Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2024 Volume 28 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 28 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway

  • Authors:
    • Jishang Huang
    • Qun Ren
    • Linhui Jiao
    • Shuo Niu
    • Chenghong Liu
    • Juan Zhou
    • Longhuo Wu
    • Yadong Yang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 283
    |
    Published online on: May 15, 2024
       https://doi.org/10.3892/etm.2024.12571
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoarthritis (OA) is a disease of the joints, characterized by chronic inflammation, cartilage destruction and extracellular matrix (ECM) remodeling. Aberrant chondrocyte hypertrophy promotes cartilage destruction and OA development. Collagen X, the biomarker of chondrocyte hypertrophy, is upregulated by runt‑related transcription factor 2 (Runx2), which is mediated by the bone morphogenetic protein 4 (BMP4)/Smad1 signaling pathway. BMP binding endothelial regulator (BMPER), a secreted glycoprotein, acts as an agonist of BMP4. 5,7,3',4'‑tetramethoxyflavone (TMF) is a natural flavonoid derived from Murraya exotica L. Results of our previous study demonstrated that TMF exhibits chondroprotective effects against OA development through the activation of Forkhead box protein O3a (FOXO3a) expression. However, whether TMF suppresses chondrocyte hypertrophy through activation of FOXO3a expression and inhibition of BMPER/BMP4/Smad1 signaling remains unknown. Results of the present study revealed that TMF inhibited collagen X and Runx2 expression, inhibited BMPER/BMP4/Smad1 signaling, and activated FOXO3a expression; thus, protecting against chondrocyte hypertrophy and OA development. However, BMPER overexpression and FOXO3a knockdown impacted the protective effects of TMF. Thus, TMF inhibited chondrocyte hypertrophy in OA cartilage through mediating the FOXO3a/BMPER signaling pathway.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Wang CJ, Cheng JH, Chou WY, Hsu SL, Chen JH and Huang CY: Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee. Int J Med Sci. 14:213–223. 2017.PubMed/NCBI View Article : Google Scholar

2 

Li X, Chen W, Liu D, Chen P, Wang S, Li F, Chen Q, Lv S, Li F, Chen C, et al: Pathological progression of osteoarthritis: A perspective on subchondral bone. Front Med: Apr 15, 2024 (Epub ahead of print).

3 

Wojdasiewicz P, Poniatowski ŁA and Szukiewicz D: The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014(561459)2014.PubMed/NCBI View Article : Google Scholar

4 

Goldring MB and Otero M: Inflammation in osteoarthritis. Curr Opin Rheumatol. 23:471–478. 2011.PubMed/NCBI View Article : Google Scholar

5 

Kong H, Han JJ, Dmitrii G and Zhang XA: Phytochemicals against osteoarthritis by inhibiting apoptosis. Molecules. 29(1487)2024.PubMed/NCBI View Article : Google Scholar

6 

Pelletier JP, Martel-Pelletier J, Rannou F and Cooper C: Efficacy and safety of oral NSAIDs and analgesics in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Semin Arthritis Rheum. 45 (4 Suppl):S22–S27. 2016.PubMed/NCBI View Article : Google Scholar

7 

Thielen NGM, Neefjes M, Vitters EL, van Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ, Blaney Davidson EN, van Caam APM and van der Kraan PM: Identification of transcription factors responsible for a transforming growth factor-β-driven hypertrophy-like phenotype in human osteoarthritic chondrocytes. Cells. 11(1232)2022.PubMed/NCBI View Article : Google Scholar

8 

Park S, Bello A, Arai Y, Ahn J, Kim D, Cha KY, Baek I, Park H and Lee SH: Functional duality of chondrocyte hypertrophy and biomedical application trends in osteoarthritis. Pharmaceutics. 13(1139)2021.PubMed/NCBI View Article : Google Scholar

9 

van der Kraan PM and van den Berg WB: Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage. 20:223–232. 2012.PubMed/NCBI View Article : Google Scholar

10 

von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Glückert K and Stöss H: Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum. 35:806–811. 1992.PubMed/NCBI View Article : Google Scholar

11 

Ferrao Blanco MN, Bastiaansen-Jenniskens YM, Chambers MG, Pitsillides AA, Narcisi R and van Osch GJVM: Effect of inflammatory signaling on human articular chondrocyte hypertrophy: Potential involvement of tissue repair macrophages. Cartilage. 13 (2 Suppl):168S–174S. 2021.PubMed/NCBI View Article : Google Scholar

12 

Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y and Komori T: Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 18:952–963. 2004.PubMed/NCBI View Article : Google Scholar

13 

Chen N, Wu RWH, Lam Y, Chan WCW and Chan D: Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep. 19(101698)2023.PubMed/NCBI View Article : Google Scholar

14 

Kawashima K, Ogawa H, Komura S, Ishihara T, Yamaguchi Y, Akiyama H and Matsumoto K: Heparan sulfate deficiency leads to hypertrophic chondrocytes by increasing bone morphogenetic protein signaling. Osteoarthritis Cartilage. 28:1459–1470. 2020.PubMed/NCBI View Article : Google Scholar

15 

Saitta B, Elphingstone J, Limfat S, Shkhyan R and Evseenko D: CaMKII inhibition in human primary and pluripotent stem cell-derived chondrocytes modulates effects of TGFβ and BMP through SMAD signaling. Osteoarthritis Cartilage. 27:158–171. 2019.PubMed/NCBI View Article : Google Scholar

16 

Li G, Peng H, Corsi K, Usas A, Olshanski A and Huard J: Differential effect of BMP4 on NIH/3T3 and C2C12 cells: Implications for endochondral bone formation. J Bone Miner Res. 20:1611–1623. 2005.PubMed/NCBI View Article : Google Scholar

17 

Liang C, Sun R, Xu Y, Geng W and Li J: Effect of the abnormal expression of BMP-4 in the blood of diabetic patients on the osteogenic differentiation potential of alveolar BMSCs and the rescue effect of metformin: A bioinformatics-based study. Biomed Res Int. 2020(7626215)2020.PubMed/NCBI View Article : Google Scholar

18 

Helbing T, Wiltgen G, Hornstein A, Brauers EZ, Arnold L, Bauer A, Esser JS, Diehl P, Grundmann S, Fink K, et al: Bone morphogenetic protein-modulator BMPER regulates endothelial barrier function. Inflammation. 40:442–453. 2017.PubMed/NCBI View Article : Google Scholar

19 

Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C and Moser M: BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res. 103:804–812. 2008.PubMed/NCBI View Article : Google Scholar

20 

Jin H, Zhang L, He J, Wu M, Jia L and Guo J: Role of FOXO3a transcription factor in the regulation of liver oxidative injury. Antioxidants (Basel). 11(2478)2022.PubMed/NCBI View Article : Google Scholar

21 

Zhao X, Liu Y, Zhu G, Liang Y, Liu B, Wu Y, Han M, Sun W, Han Y, Chen G and Jiang J: SIRT1 downregulation mediated Manganese-induced neuronal apoptosis through activation of FOXO3a-Bim/PUMA axis. Sci Total Environ. 646:1047–1055. 2019.PubMed/NCBI View Article : Google Scholar

22 

Peng F, Huang X, Shi W, Xiao Y, Jin Q, Li L, Xu D and Wu L: 5,7,3',4'-Tetramethoxyflavone ameliorates cholesterol dysregulation by mediating SIRT1/FOXO3a/ABCA1 signaling in osteoarthritis chondrocytes. Future Med Chem. 13:2153–2166. 2021.PubMed/NCBI View Article : Google Scholar

23 

Sakamoto J, Miyahara S, Motokawa S, Takahashi A, Sasaki R, Honda Y and Okita M: Regular walking exercise prior to knee osteoarthritis reduces joint pain in an animal model. PLoS One. 18(e0289765)2023.PubMed/NCBI View Article : Google Scholar

24 

Wu L, Liu H, Li L, Liu H, Yang K, Liu Z and Huang H: 5,7,3',4'-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling in vivo and in vitro. Biochem Biophys Res Commun. 452:682–688. 2014.PubMed/NCBI View Article : Google Scholar

25 

Yang J, Liu H, Li L, Liu H, Shi W and Wu L: The chondroprotective role of TMF in PGE2-induced apoptosis associating with endoplasmic reticulum stress. Evid Based Complement Alternat Med. 2015(297423)2015.PubMed/NCBI View Article : Google Scholar

26 

Horváth E, Sólyom Á, Székely J, Nagy EE and Popoviciu H: Inflammatory and metabolic signaling interfaces of the hypertrophic and senescent chondrocyte phenotypes associated with osteoarthritis. Int J Mol Sci. 24(16468)2023.PubMed/NCBI View Article : Google Scholar

27 

Abou-Jaoude A, Courtes M, Badique L, Elhaj Mahmoud D, Abboud C, Mlih M, Justiniano H, Milbach M, Lambert M, Lemle A, et al: ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation. Osteoarthritis Cartilage. 30:1365–1375. 2022.PubMed/NCBI View Article : Google Scholar

28 

Yoon DS, Kim EJ, Cho S, Jung S, Lee KM, Park KH, Lee JW and Kim SH: RUNX2 stabilization by long non-coding RNAs contributes to hypertrophic changes in human chondrocytes. Int J Biol Sci. 19:13–33. 2023.PubMed/NCBI View Article : Google Scholar

29 

Hu Q and Ecker M: Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int J Mol Sci. 22(1742)2021.PubMed/NCBI View Article : Google Scholar

30 

Dreier R: Hypertrophic differentiation of chondrocytes in osteoarthritis: The developmental aspect of degenerative joint disorders. Arthritis Res Ther. 12(216)2010.PubMed/NCBI View Article : Google Scholar

31 

Shigley C, Trivedi J, Meghani O, Owens BD and Jayasuriya CT: Suppressing chondrocyte hypertrophy to build better cartilage. Bioengineering (Basel). 10(741)2023.PubMed/NCBI View Article : Google Scholar

32 

Dicks AR, Maksaev GI, Harissa Z, Savadipour A, Tang R, Steward N, Liedtke W, Nichols CG, Wu CL and Guilak F: Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes. Elife. 12(e71154)2023.PubMed/NCBI View Article : Google Scholar

33 

Lian C, Tao T, Su P, Liao Z, Wang X, Lei Y, Zhao P and Liu L: Targeting miR-18a sensitizes chondrocytes to anticytokine therapy to prevent osteoarthritis progression. Cell Death Dis. 11(947)2020.PubMed/NCBI View Article : Google Scholar

34 

Cong L, Jiang P, Wang H, Huang L, Wu G, Che X, Wang C and Li P, Duan Q, Guo X and Li P: MiR-1 is a critical regulator of chondrocyte proliferation and hypertrophy by inhibiting Indian hedgehog pathway during postnatal endochondral ossification in miR-1 overexpression transgenic mice. Bone. 165(116566)2022.PubMed/NCBI View Article : Google Scholar

35 

Hoyland JA, Thomas JT, Donn R, Marriott A, Ayad S, Boot-Handford RP, Grant ME and Freemont AJ: Distribution of type X collagen mRNA in normal and osteoarthritic human cartilage. Bone Miner. 15:151–163. 1991.PubMed/NCBI View Article : Google Scholar

36 

Chawla S, Mainardi A, Majumder N, Dönges L, Kumar B, Occhetta P, Martin I, Egloff C, Ghosh S, Bandyopadhyay A and Barbero A: Chondrocyte hypertrophy in osteoarthritis: Mechanistic studies and models for the identification of new therapeutic strategies. Cells. 11(4034)2022.PubMed/NCBI View Article : Google Scholar

37 

Bae SC, Lee KS, Zhang YW and Ito Y: Intimate relationship between TGF-beta/BMP signaling and runt domain transcription factor, PEBP2/CBF. J Bone Joint Surg Am. 83-A (Suppl 1):S48–S55. 2001.PubMed/NCBI

38 

Nishimura R, Hata K, Takahata Y, Murakami T, Nakamura E and Yagi H: Regulation of cartilage development and diseases by transcription factors. J Bone Metab. 24:147–153. 2017.PubMed/NCBI View Article : Google Scholar

39 

Nordin K and LaBonne C: Sox5 is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. Dev Cell. 31:374–382. 2014.PubMed/NCBI View Article : Google Scholar

40 

Simonds MM, Schlefman AR, McCahan SM, Sullivan KE, Rose CD and Brescia AMC: The culture microenvironment of juvenile idiopathic arthritis synovial fibroblasts is favorable for endochondral bone formation through BMP4 and repressed by chondrocytes. Pediatr Rheumatol Online J. 19(72)2021.PubMed/NCBI View Article : Google Scholar

41 

Shum L, Wang X, Kane AA and Nuckolls GH: BMP4 promotes chondrocyte proliferation and hypertrophy in the endochondral cranial base. Int J Dev Biol. 47:423–431. 2003.PubMed/NCBI

42 

Simonds MM, Schlefman AR, McCahan SM, Sullivan KE, Rose CD and Brescia AC: Juvenile idiopathic arthritis fibroblast-like synoviocytes influence chondrocytes to alter BMP antagonist expression demonstrating an interaction between the two prominent cell types involved in endochondral bone formation. Pediatr Rheumatol Online J. 18(89)2020.PubMed/NCBI View Article : Google Scholar

43 

Karl A, Olbrich N, Pfeifer C, Berner A, Zellner J, Kujat R, Angele P, Nerlich M and Mueller MB: Thyroid hormone-induced hypertrophy in mesenchymal stem cell chondrogenesis is mediated by bone morphogenetic protein-4. Tissue Eng Part A. 20:178–188. 2014.PubMed/NCBI View Article : Google Scholar

44 

Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R, Bode C, Bautch VL, Conlon FL and Patterson C: BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol. 23:5664–5679. 2003.PubMed/NCBI View Article : Google Scholar

45 

Yao Y, Jumabay M, Ly A, Radparvar M, Wang AH, Abdmaulen R and Boström KI: Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium. Blood. 119:5037–5047. 2012.PubMed/NCBI View Article : Google Scholar

46 

Pankratz F, Maksudova A, Goesele R, Meier L, Proelss K, Marenne K, Thut AK, Sengle G, Correns A, Begelspacher J, et al: BMPER improves vascular remodeling and the contractile vascular SMC phenotype. Int J Mol Sci. 24(4950)2023.PubMed/NCBI View Article : Google Scholar

47 

Kelley R, Ren R, Pi X, Wu Y, Moreno I, Willis M, Moser M, Ross M, Podkowa M, Attisano L and Patterson C: A concentration-dependent endocytic trap and sink mechanism converts Bmper from an activator to an inhibitor of Bmp signaling. J Cell Biol. 184:597–609. 2009.PubMed/NCBI View Article : Google Scholar

48 

Xiao F, Wang C, Wang C, Gao Y, Zhang X and Chen X: BMPER enhances bone formation by promoting the osteogenesis-angiogenesis coupling process in mesenchymal stem cells. Cell Physiol Biochem. 45:1927–1939. 2018.PubMed/NCBI View Article : Google Scholar

49 

Ji N and Yu Z: IL-6/Stat3 suppresses osteogenic differentiation in ossification of the posterior longitudinal ligament via miR-135b-mediated BMPER reduction. Cell Tissue Res. 391:145–157. 2023.PubMed/NCBI View Article : Google Scholar

50 

Satomi-Kobayashi S, Kinugasa M, Kobayashi R, Hatakeyama K, Kurogane Y, Ishida T, Emoto N, Asada Y, Takai Y, Hirata K and Rikitake Y: Osteoblast-like differentiation of cultured human coronary artery smooth muscle cells by bone morphogenetic protein endothelial cell precursor-derived regulator (BMPER). J Biol Chem. 287:30336–30345. 2012.PubMed/NCBI View Article : Google Scholar

51 

Dyer L, Lockyer P, Wu Y, Saha A, Cyr C, Moser M, Pi X and Patterson C: BMPER promotes epithelial-mesenchymal transition in the developing cardiac cushions. PLoS One. 10(e0139209)2015.PubMed/NCBI View Article : Google Scholar

52 

Lockhart-Cairns MP, Lim KTW, Zuk A, Godwin ARF, Cain SA, Sengle G and Baldock C: Internal cleavage and synergy with twisted gastrulation enhance BMP inhibition by BMPER. Matrix Biol. 77:73–86. 2019.PubMed/NCBI View Article : Google Scholar

53 

He 何 璇 XA, Berenson A, Bernard M, Weber C, Cook L, Visel A, Fuxman Bass JI and Fisher S: Identification of conserved skeletal enhancers associated with craniosynostosis risk genes. Hum Mol Genet. (ddad182)2023.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print).

54 

Chen L, Li S, Zhu J, You A, Huang X, Yi X and Xue M: Mangiferin prevents myocardial infarction-induced apoptosis and heart failure in mice by activating the Sirt1/FoxO3a pathway. J Cell Mol Med. 25:2944–2955. 2021.PubMed/NCBI View Article : Google Scholar

55 

Zhang Y, Dai J, Yan L, Lin Q, Miao H, Wang X, Wang J and Sun Y: DL-3-N-butylphthalide promotes cartilage extracellular matrix synthesis and inhibits osteoarthritis development by regulating FoxO3a. Oxid Med Cell Longev. 2022(9468040)2022.PubMed/NCBI View Article : Google Scholar

56 

Zhao X, Petursson F, Viollet B, Lotz M, Terkeltaub R and Liu-Bryan R: Peroxisome proliferator-activated receptor γ coactivator 1α and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis Rheumatol. 66:3073–3082. 2014.PubMed/NCBI View Article : Google Scholar

57 

Jiang A, Xu P, Yang Z, Zhao Z, Tan Q, Li W, Song C, Dai H and Leng H: Increased Sparc release from subchondral osteoblasts promotes articular chondrocyte degeneration under estrogen withdrawal. Osteoarthritis Cartilage. 31:26–38. 2023.PubMed/NCBI View Article : Google Scholar

58 

Ciechomska IA, Gielniewski B, Wojtas B, Kaminska B and Mieczkowski J: EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide. Exp Mol Med. 52:1326–1340. 2020.PubMed/NCBI View Article : Google Scholar

59 

Wan Q, Tang L, Jin K, Chen X, Li Y and Xu X: Quercetin and tanshinone prevent mitochondria from oxidation and autophagy to inhibit KGN cell apoptosis through the SIRT1/SIRT3-FOXO3a axis. Cell Mol Biol (Noisy-le-grand). 70:257–263. 2024.PubMed/NCBI View Article : Google Scholar

60 

Qiu CW, Chen B, Zhu HF, Liang YL and Mao LS: Gastrodin alleviates cisplatin nephrotoxicity by inhibiting ferroptosis via the SIRT1/FOXO3A/GPX4 signaling pathway. J Ethnopharmacol. 319(117282)2024.PubMed/NCBI View Article : Google Scholar

61 

Wu L, Li P, Wang X, Zhuang Z, Farzaneh F and Xu R: Evaluation of anti-inflammatory and antinociceptive activities of Murraya exotica. Pharm Biol. 48:1344–1353. 2010.PubMed/NCBI View Article : Google Scholar

62 

Rehman R, Anila Muzaffar R, Arshad F, Hussain R and Altaf AA: Diversity in phytochemical composition and medicinal value of Murraya paniculata. Chem Biodivers. 20(e202200396)2023.PubMed/NCBI View Article : Google Scholar

63 

Wu L, Liu H, Zhang R, Li L, Li J, Hu H and Huang H: Chondroprotective activity of Murraya exotica through inhibiting β-catenin signaling pathway. Evid Based Complement Alternat Med. 2013(752150)2013.PubMed/NCBI View Article : Google Scholar

64 

Liu W, Feng M and Xu P: From regeneration to osteoarthritis in the knee joint: The role shift of cartilage-derived progenitor cells. Front Cell Dev Biol. 10(1010818)2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang J, Ren Q, Jiao L, Niu S, Liu C, Zhou J, Wu L and Yang Y: TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Exp Ther Med 28: 283, 2024.
APA
Huang, J., Ren, Q., Jiao, L., Niu, S., Liu, C., Zhou, J. ... Yang, Y. (2024). TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Experimental and Therapeutic Medicine, 28, 283. https://doi.org/10.3892/etm.2024.12571
MLA
Huang, J., Ren, Q., Jiao, L., Niu, S., Liu, C., Zhou, J., Wu, L., Yang, Y."TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway". Experimental and Therapeutic Medicine 28.1 (2024): 283.
Chicago
Huang, J., Ren, Q., Jiao, L., Niu, S., Liu, C., Zhou, J., Wu, L., Yang, Y."TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway". Experimental and Therapeutic Medicine 28, no. 1 (2024): 283. https://doi.org/10.3892/etm.2024.12571
Copy and paste a formatted citation
x
Spandidos Publications style
Huang J, Ren Q, Jiao L, Niu S, Liu C, Zhou J, Wu L and Yang Y: TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Exp Ther Med 28: 283, 2024.
APA
Huang, J., Ren, Q., Jiao, L., Niu, S., Liu, C., Zhou, J. ... Yang, Y. (2024). TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Experimental and Therapeutic Medicine, 28, 283. https://doi.org/10.3892/etm.2024.12571
MLA
Huang, J., Ren, Q., Jiao, L., Niu, S., Liu, C., Zhou, J., Wu, L., Yang, Y."TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway". Experimental and Therapeutic Medicine 28.1 (2024): 283.
Chicago
Huang, J., Ren, Q., Jiao, L., Niu, S., Liu, C., Zhou, J., Wu, L., Yang, Y."TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway". Experimental and Therapeutic Medicine 28, no. 1 (2024): 283. https://doi.org/10.3892/etm.2024.12571
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team