the nervous system. Sci Signal.
13(eabc0635)2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Lavado A, Park JY, Paré J, Finkelstein D,
Pan H, Xu B, Fan Y, Kumar RP, Neale G, Kwak YD, et al: The Hippo
pathway prevents YAP/TAZ-driven hypertranscription and controls
neural progenitor number. Dev Cell. 47:576–591.e8. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zaltsman Y, Masuko S, Bensen JJ and
Kiessling LL: Angiomotin regulates YAP localization during neural
differentiation of human pluripotent stem cells. Stem Cell Reports.
12:869–877. 2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lv M, Shen Y and Yang J, Li S, Wang B,
Chen Z, Li P, Liu P and Yang J: Angiomotin family members:
Oncogenes or tumor suppressors? Int J Biol Sci. 13:772–781.
2017.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Jiang WG, Watkins G, Douglas-Jones A,
Holmgren L and Mansel RE: Angiomotin and angiomotin like proteins,
their expression and correlation with angiogenesis and clinical
outcome in human breast cancer. BMC Cancer. 6(16)2006.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ruan W, Wang P, Feng S, Xue Y and Li Y:
Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12)
promotes cell proliferation and migration by upregulating
angiomotin gene expression in human osteosarcoma cells. Tumour
Biol. 37:4065–4073. 2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Mojallal M, Zheng Y, Hultin S, Audebert S,
van Harn T, Johnsson P, Lenander C, Fritz N, Mieth C, Corcoran M,
et al: AmotL2 disrupts apical-basal cell polarity and promotes
tumour invasion. Nat Commun. 5(4557)2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Ortiz A, Lee YC, Yu G, Liu HC, Lin SC,
Bilen MA, Cho H, Yu-Lee LY and Lin SH: Angiomotin is a novel
component of cadherin-11/β-catenin/p120 complex and is critical for
cadherin-11-mediated cell migration. FASEB J. 29:1080–1091.
2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Hakami F, Darda L, Stafford P, Woll P,
Lambert DW and Hunter KD: The roles of HOXD10 in the development
and progression of head and neck squamous cell carcinoma (HNSCC).
Br J Cancer. 111:807–816. 2014.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Yi C, Shen Z, Stemmer-Rachamimov A, Dawany
N, Troutman S, Showe LC, Liu Q, Shimono A, Sudol M, Holmgren L, et
al: The p130 isoform of angiomotin is required for Yap-mediated
hepatic epithelial cell proliferation and tumorigenesis. Sci
Signal. 6(ra77)2013.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Lv M, Li S, Luo C, Zhang X, Shen Y, Sui
YX, Wang F, Wang X and Yang J, Liu P and Yang J: Angiomotin
promotes renal epithelial and carcinoma cell proliferation by
retaining the nuclear YAP. Oncotarget. 7:12393–12403.
2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Hsu YL, Hung JY, Chou SH, Huang MS, Tsai
MJ, Lin YS, Chiang SY, Ho YW, Wu CY and Kuo PL: Angiomotin
decreases lung cancer progression by sequestering oncogenic YAP/TAZ
and decreasing Cyr61 expression. Oncogene. 34:4056–4068.
2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Artinian N, Cloninger C, Holmes B,
Benavides-Serrato A, Bashir T and Gera J: Phosphorylation of the
Hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP
signaling, resulting in enhanced glioblastoma growth and
invasiveness. J Biol Chem. 290:19387–19401. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Barutello G, Curcio C, Spadaro M, Arigoni
M, Trovato R, Bolli E, Zheng Y, Ria F, Quaglino E, Iezzi M, et al:
Antitumor immunization of mothers delays tumor development in
cancer-prone offspring. Oncoimmunology. 4(e1005500)2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Li D, Shen Y, Ren H, Wang L, Yang J and
Wang Y: Repression of linc01555 up-regulates angiomotin-p130 via
the microRNA-122-5p/clic1 axis to impact vasculogenic
mimicry-mediated chemotherapy resistance in small cell lung cancer.
Cell Cycle. 22:255–268. 2023.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Sang T, Yang J, Liu J, Han Y, Li Y, Zhou X
and Wang X: AMOT suppresses tumor progression via regulating DNA
damage response signaling in diffuse large B-cell lymphoma. Cancer
Gene Ther. 28:1125–1135. 2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Centorrino F, Andlovic B, Cossar P,
Brunsveld L and Ottmann C: Fragment-based exploration of the
14-3-3/Amot-p130 interface. Curr Res Struct Biol. 4:21–28.
2022.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Ernkvist M, Aase K, Ukomadu C,
Wohlschlegel J, Blackman R, Veitonmäki N, Bratt A, Dutta A and
Holmgren L: p130-angiomotin associates to actin and controls
endothelial cell shape. FEBS J. 273:2000–2011. 2006.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Wang C, An J, Zhang P, Xu C, Gao K, Wu D,
Wang D, Yu H, Liu JO and Yu L: The Nedd4-like ubiquitin E3 ligases
target angiomotin/p130 to ubiquitin-dependent degradation. Biochem
J. 444:279–289. 2012.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Webb C, Upadhyay A, Giuntini F, Eggleston
I, Furutani-Seiki M, Ishima R and Bagby S: Structural features and
ligand binding properties of tandem WW domains from YAP and TAZ,
nuclear effectors of the Hippo pathway. Biochemistry. 50:3300–3309.
2011.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Ernkvist M, Luna Persson N, Audebert S,
Lecine P, Sinha I, Liu M, Schlueter M, Horowitz A, Aase K, Weide T,
et al: The Amot/Patj/Syx signaling complex spatially controls RhoA
GTPase activity in migrating endothelial cells. Blood. 113:244–253.
2009.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Gagné V, Moreau J, Plourde M, Lapointe M,
Lord M, Gagnon E and Fernandes MJ: Human angiomotin-like 1
associates with an angiomotin protein complex through its
coiled-coil domain and induces the remodeling of the actin
cytoskeleton. Cell Motil Cytoskeleton. 66:754–768. 2009.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zhang H and Fan Q: MicroRNA-205 inhibits
the proliferation and invasion of breast cancer by regulating AMOT
expression. Oncol Rep. 34:2163–2170. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Huang W, Zeng Z, Xu Y and Mai Z:
Investigating whether exosomal miR-205-5p derived from tongue
squamous cell carcinoma cells stimulates the angiogenic activity of
HUVECs by targeting AMOT. Cancer Biomark. 38:215–224.
2023.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Ruan WD, Wang P, Feng S, Xue Y and Zhang
B: MicroRNA-497 inhibits cell proliferation, migration, and
invasion by targeting AMOT in human osteosarcoma cells. Onco
Targets Ther. 9:303–313. 2016.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wan HY, Li QQ, Zhang Y, Tian W, Li YN, Liu
M, Li X and Tang H: MiR-124 represses vasculogenic mimicry and cell
motility by targeting amotL1 in cervical cancer cells. Cancer Lett.
355:148–158. 2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Mana-Capelli S, Paramasivam M, Dutta S and
McCollum D: Angiomotins link F-actin architecture to Hippo pathway
signaling. Mol Biol Cell. 25:1676–1685. 2014.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Hirate Y, Hirahara S, Inoue K, Suzuki A,
Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, et al:
Polarity-dependent distribution of angiomotin localizes Hippo
signaling in preimplantation embryos. Curr Biol. 23:1181–1194.
2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
DeRan M, Yang J, Shen CH, Peters EC,
Fitamant J, Chan P, Hsieh M, Zhu S, Asara JM, Zheng B, et al:
Energy stress regulates hippo-YAP signaling involving AMPK-mediated
regulation of angiomotin-like 1 protein. Cell Rep. 9:495–503.
2014.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Adler JJ, Johnson DE, Heller BL, Bringman
LR, Ranahan WP, Conwell MD, Sun Y, Hudmon A and Wells CD: Serum
deprivation inhibits the transcriptional co-activator YAP and cell
growth via phosphorylation of the 130-kDa isoform of Angiomotin by
the LATS1/2 protein kinases. Proc Natl Acad Sci USA.
110:17368–17373. 2013.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Rheinemann L, Thompson T, Mercenne G,
Paine EL, Peterson FC, Volkman BF, Alam SL, Alian A and Sundquist
WI: Interactions between AMOT PPxY motifs and NEDD4L WW domains
function in HIV-1 release. J Biol Chem. 297(100975)2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Choi KS, Choi HJ, Lee JK, Im S, Zhang H,
Jeong Y, Park JA, Lee IK, Kim YM and Kwon YG: The endothelial E3
ligase HECW2 promotes endothelial cell junctions by increasing
AMOTL1 protein stability via K63-linked ubiquitination. Cell
Signal. 28:1642–1651. 2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Campbell CI, Samavarchi-Tehrani P,
Barrios-Rodiles M, Datti A, Gingras AC and Wrana JL: The RNF146 and
tankyrase pathway maintains the junctional Crumbs complex through
regulation of angiomotin. J Cell Sci. 129:3396–3411.
2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Wang Y, Zhu Y, Wang Y, Chang Y, Geng F, Ma
M, Gu Y, Yu A, Zhu R, Yu P, et al: Proteolytic activation of
angiomotin by DDI2 promotes angiogenesis. EMBO J.
42(e112900)2023.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Toloczko A, Guo F, Yuen HF, Wen Q, Wood
SA, Ong YS, Chan PY, Shaik AA, Gunaratne J, Dunne MJ, et al:
Deubiquitinating enzyme USP9X suppresses tumor growth via LATS
kinase and core components of the Hippo pathway. Cancer Res.
77:4921–4933. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Cao R, Zhu R, Sha Z, Qi S, Zhong Z, Zheng
F, Lei Y, Tan Y, Zhu Y, Wang Y, et al: WWC1/2 regulate spinogenesis
and cognition in mice by stabilizing AMOT. Cell Death Dis.
14(491)2023.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ragni CV, Diguet N, Le Garrec JF, Novotova
M, Resende TP, Pop S, Charon N, Guillemot L, Kitasato L, Badouel C,
et al: Amotl1 mediates sequestration of the Hippo effector Yap1
downstream of Fat4 to restrict heart growth. Nat Commun.
8(14582)2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Shi Q, Zheng L, Na J, Li X, Yang Z, Chen
X, Song Y, Li C, Zhou L and Fan Y: Fluid shear stress promotes
periodontal ligament cells proliferation via p38-AMOT-YAP. Cell Mol
Life Sci. 79(551)2022.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Maeso-Alonso L, Alonso-Olivares H,
Martínez-García N, López-Ferreras L, Villoch-Fernández J,
Puente-Santamaría L, Colas-Algora N, Fernández-Corona A,
Lorenzo-Marcos ME, Jiménez B, et al: p73 is required for vessel
integrity controlling endothelial junctional dynamics through
angiomotin. Cell Mol Life Sci. 79(535)2022.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Tian Q, Gao H, Zhou Y, Zhu L and Yang J,
Wang B, Liu P and Yang J: RICH1 inhibits breast cancer stem cell
traits through activating kinases cascade of Hippo signaling by
competing with Merlin for binding to Amot-p80. Cell Death Dis.
13(71)2022.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Liang J, Ruthel G, Freedman BD and Harty
RN: WWOX-mediated degradation of AMOTp130 negatively affects egress
of filovirus VP40 virus-like particles. J Virol.
96(e0202621)2022.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Han Z, Ruthel G, Dash S, Berry CT,
Freedman BD, Harty RN and Shtanko O: Angiomotin regulates budding
and spread of Ebola virus. J Biol Chem. 295:8596–8601.
2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Liang J, Ruthel G, Sagum CA, Bedford MT,
Sidhu SS, Sudol M, Jaladanki CK, Fan H, Freedman BD and Harty RN:
Angiomotin counteracts the negative regulatory effect of host WWOX
on viral PPxY-mediated egress. J Virol. 95:e00121–21.
2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yang WS, Yeh WW, Campbell M, Chang L and
Chang PC: Long non-coding RNA KIKAT/LINC01061 as a novel epigenetic
regulator that relocates KDM4A on chromatin and modulates viral
reactivation. PLoS Pathog. 17(e1009670)2021.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Basak T, Dey AK, Banerjee R, Paul S, Maiti
TK and Ain R: Sequestration of eIF4A by angiomotin: A novel
mechanism to restrict global protein synthesis in trophoblast
cells. Stem Cells. 39:210–226. 2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Tam PP and Behringer RR: Mouse
gastrulation: The formation of a mammalian body plan. Mech Dev.
68:3–25. 1997.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Shimono A and Behringer RR: Angiomotin
regulates visceral endoderm movements during mouse embryogenesis.
Curr Biol. 13:613–617. 2003.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Huang H, Lu FI, Jia S, Meng S, Cao Y, Wang
Y, Ma W, Yin K, Wen Z, Peng J, et al: Amotl2 is essential for cell
movements in zebrafish embryo and regulates c-Src translocation.
Development. 134:979–988. 2007.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Dai X, She P, Chi F, Feng Y, Liu H, Jin D,
Zhao Y, Guo X, Jiang D, Guan KL, et al: Phosphorylation of
angiomotin by Lats1/2 kinases inhibits F-actin binding, cell
migration, and angiogenesis. J Biol Chem. 288:34041–34051.
2013.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Hirate Y and Sasaki H: The role of
angiomotin phosphorylation in the Hippo pathway during
preimplantation mouse development. Tissue Barriers. 2:e28127.
2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Mihajlović AI and Bruce AW: Rho-associated
protein kinase regulates subcellular localisation of angiomotin and
Hippo-signalling during preimplantation mouse embryo development.
Reprod Biomed Online. 33:381–390. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Matsumoto H, Fukui E, Yoshizawa M, Sato E
and Daikoku T: Differential expression of the motin family in the
peri-implantation mouse uterus and their hormonal regulation. J
Reprod Dev. 58:649–653. 2012.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Levchenko T, Aase K, Troyanovsky B, Bratt
A and Holmgren L: Loss of responsiveness to chemotactic factors by
deletion of the C-terminal protein interaction site of angiomotin.
J Cell Sci. 116:3803–3810. 2003.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Kim SY, Park SY, Jang HS, Park YD and Kee
SH: Yes-associated protein is required for ZO-1-mediated
tight-junction integrity and cell migration in E-cadherin-restored
AGS gastric cancer cells. Biomedicines. 9(1264)2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Sugihara-Mizuno Y, Adachi M, Kobayashi Y,
Hamazaki Y, Nishimura M, Imai T, Furuse M and Tsukita S: Molecular
characterization of angiomotin/JEAP family proteins: Interaction
with MUPP1/Patj and their endogenous properties. Genes Cells.
12:473–486. 2007.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Sistani L, Dunér F, Udumala S, Hultenby K,
Uhlen M, Betsholtz C, Tryggvason K, Wernerson A and Patrakka J:
Pdlim2 is a novel actin-regulating protein of podocyte foot
processes. Kidney Int. 80:1045–1054. 2011.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Wells CD, Fawcett JP, Traweger A, Yamanaka
Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, et
al: A Rich1/Amot complex regulates the Cdc42 GTPase and
apical-polarity proteins in epithelial cells. Cell. 125:535–548.
2006.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Aase K, Ernkvist M, Ebarasi L, Jakobsson
L, Majumdar A, Yi C, Birot O, Ming Y, Kvanta A, Edholm D, et al:
Angiomotin regulates endothelial cell migration during embryonic
angiogenesis. Genes Dev. 21:2055–2068. 2007.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Xiao J, Jin K, Wang J, Ma J, Zhang J,
Jiang N, Wang H, Luo X, Fei J, Wang Z, et al: Conditional knockout
of TFPI-1 in VSMCs of mice accelerates atherosclerosis by enhancing
AMOT/YAP pathway. Int J Cardiol. 228:605–614. 2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Zhang Y, Zhang Y, Kameishi S, Barutello G,
Zheng Y, Tobin NP, Nicosia J, Hennig K, Chiu DK, Balland M, et al:
The Amot/integrin protein complex transmits mechanical forces
required for vascular expansion. Cell Rep.
36(109616)2021.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Garnaas MK, Moodie KL, Liu ML, Samant GV,
Li K, Marx R, Baraban JM, Horowitz A and Ramchandran R: Syx, a RhoA
guanine exchange factor, is essential for angiogenesis in vivo.
Circ Res. 103:710–716. 2008.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Wu C, Agrawal S, Vasanji A, Drazba J,
Sarkaria S, Xie J, Welch CM, Liu M, Anand-Apte B and Horowitz A:
Rab13-dependent trafficking of RhoA is required for directional
migration and angiogenesis. J Biol Chem. 286:23511–23520.
2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Zheng Y, Zhang Y, Barutello G, Chiu K,
Arigoni M, Giampietro C, Cavallo F and Holmgren L: Angiomotin
like-1 is a novel component of the N-cadherin complex affecting
endothelial/pericyte interaction in normal and tumor angiogenesis.
Sci Rep. 6(30622)2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Hultin S, Zheng Y, Mojallal M, Vertuani S,
Gentili C, Balland M, Milloud R, Belting HG, Affolter M, Helker CS,
et al: AmotL2 links VE-cadherin to contractile actin fibres
necessary for aortic lumen expansion. Nat Commun.
5(3743)2014.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Roudier E, Chapados N, Decary S, Gineste
C, Le Bel C, Lavoie JM, Bergeron R and Birot O: Angiomotin p80/p130
ratio: a new indicator of exercise-induced angiogenic activity in
skeletal muscles from obese and non-obese rats? J Physiol.
587:4105–4119. 2009.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Lee SW, Clemenson GD and Gage FH: New
neurons in an aged brain. Behav Brain Res. 227:497–507.
2012.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Lim DA and Alvarez-Buylla A: The adult
ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB)
neurogenesis. Cold Spring Harb Perspect. 8(a018820)2016.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Gage FH: Mammalian neural stem cells.
Science. 287:1433–1438. 2000.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Winner B, Kohl Z and Gage FH:
Neurodegenerative disease and adult neurogenesis. Eur J Neurosci.
33:1139–1151. 2011.PubMed/NCBI View Article : Google Scholar
|
|
79
|
de Oliveira NB, Irioda AC, Stricker PEF,
Mogharbel BF, da Rosa NN, Dziedzic DSM and de Carvalho KAT: Natural
membrane differentiates human adipose-derived mesenchymal stem
cells to neurospheres by mechanotransduction related to YAP and
AMOT proteins. Membranes (Basel). 11(687)2021.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Cao X, Pfaff SL and Gage FH: YAP regulates
neural progenitor cell number via the TEA domain transcription
factor. Genes Dev. 22:3320–3334. 2008.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Kang PH, Schaffer DV and Kumar S:
Angiomotin links ROCK and YAP signaling in mechanosensitive
differentiation of neural stem cells. Mol Biol Cell. 31:386–396.
2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Park SJ, Frake RA and Rubinsztein DC:
Increased SORBS3 expression in brain ageing contributes to
autophagic decline via YAP1-WWTR1/TAZ signaling. Autophagy.
19:943–944. 2023.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Smutny M and Yap AS: Neighborly relations:
Cadherins and mechanotransduction. J Cell Biol. 189:1075–1077.
2010.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Naujokat C and Sarić T: Concise review:
Role and function of the ubiquitin-proteasome system in mammalian
stem and progenitor cells. Stem Cells. 25:2408–2418.
2007.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Rojek KO, Krzemień J, Doleżyczek H,
Boguszewski PM, Kaczmarek L, Konopka W, Rylski M, Jaworski J,
Holmgren L and Prószyński TJ: Amot and Yap1 regulate neuronal
dendritic tree complexity and locomotor coordination in mice. PLoS
Biol. 17(e3000253)2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Biever A, Valjent E and Puighermanal E:
Ribosomal protein S6 phosphorylation in the nervous system: From
regulation to function. Front Mol Neurosci. 8(75)2015.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Magnuson B, Ekim B and Fingar DC:
Regulation and function of ribosomal protein S6 kinase (S6K) within
mTOR signalling networks. Biochem J. 441:1–21. 2012.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Koleske AJ: Molecular mechanisms of
dendrite stability. Nat Rev Neurosci. 14:536–550. 2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Marchenko OO, Das S, Yu J, Novak IL,
Rodionov VI, Efimova N, Svitkina T, Wolgemuth CW and Loew LM: A
minimal actomyosin-based model predicts the dynamics of filopodia
on neuronal dendrites. Mol Biol Cell. 28:1021–1033. 2017.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Wigerius M, Quinn D, Diab A, Clattenburg
L, Kolar A, Qi J, Krueger SR and Fawcett JP: The polarity protein
Angiomotin p130 controls dendritic spine maturation. J Cell Biol.
217:715–730. 2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Zhang Y, Yuan J, Zhang X, Yan F, Huang M,
Wang T, Zheng X and Zhang M: Angiomotin promotes the malignant
potential of colon cancer cells by activating the YAP-ERK/PI3K-AKT
signaling pathway. Oncol Rep. 36:3619–3626. 2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Ranahan WP, Han Z, Smith-Kinnaman W,
Nabinger SC, Heller B, Herbert BS, Chan R and Wells CD: The adaptor
protein AMOT promotes the proliferation of mammary epithelial cells
via the prolonged activation of the extracellular signal-regulated
kinases. Cancer Res. 71:2203–2211. 2011.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Lv M, Lv M, Chen L, Qin T, Zhang X, Liu P
and Yang J: Angiomotin promotes breast cancer cell proliferation
and invasion. Oncol Rep. 33:1938–1946. 2015.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Qiu Y, Mao YT, Zhu JH, Zhao K, Wang JF,
Huang JM, Chang GQ, Guan YT, Huang FY, Hu YJ, et al: CLIC1 knockout
inhibits invasion and migration of gastric cancer by upregulating
AMOT-p130 expression. Clin Transl Oncol. 23:514–525.
2021.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Li D, Shen Y, Ren H, Wang L, Yang J and
Wang Y: Angiomotin-p130 inhibits vasculogenic mimicry formation of
small cell lung cancer independently of Smad2/3 signal pathway. J
Bioenerg Biomembr. 53:295–305. 2021.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Wang Y, Justilien V, Brennan KI, Jamieson
L, Murray NR and Fields AP: PKCι regulates nuclear YAP1
localization and ovarian cancer tumorigenesis. Oncogene.
36:534–545. 2017.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Oka T, Schmitt AP and Sudol M: Opposing
roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic
function of YAP. Oncogene. 31:128–134. 2012.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Couderc C, Boin A, Fuhrmann L,
Vincent-Salomon A, Mandati V, Kieffer Y, Mechta-Grigoriou F, Del
Maestro L, Chavrier P, Vallerand D, et al: AMOTL1 promotes breast
cancer progression and is antagonized by merlin. Neoplasia.
18:10–24. 2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Ozawa MG, Bhaduri A, Chisholm KM, Baker
SA, Ma L, Zehnder JL, Luna-Fineman S, Link MP, Merker JD, Arber DA
and Ohgami RS: A study of the mutational landscape of
pediatric-type follicular lymphoma and pediatric nodal marginal
zone lymphoma. Mod Pathol. 29:1212–1220. 2016.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q
and Guan KL: Angiomotin is a novel Hippo pathway component that
inhibits YAP oncoprotein. Genes Dev. 25:51–63. 2011.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Lucci V, Di Palma T, D'Ambrosio C, Scaloni
A and Zannini M: AMOTL2 interaction with TAZ causes the inhibition
of surfactant proteins expression in lung cells. Gene. 529:300–306.
2013.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Holmgren L, Ambrosino E, Birot O, Tullus
C, Veitonmäki N, Levchenko T, Carlson LM, Musiani P, Iezzi M,
Curcio C, et al: A DNA vaccine targeting angiomotin inhibits
angiogenesis and suppresses tumor growth. Proc Natl Acad Sci USA.
103:9208–9213. 2006.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Levchenko T, Veitonmäki N, Lundkvist A,
Gerhardt H, Ming Y, Berggren K, Kvanta A, Carlsson R and Holmgren
L: Therapeutic antibodies targeting angiomotin inhibit angiogenesis
in vivo. FASEB J. 22:880–889. 2008.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Adams E, Sepich-Poore GD,
Miller-Montgomery S and Knight R: Using all our genomes:
Blood-based liquid biopsies for the early detection of cancer. View
(Beijing). 3(20200118)2022.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Peng W, Li W, Han H, Liu H, Liu P, Gong X
and Chang J: Development of chromogenic detection for biomolecular
analysis. View. 3(20200191)2022.
|
|
106
|
Wang L, Zhang M, Pan X, Zhao M, Huang L,
Hu X, Wang X, Qiao L, Guo Q, Xu W, et al: Integrative serum
metabolic fingerprints based multi-modal platforms for lung
adenocarcinoma early detection and pulmonary nodule classification.
Adv Sci (Weinh). 9(e2203786)2022.PubMed/NCBI View Article : Google Scholar
|