Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
June-2024 Volume 27 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 27 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of non‑coding RNAs in UV‑induced radiation effects (Review)

  • Authors:
    • Xiaofei Liang
    • Chao Zhang
    • Lijuan Shen
    • Ling Ding
    • Haipeng Guo
  • View Affiliations / Copyright

    Affiliations: Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China, Department of Laboratory Medicine, Qiqihar MingZhu Hospital, Qiqihar, Heilongjiang 161000, P.R. China
    Copyright: © Liang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 262
    |
    Published online on: April 23, 2024
       https://doi.org/10.3892/etm.2024.12550
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ultraviolet (UV) is divided into UVA (long‑wave, 320‑400 nm), UVB (middle‑wave, 280‑320 nm) and UVC (short‑wave, 100‑280 nm) based on wavelength. UV radiation (UVR) from sunlight (UVA + UVB) is a major cause of skin photodamage including skin inflammation, aging and pigmentation. Accidental exposure to UVC burns the skin and induces skin cancer. In addition to the skin, UV radiation can also impair visual function. Non‑coding RNAs (ncRNAs) are a class of functional RNAs that do not have coding activity but can control cellular processes at the post‑transcriptional level, including microRNA (miRNA), long non‑coding RNA (lncRNA) and circulatory RNA (circRNA). Through a review of the literature, it was determined that UVR can affect the expression of various ncRNAs, and that this regulation may be wavelength specific. Functionally, ncRNAs participate in the regulation of photodamage through various pathways and play pathogenic or protective regulatory roles. In addition, ncRNAs that are upregulated or downregulated by UVR can serve as biomarkers for UV‑induced diseases, aiding in diagnosis and prognosis assessment. Therapeutic strategies targeting ncRNAs, including the use of natural drugs and their extracts, have shown protective effects against UV‑induced photodamage. In the present review, an extensive summarization of previous studies was performed and the role and mechanism of ncRNAs in UV‑induced radiation effects was reviewed to aid in the diagnosis and treatment of UV‑related diseases.
View Figures
View References

1 

Trucco LD, Mundra PA, Hogan K, Garcia-Martinez P, Viros A, Mandal AK, Macagno N, Gaudy-Marqueste C, Allan D, Baenke F, et al: Ultraviolet radiation-induced DNA damage is prognostic for outcome in melanoma. Nat Med. 25:221–224. 2019.PubMed/NCBI View Article : Google Scholar

2 

Bernard JJ, Gallo RL and Krutmann J: Photoimmunology: How ultraviolet radiation affects the immune system. Nat Rev Immunol. 19:688–701. 2019.PubMed/NCBI View Article : Google Scholar

3 

Voelker R: UV-C disinfecting device poses radiation risk. JAMA. 326(1667)2021.PubMed/NCBI View Article : Google Scholar

4 

Nunomura CY and Sousa SJFE: Ultraviolet radiation and the human eye. Arq Bras Oftalmol: Sep 23, 2022 (Epub ahead of print).

5 

Ortiz-Rodríguez LA, Reichardt C, Hoehn SJ, Jockusch S and Crespo-Hernández CE: Detection of the thietane precursor in the UVA formation of the DNA 6-4 photoadduct. Nat Commun. 11(3599)2020.PubMed/NCBI View Article : Google Scholar

6 

Shaw A and Gullerova M: Home and away: The role of non-coding RNA in intracellular and intercellular DNA damage response. Genes (Basel). 12(1475)2021.PubMed/NCBI View Article : Google Scholar

7 

Ali SA, Peffers MJ, Ormseth MJ, Jurisica I and Kapoor M: The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol. 17:692–705. 2021.PubMed/NCBI View Article : Google Scholar

8 

Seal RL, Chen LL, Griffiths-Jones S, Lowe TM, Mathews MB, O'Reilly D, Pierce AJ, Stadler PF, Ulitsky I, Wolin SL and Bruford EA: A guide to naming human non-coding RNA genes. EMBO J. 39(e103777)2020.PubMed/NCBI View Article : Google Scholar

9 

Bustamante M, Hernandez-Ferrer C, Tewari A, Sarria Y, Harrison GI, Puigdecanet E, Nonell L, Kang W, Friedländer MR, Estivill X, et al: Dose and time effects of solar-simulated ultraviolet radiation on the in vivo human skin transcriptome. Br J Dermatol. 182:1458–1468. 2020.PubMed/NCBI View Article : Google Scholar

10 

Si C, Wang J, Ma W, Hua H, Zhang M, Qian W, Zhou B and Luo D: Circular RNA expression profile in human fibroblast premature senescence after repeated ultraviolet B irradiations revealed by microarray. J Cell Physiol. 234:18156–18168. 2019.PubMed/NCBI View Article : Google Scholar

11 

Brahmbhatt HD, Gupta R, Gupta A, Rastogi S, Misri R, Mobeen A, Ghosh A, Kothari P, Sitaniya S, Scaria V and Singh A: The long noncoding RNA MALAT1 suppresses miR-211 to confer protection from ultraviolet-mediated DNA damage in vitiligo epidermis by upregulating sirtuin 1. Br J Dermatol. 184:1132–1142. 2021.PubMed/NCBI View Article : Google Scholar

12 

Devany E, Park JY, Murphy MR, Zakusilo G, Baquero J, Zhang X, Hoque M, Tian B and Kleiman FE: Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discov. 2(16013)2016.PubMed/NCBI View Article : Google Scholar

13 

Huo CY, Chang ML, Cheng H, Ma TT, Fu Y, Wang Y, Wang YY, Kan YC and Li DD: Small nucleolar RNA of silkworm can translocate from the nucleolus to the cytoplasm under abiotic stress. Cell Biol Int. 45:1091–1097. 2021.PubMed/NCBI View Article : Google Scholar

14 

Fang Y, Liu Y, Yan Y, Shen Y, Li Z, Li X, Zhang Y, Xue Z, Peng C, Chen X, et al: Differential expression profiles and function predictions for tRFs & tiRNAs in skin injury induced by ultraviolet irradiation. Front Cell Dev Biol. 9(707572)2021.PubMed/NCBI View Article : Google Scholar

15 

Kraemer A, Chen I, Henning S, Faust A, Volkmer B, Atkinson MJ, Moertl S and Greinert R: UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS One. 8(e83392)2013.PubMed/NCBI View Article : Google Scholar

16 

Zhang J, Zhou B, Xu Y, Chen X, Liu J, Gozali M, Wu D, Yin ZQ and Luo D: MiR-23a-depressed autophagy is a participant in PUVA- and UVB-induced premature senescence. Oncotarget. 7:37420–37435. 2016.PubMed/NCBI View Article : Google Scholar

17 

Yo K and Rünger TM: UVA and UVB induce different sets of long noncoding RNAs. J Invest Dermatol. 137:769–772. 2017.PubMed/NCBI View Article : Google Scholar

18 

Yan J, Qin Y, Yu J, Peng Q and Chen X: MiR-340/iASPP axis affects UVB-mediated retinal pigment epithelium (RPE) cell damage. J Photochem Photobiol B. 186:9–16. 2018.PubMed/NCBI View Article : Google Scholar

19 

Yang Y, Wei X, Bai J, Huang M, Hao T, Hao Y, Wang Y and Li C: MicroRNA-340 is involved in ultraviolet B-induced pigmentation by regulating the MITF/TYRP1 axis. J Int Med Res. 48(300060520971510)2020.PubMed/NCBI View Article : Google Scholar

20 

Chen IP, Bender M, Spassova I, Henning S, Kubat L, Fan K, Degenhardt S, Mhamdi-Ghodbani M, Sriram A, Volkmer B, et al: UV-type specific alteration of miRNA expression and its association with tumor progression and metastasis in SCC cell lines. J Cancer Res Clin Oncol. 146:3215–3231. 2020.PubMed/NCBI View Article : Google Scholar

21 

Hart PH, Norval M, Byrne SN and Rhodes LE: Exposure to ultraviolet radiation in the modulation of human diseases. Annu Rev Pathol. 14:55–81. 2019.PubMed/NCBI View Article : Google Scholar

22 

Zheng Y, Xu Q, Peng Y, Gong Z, Chen H, Lai W and Maibach HI: Expression profiles of long noncoding RNA in UVA-induced human skin fibroblasts. Skin Pharmacol Physiol. 30:315–323. 2017.PubMed/NCBI View Article : Google Scholar

23 

Lin Y, Lin M, Liu Y, Zhang J, Lai W, Xu Q and Zheng Y: Predicting miRNA-lncRNA-mRNA network in ultraviolet A-induced human skin photoaging. J Cosmet Dermatol. 20:1875–1884. 2021.PubMed/NCBI View Article : Google Scholar

24 

Kwon SY, Kim IS, Bae JE, Kang JW, Cho YJ, Cho NS and Lee SW: Pathogen inactivation efficacy of mirasol PRT system and intercept blood system for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma. Vox Sang. 107:254–260. 2014.PubMed/NCBI View Article : Google Scholar

25 

Arnason NA, Johannson F, Landrö R, Hardarsson B, Irsch J, Gudmundsson S, Rolfsson O and Sigurjonsson OE: Pathogen inactivation with amotosalen plus UVA illumination minimally impacts microRNA expression in platelets during storage under standard blood banking conditions. Transfusion. 59:3727–3735. 2019.PubMed/NCBI View Article : Google Scholar

26 

Osman A, Hitzler WE, Meyer CU, Landry P, Corduan A, Laffont B, Boilard E, Hellstern P, Vamvakas EC and Provost P: Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function. Platelets. 26:154–163. 2015.PubMed/NCBI View Article : Google Scholar

27 

Diallo I, Benmoussa A, Laugier J, Osman A, Hitzler WE and Provost P: Platelet pathogen reduction technologies alter the MicroRNA profile of platelet-derived microparticles. Front Cardiovasc Med. 7(31)2020.PubMed/NCBI View Article : Google Scholar

28 

Ye H, Xu H, Qiao M, Guo R, Ji Y, Yu Y, Chen Y, Gai X, Li H, Liu Q and Zhuang Y: MicroRNA expression profiles analysis of apheresis platelets treated with vitamin B2 and ultraviolet-B during storage. Transfus Apher Sci. 60(103079)2021.PubMed/NCBI View Article : Google Scholar

29 

Ibbotson SH: A perspective on the use of NB-UVB phototherapy vs PUVA Photochemotherapy. Front Med (Lausanne). 5(184)2018.PubMed/NCBI View Article : Google Scholar

30 

Soonthornchai W, Tangtanatakul P, Meephansan J, Ruchusatsawat K, Reantragoon R, Hirankarn N and Wongpiyabovorn J: Down-regulation of miR-155 after treatment with narrow-band UVB and methotrexate associates with apoptosis of keratinocytes in psoriasis. Asian Pac J Allergy Immunol. 39:206–213. 2021.PubMed/NCBI View Article : Google Scholar

31 

Soonthornchai W, Tangtanatakul P, Meesilpavikkai K, Dalm V, Kueanjinda P and Wongpiyabovorn J: MicroRNA-378a-3p is overexpressed in psoriasis and modulates cell cycle arrest in keratinocytes via targeting BMP2 gene. Sci Rep. 11(14186)2021.PubMed/NCBI View Article : Google Scholar

32 

Ele-Refaei AM and El-Esawy FM: Effect of narrow-band ultraviolet b phototherapy and methotrexate on MicroRNA (146a) levels in blood of psoriatic patients. Dermatol Res Pract. 2015(145769)2015.PubMed/NCBI View Article : Google Scholar

33 

Parihar AS, Tembhre MK, Sharma VK, Gupta S, Chattopadhyay P and Deepak KK: Effect of narrowband ultraviolet B treatment on microRNA expression in active nonsegmental generalized vitiligo. Br J Dermatol. 183:167–169. 2020.PubMed/NCBI View Article : Google Scholar

34 

Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S, et al: RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 543:573–576. 2017.PubMed/NCBI View Article : Google Scholar

35 

Williamson L, Saponaro M, Boeing S, East P, Mitter R, Kantidakis T, Kelly GP, Lobley A, Walker J, Spencer-Dene B, et al: UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell. 168:843–855.e13. 2017.PubMed/NCBI View Article : Google Scholar

36 

Liu J, Wu Z, He J and Wang Y: Cellular fractionation reveals transcriptome responses of human fibroblasts to UV-C irradiation. Cell Death Dis. 13(177)2022.PubMed/NCBI View Article : Google Scholar

37 

Xu D, Wang Y, Wang J, Qi F and Sun Y: The potential regulatory roles of lncRNAs in DNA damage response in human lymphocytes exposed to UVC irradiation. Biomed Res Int. 2020(8962635)2020.PubMed/NCBI View Article : Google Scholar

38 

Fathi N, Rashidi G, Khodadadi A, Shahi S and Sharifi S: STAT3 and apoptosis challenges in cancer. Int J Biol Macromol. 117:993–1001. 2018.PubMed/NCBI View Article : Google Scholar

39 

Liao XH, Zheng L, He HP, Zheng DL, Wei ZQ, Wang N, Dong J, Ma WJ and Zhang TC: STAT3 regulated ATR via microRNA-383 to control DNA damage to affect apoptosis in A431 cells. Cell Signal. 27:2285–2295. 2015.PubMed/NCBI View Article : Google Scholar

40 

Chowdhari S and Saini N: hsa-miR-4516 mediated downregulation of STAT3/CDK6/UBE2N plays a role in PUVA induced apoptosis in keratinocytes. J Cell Physiol. 229:1630–1638. 2014.PubMed/NCBI View Article : Google Scholar

41 

Chowdhari S and Saini N: Gene expression profiling reveals the role of RIG1 like receptor signaling in p53 dependent apoptosis induced by PUVA in keratinocytes. Cell Signal. 28:25–33. 2016.PubMed/NCBI View Article : Google Scholar

42 

Zheng X, Chen L, Jin S, Xiong L, Chen H, Hu K, Fan X, Fan S and Li C: Ultraviolet B irradiation up-regulates MM1 and induces photoageing of the epidermis. Photodermatol Photoimmunol Photomed. 37:395–403. 2021.PubMed/NCBI View Article : Google Scholar

43 

Li Y, Challagundla KB, Sun X, Zhang Q and Dai M: MicroRNA-130a associates with ribosomal protein L11 to suppress c-Myc expression in response to UV irradiation. Oncotarget. 6:1101–1114. 2015.PubMed/NCBI View Article : Google Scholar

44 

Zhang T, Qian H, Hu C, Lu H, Li J, Wu Y and Li W: MiR-26a mediates ultraviolet B-induced apoptosis by targeting histone methyltransferase EZH2 depending on Myc expression. Cell Physiol Biochem. 43:1188–1197. 2017.PubMed/NCBI View Article : Google Scholar

45 

Degueurce G, D'Errico I, Pich C, Ibberson M, Schütz F, Montagner A, Sgandurra M, Mury L, Jafari P, Boda A, et al: Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation. EMBO Mol Med. 8:919–936. 2016.PubMed/NCBI View Article : Google Scholar

46 

Ni N, Ma W, Tao Y, Liu J, Hua H, Cheng J, Wang J, Zhou B and Luo D: Exosomal MiR-769-5p exacerbates ultraviolet-induced bystander effect by targeting TGFBR1. Front Physiol. 11(603081)2020.PubMed/NCBI View Article : Google Scholar

47 

Jiang SB, Lu YS, Liu T, Li LM, Wang HX, Wu Y, Gao XH and Chen HD: UVA influenced the SIRT1-miR-27a-5p-SMAD2-MMP1/COL1/BCL2 axis in human skin primary fibroblasts. J Cell Mol Med. 24:10027–10041. 2020.PubMed/NCBI View Article : Google Scholar

48 

Yang L, Hu Z, Jin Y, Huang N and Xu S: MiR-4497 mediates oxidative stress and inflammatory injury in keratinocytes induced by ultraviolet B radiation through regulating NF-κB expression. Ital J Dermatol Venerol. 157:84–91. 2022.PubMed/NCBI View Article : Google Scholar

49 

Yu B, Dong H, Zang Y, Jiang S, Luan H and Zhang Y: MicroRNA-139-5p alleviates UVB-induced injuries by regulating TLR4 in si-IL-6-treated keratinocyte cells. Int J Clin Exp Pathol. 10:9293–9301. 2017.PubMed/NCBI

50 

Zhang Y, Yang C, Yang S and Guo Z: MiRNA-27a decreases ultraviolet B irradiation-induced cell damage. J Cell Biochem. 121:1032–1038. 2020.PubMed/NCBI View Article : Google Scholar

51 

Zhang C, Xie X, Yuan Y, Wang Y, Zhou M, Li X and Zhen P: MiR-664 protects against UVB radiation-induced HaCaT cell damage via downregulating ARMC8. Dose Response. 18(1559325820929234)2020.PubMed/NCBI View Article : Google Scholar

52 

Tu Y, Wu W, Guo Y, Lu F, Xu D, Li X, Zhao Y and He L: Upregulation of hsa-miR-31-3p induced by ultraviolet affects keratinocytes permeability barrier by targeting CLDN1. Biochem Biophys Res Commun. 532:626–632. 2020.PubMed/NCBI View Article : Google Scholar

53 

Tu Y, Wu W, Guo Y, Lu F, Li X, Xu D, Zou D, Tu Y, Chai Y and He L: Up-regulation of hsa-miR-221-3p induced by UVB affects proliferation and apoptosis of keratinocytes via Bcl-xL/Bax pathway. Photodermatol Photoimmunol Photomed. 37:269–277. 2021.PubMed/NCBI View Article : Google Scholar

54 

Rünger TM and Yo K: The UVA-induced long non-coding RNA GS1-600G8.5 regulates the expression of IL-8. J Dermatol Sci. 90:363–366. 2018.PubMed/NCBI View Article : Google Scholar

55 

Zhang N, Zhong Z, Wang Y, Yang L, Wu F, Peng C, Huang W and He G: Competing endogenous network analysis identifies lncRNA Meg3 activates inflammatory damage in UVB induced murine skin lesion by sponging miR-93-5p/epiregulin axis. Aging (Albany NY). 11:10664–10683. 2019.PubMed/NCBI View Article : Google Scholar

56 

Liang M and Hu K: Involvement of lncRNA-HOTTIP in the repair of ultraviolet light-induced DNA damage in spermatogenic cells. Mol Cells. 42:794–803. 2019.PubMed/NCBI View Article : Google Scholar

57 

Kunkeaw N, Lee YS, Im WR, Jang JJ, Song MJ, Yang B, Park JL, Kim SY, Ku Y, Kim Y, et al: Mechanism mediated by a noncoding RNA, nc886, in the cytotoxicity of a DNA-reactive compound. Proc Natl Acad Sci USA. 116:8289–8494. 2019.PubMed/NCBI View Article : Google Scholar

58 

Lee KS, Shin S, Cho E, Im WK, Jeon SH, Kim Y, Park D, Fréchet M, Chajra H and Jung E: nc886, a non-coding RNA, inhibits UVB-induced MMP-9 and COX-2 expression via the PKR pathway in human keratinocytes. Biochem Biophys Res Commun. 512:647–652. 2019.PubMed/NCBI View Article : Google Scholar

59 

Lee KS, Cho E, Weon JB, Park D, Fréchet M, Chajra H and Jung E: Inhibition of UVB-induced inflammation by laminaria japonica extract via regulation of nc886-PKR pathway. Nutrients. 12(1958)2020.PubMed/NCBI View Article : Google Scholar

60 

Kim Y, Ji H, Cho E, Park NH, Hwang K, Park W, Lee KS, Park D and Jung E: nc886, a non-coding RNA, is a new biomarker and epigenetic mediator of cellular senescence in fibroblasts. Int J Mol Sci. 22(13673)2021.PubMed/NCBI View Article : Google Scholar

61 

Lang A, Grether-Beck S, Singh M, Kuck F, Jakob S, Kefalas A, Altinoluk-Hambüchen S, Graffmann N, Schneider M, Lindecke A, et al: MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY). 8:484–505. 2016.PubMed/NCBI View Article : Google Scholar

62 

Joo D, An S, Choi BG, Kim K, Choi YM, Ahn KJ, An IS and Cha HJ: MicroRNA-378b regulates α-1-type 1 collagen expression via sirtuin 6 interference. Mol Med Rep. 16:8520–8524. 2017.PubMed/NCBI View Article : Google Scholar

63 

Blackstone BN, Wilgus TA, Roy S, Wulff BC and Powell HM: Skin biomechanics and miRNA expression following chronic UVB irradiation. Adv Wound Care (New Rochelle). 9:79–89. 2020.PubMed/NCBI View Article : Google Scholar

64 

Li G, Luna C and Gonzalez P: miR-183 inhibits UV-induced DNA damage repair in human trabecular meshwork cells by targeting of KIAA0101. Invest Ophthalmol Vis Sci. 57:2178–2186. 2016.PubMed/NCBI View Article : Google Scholar

65 

Ishihara Y, Tsuno S, Ping B, Ashizaki T, Nakashima M, Miura K, Miura Y, Yamashita T, Hasegawa J and Miura N: Hsa-miR-520d-5p promotes survival in human dermal fibroblasts exposed to a lethal dose of UV irradiation. NPJ Aging Mech Dis. 2(16029)2016.PubMed/NCBI View Article : Google Scholar

66 

Zhang X, Hamblin MH and Yin K: The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol. 14:1705–1714. 2017.PubMed/NCBI View Article : Google Scholar

67 

Lei L, Zeng Q, Lu J, Ding S, Xia F, Kang J, Tan L, Gao L, Kang L, Cao K, et al: MALAT1 participates in ultraviolet B-induced photo-aging via regulation of the ERK/MAPK signaling pathway. Mol Med Rep. 15:3977–3982. 2017.PubMed/NCBI View Article : Google Scholar

68 

Hou W, Lin Y, Xu W, Chen H, Liu Y, Li C and Zheng Y: Identification and biological analysis of LncSPRY4-IT1-targeted functional proteins in photoaging skin. Photodermatol Photoimmunol Photomed. 37:530–538. 2021.PubMed/NCBI View Article : Google Scholar

69 

Li M, Li L, Zhang X, Yan Y and Wang B: LncRNA RP11-670E13.6 regulates cell cycle progression in UVB damaged human dermal fibroblasts. Photochem Photobiol. 94:589–597. 2018.PubMed/NCBI View Article : Google Scholar

70 

Li M, Li L, Zhang X, Zhao H, Wei M, Zhai W, Wang B and Yan Y: LncRNA RP11-670E13.6, interacted with hnRNPH, delays cellular senescence by sponging microRNA-663a in UVB damaged dermal fibroblasts. Aging (Albany NY). 11:5992–6013. 2019.PubMed/NCBI View Article : Google Scholar

71 

Peng Y, Song X, Zheng Y, Wang X and Lai W: Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photoaged human dermal fibroblasts. Biochem Biophys Res Commun. 486:277–284. 2017.PubMed/NCBI View Article : Google Scholar

72 

Peng Y, Song X, Zheng Y, Cheng H and Lai W: circCOL3A1-859267 regulates type I collagen expression by sponging miR-29c in human dermal fibroblasts. Eur J Dermatol. 28:613–620. 2018.PubMed/NCBI View Article : Google Scholar

73 

Lin M, Zheng Y, Li Q, Liu Y, Xu Q, Li Y and Lai W: Circular RNA expression profiles significantly altered in UVA-irradiated human dermal fibroblasts. Exp Ther Med. 20(163)2020.PubMed/NCBI View Article : Google Scholar

74 

Malcov-Brog H, Alpert A, Golan T, Parikh S, Nordlinger A, Netti F, Sheinboim D, Dror I, Thomas L, Cosson C, et al: UV-protection timer controls linkage between stress and pigmentation skin protection systems. Mol Cell. 72:444–456.e7. 2018.PubMed/NCBI View Article : Google Scholar

75 

Jian Q, An Q, Zhu D, Hui K, Liu Y, Chi S and Li C: MicroRNA 340 is involved in UVB-induced dendrite formation through the regulation of RhoA expression in melanocytes. Mol Cell Biol. 34:3407–3420. 2014.PubMed/NCBI View Article : Google Scholar

76 

Lin KY, Chen CM, Lu CY, Cheng CY and Wu YH: Regulation of miR-21 expression in human melanoma via UV-ray-induced melanin pigmentation. Environ Toxicol. 32:2064–2069. 2017.PubMed/NCBI View Article : Google Scholar

77 

Cicero AL, Delevoye C, Gilles-Marsens F, Loew D, Dingli F, Guéré C, André N, Vié K, van Niel G and Raposo G: Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun. 6(7506)2015.PubMed/NCBI View Article : Google Scholar

78 

Wäster P, Eriksson I, Vainikka L and Öllinger K: Extracellular vesicles released by melanocytes after UVA irradiation promote intercellular signaling via miR21. Pigment Cell Melanoma Res. 33:542–555. 2020.PubMed/NCBI View Article : Google Scholar

79 

Zhang K, Yu L, Li FR, Li X, Wang Z, Zou X, Zhang C, Lv K, Zhou B, Mitragotri S and Chen M: Topical application of exosomes derived from human umbilical cord mesenchymal stem cells in combination with sponge spicules for treatment of photoaging. Int J Nanomedicine. 15:2859–2872. 2020.PubMed/NCBI View Article : Google Scholar

80 

Shen Z, Sun J, Shao J and Xu J: Ultraviolet B irradiation enhances the secretion of exosomes by human primary melanocytes and changes their exosomal miRNA profile. PLoS One. 15(e237023)2020.PubMed/NCBI View Article : Google Scholar

81 

Sha J, Arbesman J and Harter ML: Premature senescence in human melanocytes after exposure to solar UVR: An exosome and UV-miRNA connection. Pigment Cell Melanoma Res. 33:671–684. 2020.PubMed/NCBI View Article : Google Scholar

82 

Sha J, Gastman BR, Morris N, Mesinkovska NA, Baron ED, Cooper KD, McCormick T, Arbesman J and Harter ML: The response of microRNAs to solar UVR in skin-resident melanocytes differs between melanoma patients and healthy persons. PLoS One. 11(e154915)2016.PubMed/NCBI View Article : Google Scholar

83 

Chen L, Karisma VW, Liu H and Zhong L: MicroRNA-300: A transcellular mediator in exosome regulates melanoma progression. Front Oncol. 9(1005)2019.PubMed/NCBI View Article : Google Scholar

84 

Qiang M and Zhang R: Identification of potential immune-related ceRNA regulatory network in UVB-irradiated human skin. Biotechnol Genet Eng Rev. 1–24. 2023.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print).

85 

Zeng Q, Wang Q, Chen X, Xia K, Tang J, Zhou X, Cheng Y, Chen Y, Huang L, Xiang H, et al: Analysis of lncRNAs expression in UVB-induced stress responses of melanocytes. J Dermatol Sci. 81:53–60. 2016.PubMed/NCBI View Article : Google Scholar

86 

Baliou S, Kyriakopoulos A, Spandidos D and Zoumpourlis V: Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol. 57:631–664. 2020.PubMed/NCBI View Article : Google Scholar

87 

Fu C, Chen J, Lu J, Pei S, Hu S, Jiang L, Ding Y, Huang L, Xiang H, Huang J and Zeng Q: Downregulation of TUG1 promotes melanogenesis and UVB-induced melanogenesis. Exp Dermatol. 28:730–733. 2019.PubMed/NCBI View Article : Google Scholar

88 

Jin S, Chen L, Xu Z, Xing X, Zhang C and Xiang L: 585 nm light-emitting diodes inhibit melanogenesis through upregulating H19/miR-675 axis in LEDs-irradiated keratinocytes by paracrine effect. J Dermatol Sci. 98:102–108. 2020.PubMed/NCBI View Article : Google Scholar

89 

Pei S, Huang J, Chen J, Hu S, Lei L, Fu C, Jiang L, Ding Y, Leng Y, Huang L, et al: UVB-inhibited H19 activates melanogenesis by paracrine effects. Exp Dermatol. 27:1120–1125. 2018.PubMed/NCBI View Article : Google Scholar

90 

Pei S, Chen J, Lu J, Hu S, Jiang L, Lei L, Ouyang Y, Fu C, Ding Y, Li S, et al: The long noncoding RNA UCA1 negatively regulates melanogenesis in melanocytes. J Invest Dermatol. 140:152–163.e5. 2020.PubMed/NCBI View Article : Google Scholar

91 

Chen J, Yang J, Fei X, Wang X and Wang K: CircRNA ciRS-7: A novel oncogene in multiple cancers. Int J Biol Sci. 17:379–389. 2021.PubMed/NCBI View Article : Google Scholar

92 

Ouyang Y, Chen J, Jiang L, Li Y, Hu Y, Li S, Huang J and Zeng Q: UVB-induced ciRS-7 activates melanogenesis by paracrine effects. Dna Cell Biol. 40:523–531. 2021.PubMed/NCBI View Article : Google Scholar

93 

Tokez S, Wakkee M, Louwman M, Noels E, Nijsten T and Hollestein L: Assessment of cutaneous squamous cell carcinoma (cSCC) in situ incidence and the risk of developing invasive cSCC in patients with prior cSCC in situ vs the general population in the Netherlands, 1989-2017. JAMA Dermatol. 156:973–981. 2020.PubMed/NCBI View Article : Google Scholar

94 

Ahuja D, Goyal A and Ray PS: Interplay between RNA-binding protein HuR and microRNA-125b regulates p53 mRNA translation in response to genotoxic stress. RNA Biol. 13:1152–1165. 2016.PubMed/NCBI View Article : Google Scholar

95 

Wang Y, Deng X, Dai Y, Niu X and Zhou M: miR-27a downregulation promotes cutaneous squamous cell carcinoma progression via targeting EGFR. Front Oncol. 9(1565)2020.PubMed/NCBI View Article : Google Scholar

96 

Chitsazzadeh V, Nguyen TN, de Mingo Pulido A, Bittencourt BB, Du L, Adelmann CH, Ortiz Rivera I, Nguyen KA, Guerra LD, Davis A, et al: miR-181a promotes multiple protumorigenic functions by targeting TGFβR3. J Invest Dermatol. 142:1956–1965.e2. 2022.PubMed/NCBI View Article : Google Scholar

97 

Gunaratne PH, Pan Y, Rao AK, Lin C, Hernandez Herrera A, Liang K, Rait AS, Venkatanarayan A, Benham AL, Rubab F, et al: Activating p53 family member TAp63: A novel therapeutic strategy for targeting p53-altered tumors. Cancer. 125:2409–2422. 2019.PubMed/NCBI View Article : Google Scholar

98 

Davis AJ, Tsinkevich M, Rodencal J, Abbas HA, Su XH, Gi YJ, Fang B, Rajapakshe K, Coarfa C, Gunaratne PH, et al: TAp63-regulated miRNAs suppress cutaneous squamous cell carcinoma through inhibition of a network of cell-cycle genes. Cancer Res. 80:2484–2497. 2020.PubMed/NCBI View Article : Google Scholar

99 

Harada M, Jinnin M, Wang Z, Hirano A, Tomizawa Y, Kira T, Igata T, Masuguchi S, Fukushima S and Ihn H: The expression of miR-124 increases in aged skin to cause cell senescence and it decreases in squamous cell carcinoma. Biosci Trends. 10:454–559. 2017.PubMed/NCBI View Article : Google Scholar

100 

Loureiro JB, Abrantes M, Oliveira PA and Saraiva L: P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochim Biophys Acta Rev Cancer. 1874(188438)2020.PubMed/NCBI View Article : Google Scholar

101 

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010.PubMed/NCBI View Article : Google Scholar

102 

Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L and Smart RC: Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis. 6(e1700)2015.PubMed/NCBI View Article : Google Scholar

103 

Kim K, Kim H and Lee TR: Epidermal long non-coding RNAs are regulated by ultraviolet irradiation. Gene. 637:196–202. 2017.PubMed/NCBI View Article : Google Scholar

104 

Ma DL, Li JY, Liu YE, Liu CM, Li J, Lin GZ and Yan J: Influence of continuous intervention on growth and metastasis of human cervical cancer cells and expression of RNAmiR-574-5p. J Biol Regul Homeost Agents. 30:91–102. 2016.PubMed/NCBI

105 

Zheng CP, Han L, Hou WJ, Tang J, Wen YH, Fu R, Wang YJ and Wen WP: MicroRNA-9 suppresses the sensitivity of CNE2 cells to ultraviolet radiation. Mol Med Rep. 12:2367–2373. 2015.PubMed/NCBI View Article : Google Scholar

106 

Ang MJ and Afshari NA: Cataract and systemic disease: A review. Clin Exp Ophthalmol. 49:118–127. 2021.PubMed/NCBI View Article : Google Scholar

107 

Dong Y, Zheng Y, Xiao J, Zhu C and Zhao M: MicroRNA let-7b induces lens epithelial cell apoptosis by targeting leucine-rich repeat containing G protein-coupled receptor 4 (Lgr4) in age-related cataract. Exp Eye Res. 147:98–104. 2016.PubMed/NCBI View Article : Google Scholar

108 

Cao Y, Li P, Zhang G, Kang L, Zhou T, Wu J, Wang Y, Wang Y, Chen X and Guan H: MicroRNA Let-7c-5p-mediated regulation of ERCC6 Disrupts autophagic flux in age-related cataract via the binding to VCP. Curr Eye Res. 46:1353–1362. 2021.PubMed/NCBI View Article : Google Scholar

109 

Sun GL, Huang D, Li KR and Jiang Q: microRNA-4532 inhibition protects human lens epithelial cells from ultra-violet-induced oxidative injury via activating SIRT6-Nrf2 signaling. Biochem Biophys Res Commun. 514:777–784. 2019.PubMed/NCBI View Article : Google Scholar

110 

Kang L, Luo J, Li P, Zhang G, Wei M, Ji M and Guan H: miR-125a-3p regulates apoptosis by suppressing TMBIM4 in lens epithelial cells. Int Ophthalmol. 43:1261–1274. 2023.PubMed/NCBI View Article : Google Scholar

111 

Cheng LB, Li KR, Yi N, Li XM, Wang F, Xue B, Pan YS, Yao J, Jiang Q and Wu ZF: miRNA-141 attenuates UV-induced oxidative stress via activating Keap1-Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells. Oncotarget. 8:13186–13194. 2017.PubMed/NCBI View Article : Google Scholar

112 

Amari B, Merle BMJ, Korobelnik J, Delyfer M, Boniol M, Dore J, Helmer C, Delcourt C and Cougnard-Gregoire A: Lifetime ambient ultraviolet radiation exposure and incidence of age-related macular degeneration. Retina. 44:28–36. 2024.PubMed/NCBI View Article : Google Scholar

113 

Lombardo M, Pucci G, Barberi R and Lombardo G: Interaction of ultraviolet light with the cornea: Clinical implications for corneal crosslinking. J Cataract Refract Surg. 41:446–459. 2015.PubMed/NCBI View Article : Google Scholar

114 

Yang Y, Gong B, Wu ZZ, Shuai P, Li DF, Liu LL and Yu M: Inhibition of microRNA-129-5p expression ameliorates ultraviolet ray-induced corneal epithelial cell injury via upregulation of EGFR. J Cell Physiol. 234:11692–11707. 2019.PubMed/NCBI View Article : Google Scholar

115 

Fu JY, Yu XF, Wang HQ, Lan JW, Shao WQ and Huo YN: MiR-205-3p protects human corneal epithelial cells from ultraviolet damage by inhibiting autophagy via targeting TLR4/NF-κB signaling. Eur Rev Med Pharmacol Sci. 24:6494–6504. 2020.PubMed/NCBI View Article : Google Scholar

116 

Li G, Song H, Chen L, Yang W, Nan K and Lu P: TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract. Exp Cell Res. 356:20–27. 2017.PubMed/NCBI View Article : Google Scholar

117 

Shen Q and Zhou T: Knockdown of lncRNA TUG1 protects lens epithelial cells from oxidative stress-induced injury by regulating miR-196a-5p expression in age-related cataracts. Exp Ther Med. 22(1286)2021.PubMed/NCBI View Article : Google Scholar

118 

Cheng T, Xu M, Qin B, Wu J, Tu Y, Kang L, Wang Y and Guan H: lncRNA H19 contributes to oxidative damage repair in the early age-related cataract by regulating miR-29a/TDG axis. J Cell Mol Med. 23:6131–6139. 2019.PubMed/NCBI View Article : Google Scholar

119 

Chakravarthy U and Peto T: Current perspective on age-related macular degeneration. JAMA. 324:794–795. 2020.PubMed/NCBI View Article : Google Scholar

120 

Yu X, Luo Y, Chen G, Liu H, Tian N, Zen X and Huang Y: Long non-coding RNA PWRN2 regulates cytotoxicity in an in vitro model of age-related macular degeneration. Biochem Biophys Res Commun. 535:39–46. 2021.PubMed/NCBI View Article : Google Scholar

121 

Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL and Jurkunas UV: Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res. 80(100863)2021.PubMed/NCBI View Article : Google Scholar

122 

Wang Q, Dou S, Zhang B, Jiang H, Qi X, Duan H, Wang X, Dong C, Zhang BN, Xie L, et al: Heterogeneity of human corneal endothelium implicates lncRNA NEAT1 in Fuchs endothelial corneal dystrophy. Mol Ther Nucleic Acids. 27:880–893. 2022.PubMed/NCBI View Article : Google Scholar

123 

Wang Y, Li F, Zhang G, Kang L and Guan H: Ultraviolet-B induces ERCC6 repression in lens epithelium cells of age-related nuclear cataract through coordinated DNA hypermethylation and histone deacetylation. Clin Epigenetics. 8(62)2016.PubMed/NCBI View Article : Google Scholar

124 

Liu J, Zhang J, Zhang G, Zhou T, Zou X, Guan H and Wang Y: CircMRE11A_013 binds to UBXN1 and integrates ATM activation enhancing lens epithelial cells senescence in age-related cataract. Aging (Albany NY). 13:5383–5402. 2021.PubMed/NCBI View Article : Google Scholar

125 

Zhou C, Huang X, Li X and Xiong Y: Circular RNA erythrocyte membrane protein band 4.1 assuages ultraviolet irradiation-induced apoptosis of lens epithelial cells by stimulating 5'-bisphosphate nucleotidase 1 in a miR-24-3p-dependent manner. Bioengineered. 12:8953–8964. 2021.PubMed/NCBI View Article : Google Scholar

126 

Kansal V, Agarwal A, Harbour A, Farooqi H, Singh VK and Prasad R: Regular intake of green tea polyphenols suppresses the development of nonmelanoma skin cancer through miR-29-mediated epigenetic modifications. J Clin Med. 11(398)2022.PubMed/NCBI View Article : Google Scholar

127 

Gao Q, Yang M and Zuo Z: Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin. 39:787–801. 2018.PubMed/NCBI View Article : Google Scholar

128 

Kim K, An S, Choi BG, Joo D, Choi YM, Ahn KJ, An IS and Cha HJ: Arctiin regulates collagen type 1α chain 1 mRNA expression in human dermal fibroblasts via the miR-378b-SIRT6 axis. Mol Med Rep. 16:9120–9124. 2017.PubMed/NCBI View Article : Google Scholar

129 

Wang K, Deng Y, He Y, Cao J, Zhang L, Qin L, Qu C, Li H and Miao J: Protective effect of mycosporine-like amino acids isolated from an antarctic diatom on UVB-induced skin damage. Int J Mol Sci. 24(15055)2023.PubMed/NCBI View Article : Google Scholar

130 

Suh SS, Lee SG, Youn UJ, Han SJ, Kim IC and Kim S: Comprehensive expression profiling and functional network analysis of porphyra-334, one mycosporine-like amino acid (MAA), in human keratinocyte exposed with UV-radiation. Mar Drugs. 15(196)2017.PubMed/NCBI View Article : Google Scholar

131 

Joo JH, Hong IK, Kim NK and Choi E: Trichosanthes kirilowii extract enhances repair of UVB radiation-induced DNA damage by regulating BMAL1 and miR-142-3p in human keratinocytes. Mol Med Rep. 17:877–883. 2018.PubMed/NCBI View Article : Google Scholar

132 

Kawano Y, Makino K, Jinnin M, Sawamura S, Shimada S, Fukushima S and Ihn H: Royal jelly regulates the proliferation of human dermal microvascular endothelial cells through the down-regulation of a photoaging-related microRNA. Drug Discov Ther. 13:268–273. 2019.PubMed/NCBI View Article : Google Scholar

133 

Hwang J, Kim D, Park JS, Park HJ, Shin J and Lee SK: Photoprotective activity of topsentin, A Bis(Indole) alkaloid from the marine sponge Spongosorites genitrix, by regulation of COX-2 and Mir-4485 expression in UVB-irradiated human keratinocyte cells. Mar Drugs. 18(87)2020.PubMed/NCBI View Article : Google Scholar

134 

Lee JJ, Ng SC, Ni YT, Liu JS, Chen CJ, Padma VV, Huang CY and Kuo WW: Protective effects of galangin against H2O2/UVB-induced dermal fibroblast collagen degradation via hsa-microRNA-4535-mediated TGFβ/Smad signaling. Aging (Albany NY). 13:25342–25364. 2021.PubMed/NCBI View Article : Google Scholar

135 

Arda H and Doğanlar O: Stress-induced miRNAs isolated from wheat have a unique therapeutic potential in ultraviolet-stressed human keratinocyte cells. Environ Sci Pollut Res Int. 29:17977–17996. 2022.PubMed/NCBI View Article : Google Scholar

136 

Singh M, Mansuri MS, Kadam A, Palit SP, Dwivedi M, Laddha NC and Begum R: Tumor necrosis factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine. 140(155432)2021.PubMed/NCBI View Article : Google Scholar

137 

Nguyen S, Chuah SY, Fontas E, Khemis A, Jhingan A, Thng STG and Passeron T: Atorvastatin in combination with narrowband UV-B in adult patients with active vitiligo: A randomized clinical trial. JAMA Dermatol. 154:725–726. 2018.PubMed/NCBI View Article : Google Scholar

138 

Su M, Yi H, He X, Luo L, Jiang S and Shi Y: miR-9 regulates melanocytes adhesion and migration during vitiligo repigmentation induced by UVB treatment. Exp Cell Res. 384(111615)2019.PubMed/NCBI View Article : Google Scholar

139 

Su M, Miao F, Jiang S, Shi Y, Luo L, He X, Wan J, Xu S and Lei TC: Role of the p53-TRPM1/miR-211-MMP9 axis in UVB-induced human melanocyte migration and its potential in repigmentation. Int J Mol Med. 45:1017–1026. 2020.PubMed/NCBI View Article : Google Scholar

140 

Wu Y, Pi D, Zhou S, Yi Z, Dong Y, Wang W, Ye H, Chen Y, Zuo Q and Ouyang M: Ginsenoside Rh3 induces pyroptosis and ferroptosis through the Stat3/p53/NRF2 axis in colorectal cancer cells. Acta Biochim Biophys Sin (Shanghai). 55:587–600. 2023.PubMed/NCBI View Article : Google Scholar

141 

Tang CZ, Li KR, Yu Q, Jiang Q, Yao J and Cao C: Activation of Nrf2 by Ginsenoside Rh3 protects retinal pigment epithelium cells and retinal ganglion cells from UV. Free Radic Biol Med. 117:238–246. 2018.PubMed/NCBI View Article : Google Scholar

142 

Sun Y, Rong X, Li D, Jiang Y, Lu Y and Ji Y: Down-regulation of CRTAC1 attenuates UVB-induced pyroptosis in HLECs through inhibiting ROS production. Biochem Biophys Res Commun. 532:159–165. 2020.PubMed/NCBI View Article : Google Scholar

143 

Hong Y, Sun Y, Rong X, Li D, Lu Y and Ji Y: Exosomes from adipose-derived stem cells attenuate UVB-induced apoptosis, ROS, and the Ca2+ level in HLEC cells. Exp Cell Res. 396(112321)2020.PubMed/NCBI View Article : Google Scholar

144 

Mumford SL, Towler BP, Pashler AL, Gilleard O, Martin Y and Newbury SF: Circulating MicroRNA biomarkers in melanoma: Tools and challenges in personalised medicine. Biomolecules. 8(21)2018.PubMed/NCBI View Article : Google Scholar

145 

Gu X, Nylander E, Coates PJ and Nylander K: Effect of narrow-band ultraviolet B phototherapy on p63 and microRNA (miR-21 and miR-125b) expression in psoriatic epidermis. Acta Derm Venereol. 91:392–397. 2011.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liang X, Zhang C, Shen L, Ding L and Guo H: Role of non‑coding RNAs in UV‑induced radiation effects (Review). Exp Ther Med 27: 262, 2024.
APA
Liang, X., Zhang, C., Shen, L., Ding, L., & Guo, H. (2024). Role of non‑coding RNAs in UV‑induced radiation effects (Review). Experimental and Therapeutic Medicine, 27, 262. https://doi.org/10.3892/etm.2024.12550
MLA
Liang, X., Zhang, C., Shen, L., Ding, L., Guo, H."Role of non‑coding RNAs in UV‑induced radiation effects (Review)". Experimental and Therapeutic Medicine 27.6 (2024): 262.
Chicago
Liang, X., Zhang, C., Shen, L., Ding, L., Guo, H."Role of non‑coding RNAs in UV‑induced radiation effects (Review)". Experimental and Therapeutic Medicine 27, no. 6 (2024): 262. https://doi.org/10.3892/etm.2024.12550
Copy and paste a formatted citation
x
Spandidos Publications style
Liang X, Zhang C, Shen L, Ding L and Guo H: Role of non‑coding RNAs in UV‑induced radiation effects (Review). Exp Ther Med 27: 262, 2024.
APA
Liang, X., Zhang, C., Shen, L., Ding, L., & Guo, H. (2024). Role of non‑coding RNAs in UV‑induced radiation effects (Review). Experimental and Therapeutic Medicine, 27, 262. https://doi.org/10.3892/etm.2024.12550
MLA
Liang, X., Zhang, C., Shen, L., Ding, L., Guo, H."Role of non‑coding RNAs in UV‑induced radiation effects (Review)". Experimental and Therapeutic Medicine 27.6 (2024): 262.
Chicago
Liang, X., Zhang, C., Shen, L., Ding, L., Guo, H."Role of non‑coding RNAs in UV‑induced radiation effects (Review)". Experimental and Therapeutic Medicine 27, no. 6 (2024): 262. https://doi.org/10.3892/etm.2024.12550
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team