|
1
|
Kobashi H, Adachi T, Tsubota T, Asano K,
Fukai M, Namba J, Izumi K, Hoshijima T, Miura H and Sezaki T: The
role of drugs and lymphocytes in granulocyte-macrophage colony
formation in patients with drug induced agranulocytosis. Rinsho
Ketsueki. 30:282–288. 1989.PubMed/NCBI(In Japanese).
|
|
2
|
Shope RE and Hurst EW: Infectious
papillomatosis of rabbits: With a note on the histopathology. J Exp
Med. 58:607–624. 1933.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Hopfl R, hristensen ND, Angell MG and
Kreider JW: Leukocyte proliferation in vitro against cottontail
rabbit papillomavirus in rabbits with persisting papillomas/cancer
or after regression. Arch Dermatol Res. 287:652–658.
1995.PubMed/NCBI View Article : Google Scholar
|
|
4
|
zur Hausen H, Meinhof W, Scheiber W and
Bornkamm GW: Attempts to detect virus-secific DNA in human tumors.
I. Nucleic acid hybridizations with complementary RNA of human wart
virus. Int J Cancer. 13:650–656. 1974.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Borgogna JC, Shardell MD, Santori EK,
Nelson TM, Rath JM, Glover ED, Ravel J, Gravitt PE, Yeoman CJ and
Brotman RM: The vaginal metabolome and microbiota of cervical
HPV-positive and HPV-negative women: A cross-sectional analysis.
BJOG. 127:182–192. 2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Purzycka-Bohdan D, Nowicki RJ, Herms F,
Casanova JL, Fouere S and Beziat V: The pathogenesis of giant
condyloma acuminatum (Buschke-Lowenstein Tumor): An overview. Int J
Mol Sci. 23(4547)2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Yuan H, Li R, Lv J, Yi G, Sun X, Zhao N,
Zhao F, Xu A, Kou Z and Wen H: Epidemiology of human papillomavirus
on condyloma acuminatum in Shandong Province, China. Hum Vaccin
Immunother. 19(2170662)2023.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Bishop B, Dasgupta J and Chen XS:
Structure-based engineering of papillomavirus major capsid l1:
Controlling particle assembly. Virol J. 4(3)2007.PubMed/NCBI View Article : Google Scholar
|
|
9
|
McBride AA: Human papillomaviruses:
diversity, infection and host interactions. Nature reviews
Microbiology. 20:95–108. 2022.PubMed/NCBI View Article : Google Scholar
|
|
10
|
de Oliveira CM, Bravo IG, Santiago e Souza
NC, Genta ML, Fregnani JH, Tacla M, Carvalho JP, Longatto-Filho A
and Levi JE: High-level of viral genomic diversity in cervical
cancers: A Brazilian study on human papillomavirus type 16. Infect
Genet Evol. 34:44–51. 2015.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Morin G, Fradet-Turcotte A, Di Lello P,
Bergeron-Labrecque F, Omichinski JG and Archambault J: A conserved
amphipathic helix in the N-terminal regulatory region of the
papillomavirus E1 helicase is required for efficient viral DNA
replication. J Virol. 85:5287–5300. 2011.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Chow LT, Reilly SS, Broker TR and Taichman
LB: Identification and mapping of human papillomavirus type 1 RNA
transcripts recovered from plantar warts and infected epithelial
cell cultures. J Virol. 61:1913–1918. 1987.PubMed/NCBI View Article : Google Scholar
|
|
13
|
O'Neill FJ and Miller TH: Isolation of a
papovavirus with a bipartite genome containing unlinked SV40 and
BKV sequences. Virology. 143:75–87. 1985.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Doorbar J, Egawa N, Griffin H, Kranjec C
and Murakami I: Human papillomavirus molecular biology and disease
association. Rev Med Virol. 25 (Suppl 1):S2–S23. 2015.PubMed/NCBI View
Article : Google Scholar
|
|
15
|
Chojnacki M and Melendy T: The HPV E2
transcriptional transactivation protein stimulates cellular DNA
polymerase epsilon. Viruses. 10(321)2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Jose L, Androphy EJ and DeSmet M: SETD6
Regulates E2-Dependent human papillomavirus transcription. J Virol.
96(e0129522)2022.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Demeret C, Garcia-Carranca A and Thierry
F: Transcription-independent triggering of the extrinsic pathway of
apoptosis by human papillomavirus 18 E2 protein. Oncogene.
22:168–175. 2003.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Ren S, Gaykalova DA, Guo T, Favorov AV,
Fertig EJ, Tamayo P, Callejas-Valera JL, Allevato M, Gilardi M,
Santos J, et al: HPV E2, E4, E5 drive alternative carcinogenic
pathways in HPV positive cancers. Oncogene. 39:6327–6339.
2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Sund DT, Brouwer AF, Walline HM, Carey TE,
Meza R, Jackson T and Eisenberg MC: Understanding the mechanisms of
HPV-related carcinogenesis: Implications for cell cycle dynamics. J
Theor Biol. 551-552(111235)2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Graham SV: The human papillomavirus
replication cycle, and its links to cancer progression: A
comprehensive review. Clin Sci (Lond). 131:2201–2221.
2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Przybylski M, Pruski D, Millert-Kalińska
S, Krzyżaniak M, de Mezer M, Frydrychowicz M, Jach R and Żurawski
J: Expression of E4 Protein and HPV Major Capsid Protein (L1) as a
novel combination in squamous intraepithelial lesions.
Biomedicines. 11(225)2023.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Budhathoki S, Diergaarde B, Liu G, Olshan
A, Ness A, Waterboer T, Virani S, Basta P, Bender N, Brenner N, et
al: A risk prediction model for head and neck cancers incorporating
lifestyle factors, HPV serology and genetic markers. Int J Cancer.
152:2069–2080. 2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Chen B, Zhao L, Yang R and Xu T: Advances
in molecular mechanism of HPV16 E5 oncoprotein carcinogenesis. Arch
Biochem Biophys. 745(109716)2023.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Rodríguez MI, Finbow ME and Alonso A:
Binding of human papillomavirus 16 E5 to the 16 kDa subunit c
(proteolipid) of the vacuolar H+-ATPase can be dissociated from the
E5-mediated epidermal growth factor receptor overactivation.
Oncogene. 19:3727–3732. 2000.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Templeton CW and Laimins LA: p53-dependent
R-loop formation and HPV pathogenesis. Proc Natl Acad Sci USA.
120(e2305907120)2023.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Díaz L, Bernadez-Vallejo SV, Vargas-Castro
R, Avila E, Gómez-Ceja KA, García-Becerra R, Segovia-Mendoza M,
Prado-Garcia H, Lara-Sotelo G, Camacho J, et al: The Phytochemical
α-Mangostin inhibits cervical cancer cell proliferation and tumor
growth by downregulating E6/E7-HPV Oncogenes and KCNH1 gene
expression. Int J Mol Sci. 24(3055)2023.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Challagundla N, Chrisophe-Bourdon J and
Agrawal-Rajput R: Chlamydia trachomatis infection co-operatively
enhances HPV E6-E7 oncogenes mediated tumorigenesis and
immunosuppression. Microb Pathog. 175(105929)2023.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Pan W, Wang S, Liu X, Wang M, Han X, Tian
X, Lin J, Qiao X and Wang X: KNTC1, regulated by HPV E7, inhibits
cervical carcinogenesis partially through Smad2. Exp Cell Res.
423(113458)2023.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Mane A, Patil L, Limaye S, Nirmalkar A and
Kulkarni-Kale U: Characterization of major capsid protein (L1)
variants of Human papillomavirus type 16 by cervical neoplastic
status in Indian women: Phylogenetic and functional analysis. J Med
Virol. 92:1303–1308. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
DiGiuseppe S, Bienkowska-Haba M, Guion
LGM, Keiffer TR and Sapp M: Human papillomavirus major capsid
protein L1 remains associated with the incoming viral genome
throughout the entry process. J Virol. 91:e00537–17.
2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Rubben A, Spelten B, Albrecht J and
Grussendorf-Conen EI: Demonstration of URR-duplication variants of
human papillomavirus type 6 in paraffin-embedded tissue sections of
one condyloma acuminatum and one Buschke-Loewenstein tumour. J
Pathol. 174:7–12. 1994.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Arany I, Grattendick KJ, Whitehead WE,
Ember IA and Tyring SK: A functional interferon regulatory factor-1
(IRF-1)-binding site in the upstream regulatory region (URR) of
human papillomavirus type 16. Virology. 310:280–286.
2003.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Jaiswal N, Nandi D, Cheema PS and Nag A:
The anaphase-promoting complex/cyclosome co-activator, Cdh1, is a
novel target of human papillomavirus 16 E7 oncoprotein in cervical
oncogenesis. Carcinogenesis. 43:988–1001. 2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Li Q, Xie B, Chen X, Lu B, Chen S, Sheng X
and Zhao Y: SNORD6 promotes cervical cancer progression by
accelerating E6-mediated p53 degradation. Cell Death Discov.
9(192)2023.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Bernard HU, Burk RD, Chen Z, van Doorslaer
K, zur Hausen H and de Villiers EM: Classification of
papillomaviruses (PVs) based on 189 PV types and proposal of
taxonomic amendments. Virology. 401:70–79. 2010.PubMed/NCBI View Article : Google Scholar
|
|
36
|
de Villiers EM, Fauquet C, Broker TR,
Bernard HU and zur Hausen H: Classification of papillomaviruses.
Virology. 324:17–27. 2004.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Brendle S, Li JJ, Cladel NM, Shearer DA,
Budgeon LR, Balogh KK, Atkins H, Costa-Fujishima M, Lopez P,
Christensen ND, et al: Mouse Papillomavirus L1 and L2 Are
dispensable for viral infection and persistence at both cutaneous
and mucosal tissues. Viruses. 13(1824)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Balanda M, Fernandez J, Vergara N, Campano
C, Arata L, Martin HS and Ramírez E: Genetic variability of human
papillomavirus type 66 L1 gene among women presenting for cervical
cancer screening in Chile. Med Microbiol Immunol. 208:757–771.
2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Markowitz LE and Schiller JT: Human
papillomavirus vaccines. J Infect Dis. 224 (12 Suppl 2):S367–S378.
2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Al-Eitan LN, Tarkhan AH, Alghamdi MA,
Al-Qarqaz FA and Al-Kofahi HS: Transcriptome analysis of
HPV-induced warts and healthy skin in humans. BMC Med Genomics.
13(35)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Redzic N, Pereira AR, Menon S, Bogers J,
Coppens A, Kehoe K and Vanden Broeck D: Characterization of
type-specific HPV prevalence in a population of persistent
cutaneous warts in Flanders, Belgium. Sci Rep.
13(17492)2023.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Reusser NM, Downing C, Guidry J and Tyring
SK: HPV carcinomas in immunocompromised patients. J Clin Med.
4:260–281. 2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Sudarshan SR, Schlegel R and Liu X: Two
conserved amino acids differentiate the biology of high-risk and
low-risk HPV E5 proteins. J Med Virol. 94:4565–4575.
2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Bzhalava D, Eklund C and Dillner J:
International standardization and classification of human
papillomavirus types. Virology. 476:341–344. 2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Rahmat F, Kuan JY, Hajiman Z, Mohamed
Shakrin NNS, Che Roos NA, Mustapa M, Ahmad Zaidi NA and Ahmad A:
Human Papillomavirus (HPV) Prevalence and Type Distribution in
Urban Areas of Malaysia. Asian Pac J Cancer Prev. 22:2969–2976.
2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Dalstein V, Riethmuller D, Prétet JL, Le
Bail Carval K, Sautière JL, Carbillet JP, Kantelip B, Schaal JP and
Mougin C: Persistence and load of high-risk HPV are predictors for
development of high-grade cervical lesions: A longitudinal French
cohort study. Int J Cancer. 106:396–403. 2003.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hatterschide J, Bohidar AE, Grace M,
Nulton TJ, Kim HW, Windle B, Morgan IM, Munger K and White EA:
PTPN14 degradation by high-risk human papillomavirus E7 limits
keratinocyte differentiation and contributes to HPV-mediated
oncogenesis. Proc Natl Acad Sci USA. 116:7033–7042. 2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Pett M and Coleman N: Integration of
high-risk human papillomavirus: A key event in cervical
carcinogenesis? J Pathol. 212:356–367. 2007.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kalantari M, Calleja-Macias IE, Tewari D,
Hagmar B, Lie K, Barrera-Saldana HA, Wiley DJ and Bernard HU:
Conserved methylation patterns of human papillomavirus type 16 DNA
in asymptomatic infection and cervical neoplasia. J Virol.
78:12762–12772. 2004.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Jackson R, Rosa BA, Lameiras S, Cuninghame
S, Bernard J, Floriano WB, Lambert PF, Nicolas A and Zehbe I:
Functional variants of human papillomavirus type 16 demonstrate
host genome integration and transcriptional alterations
corresponding to their unique cancer epidemiology. BMC Genomics.
17(851)2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Sivars L, Palsdottir K, Crona Guterstam Y,
Falconer H, Hellman K and Tham E: The current status of cell-free
human papillomavirus DNA as a biomarker in cervical cancer and
other HPV-associated tumors: A review. Int J Cancer. 152:2232–2242.
2023.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Yu L, Majerciak V, Lobanov A, Mirza S,
Band V, Liu H, Cam M, Hughes SH, Lowy DR and Zheng Z-M: HPV
oncogenes expressed from only one of multiple integrated HPV DNA
copies drive clonal cell expansion in cervical cancer. mBio.
15(e0072924)2024.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Doorbar J: Molecular biology of human
papillomavirus infection and cervical cancer. Clin Sci (Lond).
110:525–541. 2006.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Okunade KS: Human papillomavirus and
cervical cancer. J Obstet Gynaecol. 40:602–608. 2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yousefi Z, Aria H, Ghaedrahmati F,
Bakhtiari T, Azizi M, Bastan R, Hosseini R and Eskandari N: An
update on human papilloma virus vaccines: History, types,
protection, and efficacy. Front Immunol. 12(805695)2022.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Horvath CA, Boulet GA, Renoux VM, Delvenne
PO and Bogers JP: Mechanisms of cell entry by human
papillomaviruses: An overview. Virol J. 7(11)2010.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Graßel L, Fast LA, Scheffer KD,
Boukhallouk F, Spoden GA, Tenzer S, Boller K, Bago R, Rajesh S,
Overduin M, et al: The CD63-Syntenin-1 complex controls
post-endocytic trafficking of oncogenic human papillomaviruses. Sci
Rep. 6(32337)2016.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Braunstein TH, Madsen BS, Gavnholt B,
Rosenstierne MW, Koefoed Johnsen C and Norrild B: Identification of
a new promoter in the early region of the human papillomavirus type
16 genome. J Gen Virol. 80 (Pt 12):3241–3250. 1999.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Bhattacharjee R, Das SS, Biswal SS, Nath
A, Das D, Basu A, Malik S, Kumar L, Kar S, Singh SK, et al:
Mechanistic role of HPV-associated early proteins in cervical
cancer: Molecular pathways and targeted therapeutic strategies.
Crit Rev Oncol Hematol. 174(103675)2022.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Du J, Ährlund-Richter A, Näsman A and
Dalianis T: Human papilloma virus (HPV) prevalence upon HPV
vaccination in Swedish youth: A review based on our findings
2008-2018, and perspectives on cancer prevention. Arch Gynecol
Obstet. 303:329–335. 2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Rosmeita CN, Budiarti S, Mustopa AZ,
Novianti E, Swasthikawati S, Chairunnisa S, Hertati A, Nurfatwa M,
Ekawati N and Hasan N: Expression, purification, and
characterization of self-assembly virus-like particles of capsid
protein L1 HPV 52 in Pichia pastoris GS115. J Genet Eng Biotechnol.
21(126)2023.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhao G, Chandrudu S, Skwarczynski M and
Toth I: The application of self-assembled nanostructures in
peptide-based subunit vaccine development. Eur Polym J. 93:670–681.
2017.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Chen XS, Casini G, Harrison SC and Garcea
RL: Papillomavirus capsid protein expression in Escherichia coli:
Purification and assembly of HPV11 and HPV16 L1. J Mol Biol.
307:173–182. 2001.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Casini GL, Graham D, Heine D, Garcea RL
and Wu DT: In vitro papillomavirus capsid assembly analyzed by
light scattering. Virology. 325:320–327. 2004.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Bugnon Valdano M, Massimi P, Broniarczyk
J, Pim D, Myers M, Gardiol D and Banks L: Human Papillomavirus
infection requires the CCT Chaperonin Complex. J Virol.
95:e01943–20. 2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Liu Z, Rashid T and Nyitray AG: Penises
not required: A systematic review of the potential for human
papillomavirus horizontal transmission that is non-sexual or does
not include penile penetration. Sex Health. 13:10–21.
2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
American College of Obstetricians and
Gynecologists. ACOG Practice Bulletin. clinical management
guidelines for obstetrician-gynecologists. Number 61, April 2005.
Human papillomavirus. Obstet Gynecol. 105:905–918. 2005.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Burchell AN, Winer RL, de Sanjosé S and
Franco EL: Chapter 6: Epidemiology and transmission dynamics of
genital HPV infection. Vaccine. 24 (Suppl 3):S3/52–61.
2006.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Tumban E: A current update on human
papillomavirus-associated head and neck cancers. Viruses.
11(922)2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Smith EM, Parker MA, Rubenstein LM, Haugen
TH, Hamsikova E and Turek LP: Evidence for vertical transmission of
HPV from mothers to infants. Infect Dis Obstet Gynecol.
2010(326369)2010.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Pattyn J, Van Keer S, Tjalma W,
Matheeussen V, Van Damme P and Vorsters A: Infection and
vaccine-induced HPV-specific antibodies in cervicovaginal
secretions. A review of the literature. Papillomavirus Res.
8(100185)2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Kombe Kombe AJ, Li B, Zahid A, Mengist HM,
Bounda GA, Zhou Y and Jin T: Epidemiology and Burden of human
papillomavirus and related diseases, molecular pathogenesis, and
vaccine evaluation. Front Public Health. 8(552028)2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Yuan Y, Cai X, Shen F and Ma F: HPV
post-infection microenvironment and cervical cancer. Cancer Lett.
497:243–254. 2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Bowden SJ, Doulgeraki T, Bouras E,
Markozannes G, Athanasiou A, Grout-Smith H, Kechagias KS, Ellis LB,
Zuber V, Chadeau-Hyam M, et al: Risk factors for human
papillomavirus infection, cervical intraepithelial neoplasia and
cervical cancer: An umbrella review and follow-up Mendelian
randomisation studies. BMC Med. 21(274)2023.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Oyouni AAA: Human papillomavirus in
cancer: Infection, disease transmission, and progress in vaccines.
J Infect Public Health. 16:626–631. 2023.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Kero K and Rautava J: HPV infections in
heterosexual couples: Mechanisms and covariates of virus
transmission. Acta Cytol. 63:143–147. 2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Goulenok T, Ferré VM, Mageau A, Papo T and
Sacré K: Risk factors for high-risk human papillomavirus cervical
infection and clearance in patients with systemic lupus
erythematosus. Eur J Intern Med. 116:149–151. 2023.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Scott-Wittenborn N and Fakhry C:
Epidemiology of HPV related malignancies. Semin Radiat Oncol.
31:286–296. 2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Kyrgiou M and Moscicki AB: Vaginal
microbiome and cervical cancer. Semin Cancer Biol. 86 (Pt
3):189–198. 2022.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Bruno MT, Coco A, Di Pasqua S and Bonanno
G: Management of ASC-US/HPV positive post-menopausal woman. Virol
J. 16(39)2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Salazar EL, Mercado E, Sojo I and Salcedo
M: Relationship between estradiol 16 alpha-hydroxylation and human
papillomavirus infection in cervical cell transformation. Gynecol
Endocrinol. 15:335–340. 2001.PubMed/NCBI
|
|
82
|
Kedzia W, Goździcka-Józefiak A,
Kwaśniewska A, Schmidt M, Miturski R and Spaczyński M: Relationship
between HPV infection of the cervix and blood serum levels of
steroid hormones among pre- and postmenopausal women. Eur J
Gynaecol Oncol. 21:177–179. 2000.PubMed/NCBI
|
|
83
|
Melo BAC, Vilar LG, Oliveira NR, Lima PO,
Pinheiro MB, Domingueti CP and Pereira MC: Human papillomavirus
infection and oral squamous cell carcinoma-a systematic review.
Braz J Otorhinolaryngol. 87:346–352. 2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Stanley M: Pathology and epidemiology of
HPV infection in females. Gynecol Oncol. 117 (2 Suppl):S5–S10.
2010.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Terada M, Shimazu T, Saito J, Odawara M,
Otsuki A, Yaguchi-Saito A, Miyawaki R, Kuchiba A, Ishikawa H,
Fujimori M, et al: Age, gender and socioeconomic disparities in
human papillomavirus (HPV) awareness and knowledge among Japanese
adults after a 7-year suspension of proactive recommendation for
the HPV vaccine: A nationally representative cross-sectional
survey. Vaccine. 41:7147–7158. 2023.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Bean MB, Switchenko JM, Steuer CE, Patel
M, Higgins K, McDonald M, Chen GZ, Beitler JJ, Shin DM, Gillespie T
and Saba NF: Demographic and socioeconomic factors associated with
metastases at presentation in HPV-Related squamous cell carcinoma
of the head and neck: An NCDB analysis. JCO Oncol Pract.
16:e476–e487. 2020.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Cohen PA, Jhingran A, Oaknin A and Denny
L: Cervical cancer. Lancet. 393:169–182. 2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Pimple S and Mishra G: Cancer cervix:
Epidemiology and disease burden. CytoJournal. 19(21)2022.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Leung E, Han K, Zou J, Zhao Z, Zheng Y,
Wang TT, Rostami A, Siu LL, Pugh TJ and Bratman SV: HPV sequencing
facilitates ultrasensitive detection of HPV circulating tumor DNA.
Clin Cancer Res. 27:5857–5868. 2021.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Wu L, Wang W, Zhang J, Wu X, Chen Y, Gu X,
Shao H, Li H and Liu W: Detection of five types of HPV genotypes
causing anogenital warts (Condyloma Acuminatum) Using PCR-Tm
analysis technology. Front Microbiol. 13(857410)2022.PubMed/NCBI View Article : Google Scholar
|
|
91
|
McMullen C, Chung CH and Hernandez-Prera
JC: Evolving role of human papillomavirus as a clinically
significant biomarker in head and neck squamous cell carcinoma.
Expert Rev Mol Diagn. 19:63–70. 2019.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Krasniqi E, Barba M, Venuti A, Pizzuti L,
Cappuzzo F, Landi L, Carpano S, Marchetti P, Villa A, Vizza E, et
al: Circulating HPV DNA in the management of oropharyngeal and
cervical cancers: Current knowledge and future perspectives. J Clin
Med. 10(1525)2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Bragulla HH and Homberger DG: Structure
and functions of keratin proteins in simple, stratified,
keratinized and cornified epithelia. J Anat. 214:516–559.
2009.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Aloi F, Tomasini C and Pippione M:
HPV-related follicular cysts. Am J Dermatopathol. 14:37–41.
1992.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Burmeister CA, Khan SF, Schafer G, Mbatani
N, Adams T, Moodley J and Prince S: Cervical cancer therapies:
Current challenges and future perspectives. Tumour Virus Res.
13(200238)2022.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Mahmoodi P, Rezayi M, Rasouli E, Avan A,
Gholami M, Ghayour Mobarhan M, Karimi E and Alias Y: Early-stage
cervical cancer diagnosis based on an ultra-sensitive
electrochemical DNA nanobiosensor for HPV-18 detection in real
samples. J Nanobiotechnology. 18(11)2020.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Depuydt CE, Vereecken AJ, Salembier GM,
Vanbrabant AS, Boels LA, van Herck E, Arbyn M, Segers K and Bogers
JJ: Thin-layer liquid-based cervical cytology and PCR for detecting
and typing human papillomavirus DNA in Flemish women. Br J Cancer.
88:560–566. 2003.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Sherman ME, Mendoza M, Lee KR, Ashfaq R,
Birdsong GG, Corkill ME, McIntosh KM, Inhorn SL, Zahniser DJ, Baber
G, et al: Performance of liquid-based, thin-layer cervical
cytology: Correlation with reference diagnoses and human
papillomavirus testing. Mod Pathol. 11:837–843. 1998.PubMed/NCBI
|
|
99
|
Dom-Chima N, Ajang YA, Dom-Chima CI,
Biswas-Fiss E, Aminu M and Biswas SB: Human papillomavirus spectrum
of HPV-infected women in Nigeria: An analysis by next-generation
sequencing and type-specific PCR. Virol J. 20(144)2023.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Brink AA, Snijders PJ and Meijer CJ: HPV
detection methods. Dis Markers. 23:273–281. 2007.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Westra WH: Detection of human
papillomavirus (HPV) in clinical samples: Evolving methods and
strategies for the accurate determination of HPV status of head and
neck carcinomas. Oral Oncol. 50:771–779. 2014.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Lindh E, Chua KL, Kataoka A, Bistoletti P,
Groff D and Hjerpe A: Detection of human papillomavirus (HPV) using
dot blot and Southern blot, hybridizing with a mixture of seven
probes. APMIS. 100:301–308. 1992.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Schiffman MH, Bauer HM, Lorincz AT, Manos
MM, Byrne JC, Glass AG, Cadell DM and Howley PM: Comparison of
Southern blot hybridization and polymerase chain reaction methods
for the detection of human papillomavirus DNA. J Clin Microbiol.
29:573–577. 1991.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Hubbard RA: Human papillomavirus testing
methods. Arch Pathol Lab Med. 127:940–945. 2003.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Liao Y, Zhou Y, Guo Q, Xie X, Luo E, Li J
and Li Q: Simultaneous detection, genotyping, and quantification of
human papillomaviruses by multicolor real-time PCR and melting
curve analysis. J Clin Microbiol. 51:429–435. 2013.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Mahmoodi P, Fani M, Rezayi M, Avan A,
Pasdar Z, Karimi E, Amiri IS and Ghayour-Mobarhan M: Early
detection of cervical cancer based on high-risk HPV DNA-based
genosensors: A systematic review. BioFactors. 45:101–117.
2019.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Suresh K, Shah PV, Coates S, Alexiev BA
and Samant S: In situ hybridization for high risk HPV E6/E7 mRNA in
oropharyngeal squamous cell carcinoma. Am J Otolaryngol.
42(102782)2021.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Coppock JD, Willis BC, Stoler MH and Mills
AM: HPV RNA in situ hybridization can inform cervical
cytology-histology correlation. Cancer Cytopathol. 126:533–540.
2018.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Lewandowski G, Delgado G, Holloway RW,
Farrell M, Jenson AB and Lancaster WD: The use of in situ
hybridization to show human papillomavirus deoxyribonucleic acid in
metastatic cancer cells within lymph nodes. Am J Obstet Gynecol.
163 (4 Pt 1):1333–1337. 1990.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Begum S, Gillison ML, Ansari-Lari MA, Shah
K and Westra WH: Detection of human papillomavirus in cervical
lymph nodes: A highly effective strategy for localizing site of
tumor origin. Clin Cancer Res. 9:6469–6475. 2003.PubMed/NCBI
|
|
111
|
Fauzi FH, Hamzan NI, Rahman NA, Suraiya S
and Mohamad S: Detection of human papillomavirus in oropharyngeal
squamous cell carcinoma. J Zhejiang Univ Sci B. 21:961–976.
2020.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Cherif S, Amine A, Thies S, Taube ET,
Braicu EI, Sehouli J and Kaufmann AM: Prevalence of human
papillomavirus detection in ovarian cancer: A meta-analysis. Eur J
Clin Microbiol Infect Dis. 40:1791–1802. 2021.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Serour Y, Bendahmane M, Abbou Baker F,
Medles M, Moueddene B and Kraiba R: HPV test by Hybrid Capture II
for the diagnosis of HR-HPV persistent infection. Med Mal Infect.
47:484–489. 2017.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Nazarenko I, Kobayashi L, Giles J, Fishman
C, Chen G and Lorincz A: A novel method of HPV genotyping using
Hybrid Capture sample preparation method combined with GP5+/6+ PCR
and multiplex detection on Luminex XMAP. J Virol Methods.
154:76–81. 2008.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Ikenberg H: Laboratory diagnosis of human
papillomavirus infection. Curr Probl Dermatol. 45:166–174.
2014.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Baleriola C, Millar D, Melki J, Coulston
N, Altman P, Rismanto N and Rawlinson W: Comparison of a novel HPV
test with the Hybrid Capture II (hcII) and a reference PCR method
shows high specificity and positive predictive value for 13
high-risk human papillomavirus infections. J Clin Virol. 42:22–26.
2008.PubMed/NCBI View Article : Google Scholar
|
|
117
|
He H, Pan Q, Pan J, Chen Y and Cao L:
Study on the correlation between hTREC and HPV load and cervical
CINI/II/III lesions and cervical cancer. J Clin Lab Anal.
34(e23257)2020.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Santos FLSG, Invencao MCV, Araujo ED,
Barros GS and Batista MVA: Comparative analysis of different
PCR-based strategies for HPV detection and genotyping from cervical
samples. J Med Virol. 93:6347–6354. 2021.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Mattox AK, D'Souza G, Khan Z, Allen H,
Henson S, Seiwert TY, Koch W, Pardoll DM and Fakhry C: Comparison
of next generation sequencing, droplet digital PCR, and
quantitative real-time PCR for the earlier detection and
quantification of HPV in HPV-positive oropharyngeal cancer. Oral
Oncol. 128(105805)2022.PubMed/NCBI View Article : Google Scholar
|
|
120
|
VanGuilder HD, Vrana KE and Freeman WM:
Twenty-five years of quantitative PCR for gene expression analysis.
Biotechniques. 44:619–626. 2008.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Grover S, Seckar T, Gao L, Bhatia R, Lin
X, Zetola N, Ramogola-Masire D and Robertson E: Characterization of
HPV subtypes in invasive cervical cancer in Botswana patients using
a pan-pathogen microarray technology. Tumour Virus Res.
15(200262)2023.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Kim SM, Kwon IJ, Myoung H, Lee JH and Lee
SK: Identification of human papillomavirus (HPV) subtype in oral
cancer patients through microarray technology. Eur Arch
Otorhinolaryngol. 275:535–543. 2018.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Kroczek RA: Southern and northern
analysis. J Chromatogr. 618:133–145. 1993.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Chen WG, Yang CM, Xu LH, Zhang N, Liu XY,
Ma YG, Huo XL, Han YS, Tian DA and Zheng Y: Gene chip technology
used in the detection of HPV infection in esophageal cancer of
Kazakh Chinese in Xinjiang Province. J Huazhong Univ Sci Technolog
Med Sci. 34:343–347. 2014.PubMed/NCBI View Article : Google Scholar
|