You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
|
Smid M, Wilting SM, Uhr K, Rodríguez-González FG, de Weerd V, Prager-Van der Smissen WJC, van der Vlugt-Daane M, van Galen A, Nik-Zainal S, Butler A, et al: The circular RNome of primary breast cancer. Genome Res. 29:356–366. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Cocquerelle C, Mascrez B, Hétuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993.PubMed/NCBI View Article : Google Scholar | |
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep. 8:284–296. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C and Rajewsky N: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10:170–177. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9(e1003777)2013.PubMed/NCBI View Article : Google Scholar | |
|
Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR and Lai EC: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9:1966–1980. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC and Rajewsky N: A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl). 95:1179–1189. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Ruan H, Xiang Y, Ko J, Li S, Jing Y, Zhu X, Ye Y, Zhang Z, Mills T, Feng J, et al: Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines. Genome Med. 11(55)2019.PubMed/NCBI View Article : Google Scholar | |
|
Tang R, Zhang Z and Han W: CircLRRK1 targets miR-223-3p to inhibit the proliferation, migration and invasion of trophoblast cells by regulating the PI3K/AKT signaling pathway. Placenta. 104:110–118. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Wei L, Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, et al: Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer. 20(13)2021.PubMed/NCBI View Article : Google Scholar | |
|
Barrett SP and Salzman J: Circular RNAs: Analysis, expression and potential functions. Development. 143:1838–1847. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Gong W, Xu J, Wang Y, Min Q, Chen X, Zhang W, Chen J and Zhan Q: Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma. Signal Transduct Target Ther. 7(40)2022.PubMed/NCBI View Article : Google Scholar | |
|
Deng M and Zou W: Noncoding RNAs: Novel targets for opioid tolerance. Curr Neuropharmacol. 21:1202–1213. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Correction to: Preeclampsia: Pathophysiology, challenges, and perspectives. Circ Res. 126(e8)2020. | |
|
Magee LA, Nicolaides KH and von Dadelszen P: Preeclampsia. N Engl J Med. 386:1817–1832. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol. 135:e237–e260. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Ma'ayeh M and Costantine MM: Prevention of preeclampsia. Semin Fetal Neonatal Med. 25(101123)2020.PubMed/NCBI View Article : Google Scholar | |
|
Liu J, Song G, Zhao G and Meng T: Epicardial adipose tissue thickness as a potential predictor of pre-eclampsia. Pregnancy Hypertens. 23:87–90. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 19(22)2020.PubMed/NCBI View Article : Google Scholar | |
|
Liu S, Xie X, Lei H, Zou B and Xie L: Identification of Key circRNAs/lncRNAs/miRNAs/mRNAs and pathways in preeclampsia using bioinformatics analysis. Med Sci Monit. 25:1679–1693. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders PJ, Martens L, Kirk PDW, Richardson S, Smith GCS and Charnock-Jones DS: The RNA landscape of the human placenta in health and disease. Nat Commun. 12(2639)2021.PubMed/NCBI View Article : Google Scholar | |
|
Sun N, Qin S, Zhang L and Liu S: Roles of noncoding RNAs in preeclampsia. Reprod Biol Endocrinol. 19(100)2021.PubMed/NCBI View Article : Google Scholar | |
|
Deng J, Zhao HJ, Zhong Y, Hu C, Meng J, Wang C, Lan X, Wang X, Chen ZJ, Yan J, et al: H3K27me3-modulated Hofbauer cell BMP2 signalling enhancement compensates for shallow trophoblast invasion in preeclampsia. EBioMedicine. 93(104664)2023.PubMed/NCBI View Article : Google Scholar | |
|
Saleem S, McClure EM, Goudar SS, Patel A, Esamai F, Garces A, Chomba E, Althabe F, Moore J, Kodkany B, et al: A prospective study of maternal, fetal and neonatal deaths in low- and middle-income countries. Bull World Health Organ. 92:605–612. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Shao Y, Tao X, Lu R, Zhang H, Ge J, Xiao B, Ye G and Guo J: Hsa_circ_0065149 is an indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res. 26:1475–1482. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Hu X, Ao J, Li X, Zhang H, Wu J and Cheng W: Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia. Clin Epigenetics. 10(48)2018.PubMed/NCBI View Article : Google Scholar | |
|
Jiang M, Lash GE, Zhao X, Long Y, Guo C and Yang H: CircRNA-0004904, CircRNA-0001855, and PAPP-A: Potential novel biomarkers for the prediction of preeclampsia. Cell Physiol Biochem. 46:2576–2586. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Nakashima A, Cheng SB, Kusabiraki T, Motomura K, Aoki A, Ushijima A, Ono Y, Tsuda S, Shima T, Yoshino O, et al: Endoplasmic reticulum stress disrupts lysosomal homeostasis and induces blockade of autophagic flux in human trophoblasts. Sci Rep. 9(11466)2019.PubMed/NCBI View Article : Google Scholar | |
|
Chappell LC, Cluver CA, Kingdom J and Tong S: Pre-eclampsia. Lancet. 398:341–354. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Velicky P, Windsperger K, Petroczi K, Pils S, Reiter B, Weiss T, Vondra S, Ristl R, Dekan S, Fiala C, et al: Pregnancy-associated diamine oxidase originates from extravillous trophoblasts and is decreased in early-onset preeclampsia. Sci Rep. 8(6342)2018.PubMed/NCBI View Article : Google Scholar | |
|
Bos M, Baelde HJ, Bruijn JA, Bloemenkamp KW, van der Hoorn MP and Turner RJ: Loss of placental thrombomodulin in oocyte donation pregnancies. Fertil Steril. 107:119–129.e5. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Ramsay JE, Ferrell WR, Crawford L, Wallace AM, Greer IA and Sattar N: Divergent metabolic and vascular phenotypes in pre-eclampsia and intrauterine growth restriction: Relevance of adiposity. J Hypertens. 22:2177–2183. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Tong C, Feng X, Chen J, Qi X, Zhou L, Shi S, Kc K, Stanley JL, Baker PN and Zhang H: G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia. J Hypertens. 34:710–718. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Wu L, Song WY, Xie Y, Hu LL, Hou XM, Wang R, Gao Y, Zhang JN, Zhang L, Li WW, et al: miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis. 9(16)2018.PubMed/NCBI View Article : Google Scholar | |
|
Wang G, Zhang Z, Chen C, Zhang Y and Zhang C: Dysfunction of WNT4/WNT5A in deciduas: possible relevance to the pathogenesis of preeclampsia. J Hypertens. 34:719–727. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Melchiorre K, Giorgione V and Thilaganathan B: The placenta and preeclampsia: Villain or victim? Am J Obstet Gynecol. 226 (2S):S954–S962. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhou W, Wang H, Yang Y, Guo F, Yu B and Su Z: Trophoblast cell subtypes and dysfunction in the placenta of individuals with preeclampsia revealed by single-cell RNA sequencing. Mol Cells. 45:317–328. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Huang Z, Du G, Huang X, Han L, Han X, Xu B, Zhang Y, Yu M, Qin Y, Xia Y, et al: The enhancer RNA lnc-SLC4A1-1 epigenetically regulates unexplained recurrent pregnancy loss (URPL) by activating CXCL8 and NF-kB pathway. EBioMedicine. 38:162–170. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Jiao S, Wang SY and Huang Y: LncRNA PRNCR1 promoted the progression of eclampsia by regulating the MAPK signal pathway. Eur Rev Med Pharmacol Sci. 22:3635–3642. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Wang XQ, Li Y, Su X, Zhang L, Liu CM, Liu H, Ma X and Xia H: Haplotype-based association of two SNPs in miR-323b with unexplained recurrent spontaneous abortion in a Chinese Han population. J Cell Physiol. 233:6001–6017. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Cheng D, Jiang S, Chen J, Li J, Ao L and Zhang Y: Upregulated long noncoding RNA Linc00261 in pre-eclampsia and its effect on trophoblast invasion and migration via regulating miR-558/TIMP4 signaling pathway. J Cell Biochem. 120:13243–13253. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Yang X and Meng T: Long Noncoding RNA in Preeclampsia: transcriptional noise or innovative indicators? Biomed Res Int. 2019(5437621)2019.PubMed/NCBI View Article : Google Scholar | |
|
Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, Zhang X, Hess ME, Brüning JC and Qian SB: N(6)-Methyladenosine Guides mRNA alternative translation during integrated stress response. Mol Cell. 69:636–647.e7. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Bai Y, Rao H, Chen W, Luo X, Tong C and Qi H: Profiles of circular RNAs in human placenta and their potential roles related to preeclampsia. Biol Reprod. 98:705–712. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Han B, Chao J and Yao H: Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther. 187:31–44. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Ou Y, Liu M, Zhu L, Deng K, Chen M, Chen H and Zhang J: The expression profile of circRNA and its potential regulatory targets in the placentas of severe pre-eclampsia. Taiwan J Obstet Gynecol. 58:769–777. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Yang H, Zhang Y, Shi J, Chen R and Xiao X: CircSFXN1 regulates the behaviour of trophoblasts and likely mediates preeclampsia. Placenta. 101:115–123. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Deng N, Lei D, Huang J, Yang Z, Fan C and Wang S: Circular RNA expression profiling identifies hsa_circ_0011460 as a novel molecule in severe preeclampsia. Pregnancy Hypertens. 17:216–225. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Knöfler M and Pollheimer J: Human placental trophoblast invasion and differentiation: A particular focus on Wnt signaling. Front Genet. 4(190)2013.PubMed/NCBI View Article : Google Scholar | |
|
Shu C, Xu P, Han J, Han S and He J: Upregulation of circRNA hsa_circ_0008726 in pre-eclampsia inhibits trophoblast migration, invasion, and EMT by regulating miR-345-3p/RYBP Axis. Reprod Sci. 29:2829–2841. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhang S and Guo G: Circ_FURIN promotes trophoblast cell proliferation, migration and invasion in preeclampsia by regulating miR-34a-5p and TFAP2A. Hypertens Res. 45:1334–1344. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Ou Y, Zhu L, Wei X, Bai S, Chen M, Chen H and Zhang J: Circular RNA circ_0111277 attenuates human trophoblast cell invasion and migration by regulating miR-494/HTRA1/Notch-1 signal pathway in pre-eclampsia. Cell Death Dis. 11(479)2020.PubMed/NCBI View Article : Google Scholar | |
|
Sonderegger S, Husslein H, Leisser C and Knofler M: Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta. 28 (Suppl A):S97–S102. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Li X, Yu T, Zhai M, Wu Y, Zhao B, Duan C, Cheng H, Li H, Wei Z, Yang Y and Yu Z: Maternal cadmium exposure impairs placental angiogenesis in preeclampsia through disturbing thyroid hormone receptor signaling. Ecotoxicol Environ Saf. 244(114055)2022.PubMed/NCBI View Article : Google Scholar | |
|
Lu X, An L, Fan G, Zang L, Huang W, Li J, Liu J, Ge W, Huang Y, Xu J, et al: EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Res. 32:359–374. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhou RM, Shi LJ, Shan K, Sun YN, Wang SS, Zhang SJ, Li XM, Jiang Q, Yan B and Zhao C: Circular RNA-ZBTB44 regulates the development of choroidal neovascularization. Theranostics. 10:3293–3307. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Guan S, Li L, Chen WS, Jiang WY, Ding Y, Zhao LL, Shi YF, Wang J, Gui Q, Xu CC, et al: Circular RNA WHSC1 exerts oncogenic properties by regulating miR-7/TAB2 in lung cancer. J Cell Mol Med. 25:9784–9795. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Zhao G, Yuan H, Li Q, Zhang J, Guo Y, Feng T, Gu R, Ou D, Li S, Li K and Lin P: DDX39B drives colorectal cancer progression by promoting the stability and nuclear translocation of PKM2. Signal Transduct Target Ther. 7(275)2022.PubMed/NCBI View Article : Google Scholar | |
|
Gai S, Sun L, Wang H and Yang P: Circular RNA hsa_circ_0007121 regulates proliferation, migration, invasion, and epithelial-mesenchymal transition of trophoblast cells by miR-182-5p/PGF axis in preeclampsia. Open Med (Wars). 15:1061–1071. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Lin Z, Tang X, Wan J, Zhang X, Liu C and Liu T: Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol. 18:2136–2149. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7(3)2022.PubMed/NCBI View Article : Google Scholar | |
|
Du L, Kuang L, He F, Tang W, Sun W and Chen D: Mesenchymal-to-epithelial transition in the placental tissues of patients with preeclampsia. Hypertens Res. 40:67–72. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Wang F, Chen S, Wang J, Wang Y, Ruan F, Shu H, Zhu L and Man D: First trimester serum PAPP-A is associated with placenta accreta: A retrospective study. Arch Gynecol Obstet. 303:645–652. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y, Liu L, Wang J and Gao Y: Hsa_circ_0015382 is involved in the pathogenesis of preeclampsia by mediating THBS2 expression. Am J Reprod Immunol. 90(e13760)2023.PubMed/NCBI View Article : Google Scholar | |
|
Hu D, Zhang P and Chen M: Database resources for functional circular RNAs. Methods Mol Biol. 2284:457–466. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Tan J, Zhong Z, Xu W and Zhang N: Overexpressed Hsa_circ_0001326 contributes to the decreased cell viability in SWAN71 Cells by Regulating MiR-186-5p/p27 Kip1 Axis. Biol Pharm Bull. 44:507–514. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Qian Y, Lu Y, Rui C, Qian Y, Cai M and Jia R: Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem. 39:1380–1390. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Chen DB and Wang W: Human placental microRNAs and preeclampsia. Biol Reprod. 88(130)2013.PubMed/NCBI View Article : Google Scholar | |
|
Wang W, Feng L, Zhang H, Hachy S, Satohisa S, Laurent LC, Parast M, Zheng J and Chen DB: Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab. 97:E1051–E1059. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7(e30733)2012.PubMed/NCBI View Article : Google Scholar | |
|
Kifle MM, Dahal P, Vatish M, Cerdeira AS and Ohuma EO: The prognostic utility of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PIGF) biomarkers for predicting preeclampsia: A secondary analysis of data from the INSPIRE trial. BMC Pregnancy Childbirth. 22(520)2022.PubMed/NCBI View Article : Google Scholar | |
|
Semczuk-Sikora A, Krzyzanowski A, Kwiatek M and Semczuk M: Maternal serum concentration of placental growth factor (PIGF) and endothelial growth factor (VEGF) in pregnancies complicated by preeclampsia. Ginekol Pol. 78:873–876. 2007.PubMed/NCBI(In Polish). | |
|
Sezer SD, Kucuk M, Doger FK, Yuksel H, Odabasi AR, Turkmen MK, Cakmak BC, Omurlu IK and Kinas MG: VEGF, PIGF and HIF-1alpha in placentas of early- and late-onset pre-eclamptic patients. Gynecol Endocrinol. 29:797–800. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Li J, Sun D, Pu W, Wang J and Peng Y: Circular RNAs in Cancer: Biogenesis, function, and clinical significance. Trends Cancer. 6:319–336. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Li X, Yang R, Xu Y and Zhang Y: Circ_0001438 participates in the pathogenesis of preeclampsia via the circ_0001438/miR-942/NLRP3 regulatory network. Placenta. 104:40–50. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer. 19(101)2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhu H, Niu X, Li Q, Zhao Y, Chen X and Sun H: Circ_0085296 suppresses trophoblast cell proliferation, invasion, and migration via modulating miR-144/E-cadherin axis. Placenta. 97:18–25. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Hansen TB, Kjems J and Damgaard CK: Circular RNA and miR-7 in cancer. Cancer Res. 73:5609–5612. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Karreth FA and Pandolfi PP: ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov. 3:1113–1121. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Griggs LA, Hassan NT, Malik RS, Griffin BP, Martinez BA, Elmore LW and Lemmon CA: Fibronectin fibrils regulate TGF-β1-induced Epithelial-Mesenchymal Transition. Matrix Biol. 60-61:157–175. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Panda AC: Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol. 1087:67–79. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Liu Q, Zhang X, Hu X, Dai L, Fu X, Zhang J and Ao Y: Circular RNA Related to the Chondrocyte ECM Regulates MMP13 Expression by Functioning as a MiR-136 ‘Sponge’ in human cartilage degradation. Sci Rep. 6(22572)2016.PubMed/NCBI View Article : Google Scholar | |
|
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Xu H, Guo S, Li W and Yu P: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep. 5(12453)2015.PubMed/NCBI View Article : Google Scholar | |
|
Zheng XB, Zhang M and Xu MQ: Detection and characterization of ciRS-7: A potential promoter of the development of cancer. Neoplasma. 64:321–328. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Wu J, Qi X, Liu L, Hu X, Liu J, Yang J, Yang J, Lu L, Zhang Z, Ma S, et al: Emerging Epigenetic Regulation of Circular RNAs in Human Cancer. Mol Ther Nucleic Acids. 16:589–596. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX and Ji XP: The Circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One. 11(e0151753)2016.PubMed/NCBI View Article : Google Scholar | |
|
Yu L, Gong X, Sun L, Zhou Q, Lu B and Zhu L: The Circular RNA Cdr1as Act as an oncogene in hepatocellular carcinoma through targeting miR-7 Expression. PLoS One. 11(e0158347)2016.PubMed/NCBI View Article : Google Scholar | |
|
Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H and Kong D: Overexpression of Circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on Gastric Cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 119:440–446. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Fan Y, Wang J, Jin W, Sun Y, Xu Y, Wang Y, Liang X and Su D: CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 20(25)2021.PubMed/NCBI View Article : Google Scholar | |
|
Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, et al: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 7(12429)2016.PubMed/NCBI View Article : Google Scholar | |
|
Li H, Jin X, Liu B, Zhang P, Chen W and Li Q: CircRNA CBL.11 suppresses cell proliferation by sponging miR-6778-5p in colorectal cancer. BMC Cancer. 19(826)2019.PubMed/NCBI View Article : Google Scholar | |
|
Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL and Gorospe M: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14:361–369. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, et al: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 24:1609–1620. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Ou R, Lv J, Zhang Q, Lin F, Zhu L, Huang F, Li X, Li T, Zhao L, Ren Y and Xu Y: circAMOTL1 Motivates AMOTL1 expression to facilitate cervical cancer growth. Mol Ther Nucleic Acids. 19:50–60. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Chen CY and Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268:415–417. 1995.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Yang L and Chen LL: Life without A tail: New formats of long noncoding RNAs. Int J Biochem Cell Biol. 54:338–349. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y and Wang Z: Efficient backsplicing produces translatable circular mRNAs. RNA. 21:172–179. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Jang SK, Kräusslich HG, Nicklin MJ, Duke GM, Palmenberg AC and Wimmer E: A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 62:2636–2643. 1988.PubMed/NCBI View Article : Google Scholar | |
|
Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B and Prats AC: IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci. 20(924)2019.PubMed/NCBI View Article : Google Scholar | |
|
Macejak DG and Sarnow P: Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature. 353:90–94. 1991.PubMed/NCBI View Article : Google Scholar | |
|
Zhang M and Xin Y: Circular RNAs: A new frontier for cancer diagnosis and therapy. J Hematol Oncol. 11(21)2018.PubMed/NCBI View Article : Google Scholar | |
|
Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, Yang J, Fan J, Liu L and Qin W: Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark. 16:161–169. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Yang H, Zhang Y, Shi J and Chen R: circCRAMP1L is a novel biomarker of preeclampsia risk and may play a role in preeclampsia pathogenesis via regulation of the MSP/RON axis in trophoblasts. BMC Pregnancy Childbirth. 20(652)2020.PubMed/NCBI View Article : Google Scholar | |
|
Cao Y, Liu B, Cai L, Li Y, Huang Y, Zhou Y, Sun X, Yang W and Sun T: G9a promotes immune suppression by targeting the Fbxw7/Notch pathway in glioma stem cells. CNS Neurosci Ther. 29:2508–2521. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Yang Z, Hu N, Wang W, Hu W, Zhou S, Shi J, Li M, Jing Z, Chen C, Zhang X, et al: Loss of FBXW7 Correlates with Increased IDH1 expression in glioma and enhances IDH1-Mutant cancer cell sensitivity to radiation. Cancer Res. 82:497–509. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel Role of FBXW7 Circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 Inhibits malignant progression by sponging miR-197-3p and Encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM and Zhang JF: Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 20(84)2019.PubMed/NCBI View Article : Google Scholar | |
|
Nejak-Bowen KN and Monga SP: Beta-catenin signaling, liver regeneration and hepatocellular cancer: Sorting the good from the bad. Semin Cancer Biol. 21:44–58. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Lu Y, Li Z, Lin C, Zhang J and Shen Z: Translation role of circRNAs in cancers. J Clin Lab Anal. 35(e23866)2021.PubMed/NCBI View Article : Google Scholar | |
|
Glažar P, Papavasileiou P and Rajewsky N: circBase: A database for circular RNAs. RNA. 20:1666–1670. 2014.PubMed/NCBI View Article : Google Scholar | |
|
He S and Tang S: WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother. 132(110851)2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhong J, Wu X, Gao Y, Chen J, Zhang M, Zhou H, Yang J, Xiao F, Yang X, Huang N, et al: Circular RNA encoded MET variant promotes glioblastoma tumorigenesis. Nat Commun. 14(4467)2023.PubMed/NCBI View Article : Google Scholar | |
|
Zeng K, Peng J, Xing Y, Zhang L, Zeng P, Li W, Zhang W, Pan Z, Zhou C and Lin J: A positive feedback circuit driven by m(6)A-modified circular RNA facilitates colorectal cancer liver metastasis. Mol Cancer. 22(202)2023.PubMed/NCBI View Article : Google Scholar | |
|
Bokar JA, Shambaugh ME, Polayes D, Matera AG and Rottman FM: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI | |
|
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Agarwala SD, Blitzblau HG, Hochwagen A and Fink GR: RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet. 8(e1002732)2012.PubMed/NCBI View Article : Google Scholar | |
|
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 Regulates Nuclear RNA m(6)A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol Cell. 69:1028–1038.e6. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Z and Wang XJ: N(6)-Methyladenosine mRNA Modification: From modification site selectivity to neurological functions. Acc Chem Res. 56:2992–2999. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5' UTR m(6)A Promotes Cap-Independent Translation. Cell. 163:999–1010. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, et al: Circular RNAs in Cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 18(90)2019.PubMed/NCBI View Article : Google Scholar | |
|
Harland R and Misher L: Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Development. 102:837–852. 1988.PubMed/NCBI View Article : Google Scholar | |
|
Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Fu Y, Wang Z, Luo C, Wang Y, Wang Y, Zhong X and Zheng H: Downregulation of CXXC Finger Protein 4 Leads to a Tamoxifen-resistant phenotype in breast cancer cells through activation of the Wnt/beta-catenin Pathway. Transl Oncol. 13:423–440. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Yang Q, Wu J, Zhao J, Xu T, Zhao Z, Song X and Han P: Circular RNA expression profiles during the differentiation of mouse neural stem cells. BMC Syst Biol. 12 (Suppl 8)(128)2018.PubMed/NCBI View Article : Google Scholar | |
|
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The landscape of circular RNA in Cancer. Cell. 176:869–881.e13. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Tan H, Gan L, Fan X, Liu L and Liu S: Diagnostic value of circular RNAs as effective biomarkers for cancer: A systematic review and meta-analysis. Onco Targets Ther. 12:2623–2633. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 11(32)2020.PubMed/NCBI View Article : Google Scholar | |
|
Cui L, Shi M, Meng X, Qian J and Wang S: Identification of m6A modification regulated by dysregulated circRNAs in decidua of recurrent pregnancy loss. Curr Issues Mol Biol. 45:8767–8779. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Inoue T, Watanabe T and Tanaka Y: Hepatitis B core-related antigen: A novel and promising surrogate biomarker to guide anti-hepatitis B virus therapy. Clin Mol Hepatol. 29:851–868. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Shafabakhsh R, Mirhosseini N, Chaichian S, Moazzami B, Mahdizadeh Z and Asemi Z: Could circRNA be a new biomarker for pre-eclampsia? Mol Reprod Dev. 86:1773–1780. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Yang H, Zhang Y, Shi J and Long Y: A Novel Circular RNA CircBRAP may be used as an early predictor of preeclampsia and its potential mechanism. Reprod Sci. 29:2565–2579. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhang X, Qiu S, Luo P, Zhou H, Jing W, Liang C and Tu J: Down-regulation of hsa_circ_0001649 in hepatocellular carcinoma predicts a poor prognosis. Cancer Biomark. 22:135–142. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhou W, Wang H, Wu X, Long W, Zheng F, Kong J and Yu B: The profile analysis of circular RNAs in human placenta of preeclampsia. Exp Biol Med (Maywood). 243:1109–1117. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhang YG, Yang HL, Long Y and Li WL: Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG. 123:2113–2118. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Chen CK, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK and Chang HY: Structured elements drive extensive circular RNA translation. Mol Cell. 81:4300–4318.e13. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Li Y, Shen Z, Jiang X, Wang Y, Yang Z, Mao Y, Wu Z, Li G and Chen H: Mouse mesenchymal stem cell-derived exosomal miR-466f-3p reverses EMT process through inhibiting AKT/GSK3β pathway via c-MET in radiation-induced lung injury. J Exp Clin Cancer Res. 41(128)2022.PubMed/NCBI View Article : Google Scholar | |
|
Dai XM, Zhang YH, Lin XH, Huang XX, Zhang Y, Xue CR, Chen WN, Ye JX, Lin XJ and Lin X: SIK2 represses AKT/GSK3β/β-catenin signaling and suppresses gastric cancer by inhibiting autophagic degradation of protein phosphatases. Mol Oncol. 15:228–245. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Yang B, Li L, Tong G, Zeng Z, Tan J, Su Z, Liu Z, Lin J, Gao W, Chen J, et al: Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. J Exp Clin Cancer Res. 40(235)2021.PubMed/NCBI View Article : Google Scholar | |
|
Liu Y, Qi X, Donnelly L, Elghobashi-Meinhardt N, Long T, Zhou RW, Sun Y, Wang B and Li X: Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature. 607:816–822. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 Is a Circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Yang HL, Zhang HZ, Meng FR, Han SY and Zhang M: Differential expression of microRNA-411 and 376c is associated with hypertension in pregnancy. Braz J Med Biol Res. 52(e7546)2019.PubMed/NCBI View Article : Google Scholar | |
|
Wang Z, Sun A, Yan A, Yao J, Huang H, Gao Z, Han T, Gu J, Li N, Wu H and Li K: Circular RNA MTCL1 promotes advanced laryngeal squamous cell carcinoma progression by inhibiting C1QBP ubiquitin degradation and mediating beta-catenin activation. Mol Cancer. 21(92)2022.PubMed/NCBI View Article : Google Scholar | |
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J and Weng Q: Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B. 12:18–32. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Liu B, Zhao N, Zhou Y, Lu Y, Chen W, Huang Z, Wang D, Xu Y, Wai Ping Yam J and Cui Y: Circular RNA circ_ABCB10 in cancer. Clin Chim Acta. 518:93–100. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Barzegar Behrooz A, Talaie Z, Jusheghani F, Los MJ, Klonisch T and Ghavami S: Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int J Mol Sci. 23(1353)2022.PubMed/NCBI View Article : Google Scholar | |
|
Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, Andrews R, Zhong W, Zhang X, Song E and Gong C: Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 10(55)2019.PubMed/NCBI View Article : Google Scholar | |
|
Li X, Li C, Liu Z, Ni W, Yao R, Xu Y, Quan R, Zhang M, Li H, Liu L and Hu S: Circular RNA circ-FoxO3 inhibits myoblast cells differentiation. Cells. 8(616)2019.PubMed/NCBI View Article : Google Scholar |