Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
October-2024 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2024 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Recent advances in lung cancer organoid (tumoroid) research (Review)

  • Authors:
    • Qiang Zhang
    • Mingyang Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 383
    |
    Published online on: August 1, 2024
       https://doi.org/10.3892/etm.2024.12672
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Lung cancer is the most critical type of malignant tumor that threatens human health. Traditional preclinical models have certain defects; for example, they cannot accurately reflect the characteristics of lung cancer and their development is costly and time‑consuming. Through self‑organization, cancer stem cells (CSCs) generate cancer organoids that have a structure similar to that of lung cancer tissues, overcoming to some extent the aforementioned challenges, thus enabling them to have broader application prospects. Lung cancer organoid (LCO) development methods can be divided into three broad categories based on the source of cells, which include cell lines, patient‑derived xenografts and patient tumor tissue/pleural effusion. There are 17 different methods that have been described for the development of LCOs. These methods can be further merged into six categories based on the source of cells, the pre‑treatment method used, the composition of the medium and the culture scaffold. These categories are: i) CSCs induced by defined transcription factors; ii) suspension culture; iii) relative optimal culture medium; iv) suboptimal culture medium; v) mechanical digestion and suboptimal culture medium; and vi) hydrogel scaffold. In the current review, the advantages and disadvantages of each of the aforementioned methods are summarized, and references for supporting studies are cited.
View Figures

Figure 1

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI View Article : Google Scholar

2 

Wang M, Herbst RS and Boshoff C: Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 27:1345–1356. 2021.PubMed/NCBI View Article : Google Scholar

3 

Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, et al: The 2015 World Health Organization Classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 10:1243–1260. 2015.PubMed/NCBI View Article : Google Scholar

4 

Rudin CM, Brambilla E, Faivre-Finn C and Sage J: Small-cell lung cancer. Nat Rev Dis Primers. 7(3)2021.PubMed/NCBI View Article : Google Scholar

5 

Prabavathy D and Ramadoss N: Heterogeneity of small cell lung cancer stem cells. Adv Exp Med Biol. 1139:41–57. 2019.PubMed/NCBI View Article : Google Scholar

6 

Zhang Y, Chang L, Yang Y, Fang W, Guan Y, Wu A, Hong S, Zhou H, Chen G, Chen X, et al: Intratumor heterogeneity comparison among different subtypes of non-small-cell lung cancer through multi-region tissue and matched ctDNA sequencing. Mol Cancer. 18(7)2019.PubMed/NCBI View Article : Google Scholar

7 

de Sousa VML and Carvalho L: Heterogeneity in lung cancer. Pathobiology. 85:96–107. 2018.PubMed/NCBI View Article : Google Scholar

8 

Krohn A, Ahrens T, Yalcin A, Plönes T, Wehrle J, Taromi S, Wollner S, Follo M, Brabletz T, Mani SA, et al: Tumor cell heterogeneity in small cell lung cancer (SCLC): Phenotypical and functional differences associated with Epithelial-Mesenchymal Transition (EMT) and DNA methylation changes. PLoS One. 9(e100249)2014.PubMed/NCBI View Article : Google Scholar

9 

Liao H, Luo X, Huang Y, Yang X, Zheng Y, Qin X, Tan J, Shen P, Tian R, Cai W, et al: Mining the prognostic role of DNA methylation heterogeneity in lung adenocarcinoma. Dis Markers. 2022(9389372)2022.PubMed/NCBI View Article : Google Scholar

10 

Arora L, Kalia M, Dasgupta S, Singh N, Verma AK and Pal D: Development of a Multicellular 3D tumor model to study cellular heterogeneity and plasticity in NSCLC tumor microenvironment. Front Oncol. 12(881207)2022.PubMed/NCBI View Article : Google Scholar

11 

Wang Q, Li M, Yang M, Yang Y, Song F, Zhang W, Li X and Chen K: Analysis of immune-related signatures of lung adenocarcinoma identified two distinct subtypes: Implications for immune checkpoint blockade therapy. Aging (Albany NY). 12:3312–3339. 2020.PubMed/NCBI View Article : Google Scholar

12 

Liu LP, Lu L, Zhao QQ, Kou QJ, Jiang ZZ, Gui R, Luo YW and Zhao QY: Identification and validation of the pyroptosis-related molecular subtypes of lung adenocarcinoma by bioinformatics and machine learning. Front Cell Dev Biol. 9(756340)2021.PubMed/NCBI View Article : Google Scholar

13 

Kogure Y, Iwasawa S, Saka H, Hamamoto Y, Kada A, Hashimoto H, Atagi S, Takiguchi Y, Ebi N, Inoue A, et al: Efficacy and safety of carboplatin with nab-paclitaxel versus docetaxel in older patients with squamous non-small-cell lung cancer (CAPITAL): A randomised, multicentre, open-label, phase 3 trial. Lancet Healthy Longev. 2:e791–e800. 2021.PubMed/NCBI View Article : Google Scholar

14 

Spigel DR, Vicente D, Ciuleanu TE, Gettinger S, Peters S, Horn L, Audigier-Valette C, Pardo Aranda N, Juan-Vidal O, Cheng Y, et al: Second-line nivolumab in relapsed small-cell lung cancer: CheckMate 331(☆). Ann Oncol. 32:631–641. 2021.PubMed/NCBI View Article : Google Scholar

15 

Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403. 2006.PubMed/NCBI View Article : Google Scholar

16 

Muff R, Rath P, Ram Kumar RM, Husmann K, Born W, Baudis M and Fuchs B: Genomic instability of osteosarcoma cell lines in culture: Impact on the prediction of metastasis relevant genes. PLoS One. 10(e0125611)2015.PubMed/NCBI View Article : Google Scholar

17 

Kasai F, Hirayama N, Ozawa M, Iemura M and Kohara A: Changes of heterogeneous cell populations in the Ishikawa cell line during long-term culture: Proposal for an in vitro clonal evolution model of tumor cells. Genomics. 107:259–266. 2016.PubMed/NCBI View Article : Google Scholar

18 

Bahcecioglu G, Basara G, Ellis BW, Ren X and Zorlutuna P: Breast cancer models: Engineering the tumor microenvironment. Acta Biomater. 106:1–21. 2020.PubMed/NCBI View Article : Google Scholar

19 

Nolan JC, Frawley T, Tighe J, Soh H, Curtin C and Piskareva O: Preclinical models for neuroblastoma: Advances and challenges. Cancer Lett. 474:53–62. 2020.PubMed/NCBI View Article : Google Scholar

20 

Lee SW, Kwak HS, Kang MH, Park YY and Jeong GS: Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci Rep. 8(2365)2018.PubMed/NCBI View Article : Google Scholar

21 

Salinas-Vera YM, Valdés J, Hidalgo-Miranda A, Cisneros-Villanueva M, Marchat LA, Nuñez-Olvera SI, Ramos-Payán R, Pérez-Plasencia C, Arriaga-Pizano LA, Prieto-Chávez JL, et al: Three-dimensional organotypic cultures reshape the microRNAs transcriptional program in breast cancer cells. Cancers (Basel). 14(2490)2022.PubMed/NCBI View Article : Google Scholar

22 

Jo Y, Choi N, Kim K, Koo HJ, Choi J and Kim HN: Chemoresistance of cancer cells: Requirements of tumor microenvironment-mimicking in vitro models in anti-cancer drug development. Theranostics. 8:5259–5275. 2018.PubMed/NCBI View Article : Google Scholar

23 

Shang M, Soon RH, Lim CT, Khoo BL and Han J: Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip. 19:369–386. 2019.PubMed/NCBI View Article : Google Scholar

24 

Siolas D and Hannon GJ: Patient-derived tumor xenografts: Transforming clinical samples into mouse models. Cancer Res. 73:5315–5319. 2013.PubMed/NCBI View Article : Google Scholar

25 

Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, Wu R, Brahmbhatt S, Mo F, Jong L, et al: High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74:1272–1283. 2014.PubMed/NCBI View Article : Google Scholar

26 

Xiao T, Li W, Wang X, Xu H, Yang J, Wu Q, Huang Y, Geradts J, Jiang P, Fei T, et al: Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy. Proc Natl Acad Sci USA. 115:7869–7878. 2018.PubMed/NCBI View Article : Google Scholar

27 

Yoshida GJ: Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 13(4)2020.PubMed/NCBI View Article : Google Scholar

28 

Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C and Hui B: Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag Res. 13:2455–2475. 2021.PubMed/NCBI View Article : Google Scholar

29 

Kuwata T, Yanagihara K, Iino Y, Komatsu T, Ochiai A, Sekine S, Taniguchi H, Katai H, Kinoshita T and Ohtsu A: Establishment of novel gastric cancer patient-derived xenografts and cell lines: Pathological comparison between primary tumor, patient-derived, and cell-line derived xenografts. Cells. 8(585)2019.PubMed/NCBI View Article : Google Scholar

30 

Recondo G, Mahjoubi L, Maillard A, Loriot Y, Bigot L, Facchinetti F, Bahleda R, Gazzah A, Hollebecque A, Mezquita L, et al: Feasibility and first reports of the MATCH-R repeated biopsy trial at Gustave Roussy. NPJ Precis Oncol. 4(27)2020.PubMed/NCBI View Article : Google Scholar

31 

Heo EJ, Cho YJ, Cho WC, Hong JE, Jeon HK, Oh DY, Choi YL, Song SY, Choi JJ, Bae DS, et al: Patient-derived xenograft models of epithelial ovarian cancer for preclinical studies. Cancer Res Treat. 49:915–926. 2017.PubMed/NCBI View Article : Google Scholar

32 

Tucker ER, George S, Angelini P, Bruna A and Chesler L: The promise of Patient-derived preclinical models to accelerate the implementation of personalised medicine for children with neuroblastoma. J Pers Med. 11(248)2021.PubMed/NCBI View Article : Google Scholar

33 

Zhuang Y, Grainger JM, Vedell PT, Yu J, Moyer AM, Gao H, Fan XY, Qin S, Liu D, Kalari KR, et al: Establishment and characterization of immortalized human breast cancer cell lines from breast cancer patient-derived xenografts (PDX). NPJ Breast Cancer. 7(79)2021.PubMed/NCBI View Article : Google Scholar

34 

Martinez-Garcia R, Juan D, Rausell A, Muñoz M, Baños N, Menéndez C, Lopez-Casas PP, Rico D, Valencia A and Hidalgo M: Transcriptional dissection of pancreatic tumors engrafted in mice. Genome Med. 6(27)2014.PubMed/NCBI View Article : Google Scholar

35 

Hakuno SK, Michiels E, Kuhlemaijer EB, Rooman I, Hawinkels L and Slingerland M: Multicellular modelling of Difficult-to-Treat gastrointestinal cancers: Current possibilities and challenges. Int J Mol Sci. 23(3147)2022.PubMed/NCBI View Article : Google Scholar

36 

Jung J, Seol HS and Chang S: The generation and application of Patient-derived xenograft model for cancer research. Cancer Res Treat. 50:1–10. 2018.PubMed/NCBI View Article : Google Scholar

37 

Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, Neri S, Fang B, Lin SH, Tinkey PT, Shpall EJ, et al: An Improved Patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol Res. 7:1267–1279. 2019.PubMed/NCBI View Article : Google Scholar

38 

Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al: A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 25:1607–1614. 2019.PubMed/NCBI View Article : Google Scholar

39 

Xia X, Li F, He J, Aji R and Gao D: Organoid technology in cancer precision medicine. Cancer Lett. 457:20–27. 2019.PubMed/NCBI View Article : Google Scholar

40 

Brassard JA and Lutolf MP: Engineering stem cell Self-organization to Build better organoids. Cell Stem Cell. 24:860–876. 2019.PubMed/NCBI View Article : Google Scholar

41 

Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al: Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 26:17–26.e6. 2020.PubMed/NCBI View Article : Google Scholar

42 

Lõhmussaar K, Oka R, Espejo Valle-Inclan J, Smits MHH, Wardak H, Korving J, Begthel H, Proost N, van de Ven M, Kranenburg OW, et al: Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell. 28:1380–1396.e6. 2021.PubMed/NCBI View Article : Google Scholar

43 

Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB, et al: Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 173:515–528.e17. 2018.PubMed/NCBI View Article : Google Scholar

44 

Servant R, Garioni M, Vlajnic T, Blind M, Pueschel H, Müller DC, Zellweger T, Templeton AJ, Garofoli A, Maletti S, et al: Prostate cancer patient-derived organoids: Detailed outcome from a prospective cohort of 81 clinical specimens. J Pathol. 254:543–555. 2021.PubMed/NCBI View Article : Google Scholar

45 

Chen P, Zhang X, Ding R, Yang L, Lyu X, Zeng J, Lei JH, Wang L, Bi J, Shao N, et al: Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer. Adv Sci (Weinh). 8(e2101176)2021.PubMed/NCBI View Article : Google Scholar

46 

Seidlitz T and Stange DE: Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med. 53:1459–1470. 2021.PubMed/NCBI View Article : Google Scholar

47 

Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, et al: Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 23:1424–1435. 2017.PubMed/NCBI View Article : Google Scholar

48 

Ogawa H, Koyanagi-Aoi M, Otani K, Zen Y, Maniwa Y and Aoi T: Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Sci Rep. 7(12317)2017.PubMed/NCBI View Article : Google Scholar

49 

Li YF, Gao Y, Liang BW, Cao XQ, Sun ZJ, Yu JH, Liu ZD and Han Y: Patient-derived organoids of non-small cells lung cancer and their application for drug screening. Neoplasma. 67:430–437. 2020.PubMed/NCBI View Article : Google Scholar

50 

Han Y, Lee T, He Y, Raman R, Irizarry A, Martin ML and Giaccone G: The regulation of CD73 in non-small cell lung cancer. Eur J Cancer. 170:91–102. 2022.PubMed/NCBI View Article : Google Scholar

51 

Wang Y, Jiang T, Qin Z, Jiang J, Wang Q, Yang S, Rivard C, Gao G, Ng TL, Tu MM, et al: HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann Oncol. 30:447–455. 2019.PubMed/NCBI View Article : Google Scholar

52 

Zhang P, He B, Cai Q, Tu G, Peng X, Zhao Z, Peng W, Yu F, Wang M, Tao Y, et al: Decreased IL-6 and NK cells in Early-stage lung adenocarcinoma presenting as ground-glass opacity. Front Oncol. 11(705888)2021.PubMed/NCBI View Article : Google Scholar

53 

Li Z, Qian Y, Li W, Liu L, Yu L, Liu X, Wu G, Wang Y, Luo W, Fang F, et al: Human Lung adenocarcinoma-derived organoid models for drug screening. iScience. 23(101411)2020.PubMed/NCBI View Article : Google Scholar

54 

Li Z, Yu L, Chen D, Meng Z, Chen W and Huang W: Protocol for generation of lung adenocarcinoma organoids from clinical samples. STAR Protoc. 2(100239)2021.PubMed/NCBI View Article : Google Scholar

55 

Shi R, Radulovich N, Ng C, Liu N, Notsuda H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al: Organoid cultures as preclinical models of Non-small cell lung cancer. Clin Cancer Res. 26:1162–1174. 2020.PubMed/NCBI View Article : Google Scholar

56 

Liu T, Guo W, Luo K, Li L, Dong J, Liu M, Shi X, Wang Z, Zhang J, Yin J, et al: Smoke-induced SAV1 gene promoter hypermethylation disrupts YAP negative feedback and promotes malignant progression of non-small cell lung cancer. Int J Biol Sci. 18:4497–4512. 2022.PubMed/NCBI View Article : Google Scholar

57 

Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD, et al: Long-term expanding human airway organoids for disease modeling. EMBO J. 38(e100300)2019.PubMed/NCBI View Article : Google Scholar

58 

Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of Tumor-Reactive T cells by Co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018.PubMed/NCBI View Article : Google Scholar

59 

Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc. 15:15–39. 2020.PubMed/NCBI View Article : Google Scholar

60 

Dijkstra KK, Monkhorst K, Schipper LJ, Hartemink KJ, Smit EF, Kaing S, de Groot R, Wolkers MC, Clevers H, Cuppen E, et al: Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep. 31(107588)2020.PubMed/NCBI View Article : Google Scholar

61 

Bie Y, Wang J, Xiong L, Wang D, Liao J, Zhang Y and Lin H: Lung adenocarcinoma organoids harboring EGFR 19Del and L643V double mutations respond to osimertinib and gefitinib: A case report. Medicine (Baltimore). 100(e24793)2021.PubMed/NCBI View Article : Google Scholar

62 

Sándor GO, Soós A, Lörincz P, Rojkó L, Harkó T, Bogyó L, Tölgyes T, Bursics A, Buzás EI, Moldvay J, et al: Wnt activity and cell proliferation are coupled to extracellular vesicle release in multiple organoid models. Front Cell Dev Biol. 9(670825)2021.PubMed/NCBI View Article : Google Scholar

63 

Kim SY, Kim SM, Lim S, Lee JY, Choi SJ, Yang SD, Yun MR, Kim CG, Gu SR, Park C, et al: Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin Cancer Res. 27:4397–4409. 2021.PubMed/NCBI View Article : Google Scholar

64 

Padmanabhan J, Saha B, Powell C, Mo Q, Perez BA and Chellappan S: Inhibitors targeting CDK9 show high efficacy against osimertinib and AMG510 resistant lung adenocarcinoma cells. Cancers (Basel). 13(3909)2021.PubMed/NCBI View Article : Google Scholar

65 

Yokota E, Iwai M, Yukawa T, Yoshida M, Naomoto Y, Haisa M, Monobe Y, Takigawa N, Guo M, Maeda Y, et al: Clinical application of a lung cancer organoid (tumoroid) culture system. NPJ Precis Oncol. 5(29)2021.PubMed/NCBI View Article : Google Scholar

66 

Tamura H, Higa A, Hoshi H, Hiyama G, Takahashi N, Ryufuku M, Morisawa G, Yanagisawa Y, Ito E, Imai JI, et al: Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues. Oncol Rep. 40:635–646. 2018.PubMed/NCBI View Article : Google Scholar

67 

Takahashi N, Hoshi H, Higa A, Hiyama G, Tamura H, Ogawa M, Takagi K, Goda K, Okabe N, Muto S, et al: An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells. 8(481)2019.PubMed/NCBI View Article : Google Scholar

68 

Ma X, Yang S, Jiang H, Wang Y and Xiang Z: Transcriptomic analysis of tumor tissues and organoids reveals the crucial genes regulating the proliferation of lung adenocarcinoma. J Transl Med. 19(368)2021.PubMed/NCBI View Article : Google Scholar

69 

Mazzocchi A, Dominijanni A and Soker S: Pleural effusion aspirate for use in 3D lung cancer modeling and chemotherapy screening. Methods Mol Biol. 2394:471–483. 2022.PubMed/NCBI View Article : Google Scholar

70 

Hu Y, Sui X, Song F, Li Y, Li K, Chen Z, Yang F, Chen X, Zhang Y, Wang X, et al: Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun. 12(2581)2021.PubMed/NCBI View Article : Google Scholar

71 

Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 10(3991)2019.PubMed/NCBI View Article : Google Scholar

72 

Jung DJ, Shin TH, Kim M, Sung CO, Jang SJ and Jeong GS: A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity. Lab Chip. 19:2854–2865. 2019.PubMed/NCBI View Article : Google Scholar

73 

Chen JH, Chu XP, Zhang JT, Nie Q, Tang WF, Su J, Yan HH, Zheng HP, Chen ZX, Chen X, et al: Genomic characteristics and drug screening among organoids derived from non-small cell lung cancer patients. Thorac Cancer. 11:2279–2290. 2020.PubMed/NCBI View Article : Google Scholar

74 

Chen X, Liu Y, Wang Y, Wang C, Chen X, Xiong Y, Liu L, Yuan X, Tang H, Shu C, et al: CYP4F2-catalyzed metabolism of arachidonic acid promotes stromal cell-mediated immunosuppression in non-small cell lung cancer. Cancer Res. 82:4016–4030. 2022.PubMed/NCBI View Article : Google Scholar

75 

Peng KC, Su JW, Xie Z, Wang HM, Fang MM, Li WF, Chen YQ, Guan XH, Su J, Yan HH, et al: Clinical outcomes of EGFR+/METamp+ vs. EGFR+/METamp-untreated patients with advanced non-small cell lung cancer. Thorac Cancer. 13:1619–1630. 2022.PubMed/NCBI View Article : Google Scholar

76 

Choi SY, Cho YH, Kim DS, Ji W, Choi CM, Lee JC, Rho JK and Jeong GS: Establishment and long-term expansion of small cell lung cancer patient-derived tumor organoids. Int J Mol Sci. 22(1349)2021.PubMed/NCBI View Article : Google Scholar

77 

Choi YJ, Lee H, Kim DS, Kim DH, Kang MH, Cho YH, Choi CM, Yoo J, Lee KO, Choi EK, et al: Discovery of a novel CDK7 inhibitor YPN-005 in small cell lung cancer. Eur J Pharmacol. 907(174298)2021.PubMed/NCBI View Article : Google Scholar

78 

Gmeiner WH, Miller LD, Chou JW, Dominijanni A, Mutkus L, Marini F, Ruiz J, Dotson T, Thomas KW, Parks G, et al: Dysregulated pyrimidine biosynthesis contributes to 5-FU resistance in SCLC Patient-derived organoids but response to a novel polymeric fluoropyrimidine, CF10. Cancers (Basel). 12(788)2020.PubMed/NCBI View Article : Google Scholar

79 

Chen J, Hu Y, Zhang J, Wang Q, Wu X, Huang W, Wang Q, Cai G, Wang H, Ou T, et al: Therapeutic targeting RORγ with natural product N-hydroxyapiosporamide for small cell lung cancer by reprogramming neuroendocrine fate. Pharmacol Res. 178(106160)2022.PubMed/NCBI View Article : Google Scholar

80 

Redin E, Garrido-Martin EM, Valencia K, Redrado M, Solorzano JL, Carias R, Echepare M, Exposito F, Serrano D, Ferrer I, et al: YES1 is a druggable oncogenic target in Small Cell Lung Cancer. J Thorac Oncol. 17:1387–1403. 2022.PubMed/NCBI View Article : Google Scholar

81 

Lancaster MA and Knoblich JA: Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345(1247125)2014.PubMed/NCBI View Article : Google Scholar

82 

Suzuka J, Tsuda M, Wang L, Kohsaka S, Kishida K, Semba S, Sugino H, Aburatani S, Frauenlob M, Kurokawa T, et al: Rapid reprogramming of tumour cells into cancer stem cells on double-network hydrogels. Nat Biomed Eng. 5:914–925. 2021.PubMed/NCBI View Article : Google Scholar

83 

Xu Z, Jia Y, Huang X, Feng N and Li Y: Rapid induction of pancreatic cancer cells to cancer stem cells via heterochromatin modulation. Cell Cycle. 17:1487–1495. 2018.PubMed/NCBI View Article : Google Scholar

84 

Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T and Okamoto K: Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 108:283–289. 2017.PubMed/NCBI View Article : Google Scholar

85 

Weiswald LB, Bellet D and Dangles-Marie V: Spherical cancer models in tumor biology. Neoplasia. 17:1–15. 2015.PubMed/NCBI View Article : Google Scholar

86 

Oshima N, Yamada Y, Nagayama S, Kawada K, Hasegawa S, Okabe H, Sakai Y and Aoi T: Induction of cancer stem cell properties in colon cancer cells by defined factors. PLoS One. 9(e101735)2014.PubMed/NCBI View Article : Google Scholar

87 

Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, et al: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 133:1106–1117. 2008.PubMed/NCBI View Article : Google Scholar

88 

Zhang CC, Li CG, Wang YF, Xu LH, He XH, Zeng QZ, Zeng CY, Mai FY, Hu B and Ouyang DY: Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 24:312–325. 2019.PubMed/NCBI View Article : Google Scholar

89 

Long K, Gu L, Li L, Zhang Z, Li E, Zhang Y, He L, Pan F, Guo Z and Hu Z: Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer. Cell Death Dis. 12(503)2021.PubMed/NCBI View Article : Google Scholar

90 

Song J, Sun Y, Cao H, Liu Z, Xi L, Dong C, Yang R and Shi Y: A novel pyroptosis-related lncRNA signature for prognostic prediction in patients with lung adenocarcinoma. Bioengineered. 12:5932–5949. 2021.PubMed/NCBI View Article : Google Scholar

91 

Coleman CN, Higgins GS, Brown JM, Baumann M, Kirsch DG, Willers H, Prasanna PG, Dewhirst MW, Bernhard EJ and Ahmed MM: Improving the predictive value of preclinical studies in support of radiotherapy clinical trials. Clin Cancer Res. 22:3138–3147. 2016.PubMed/NCBI View Article : Google Scholar

92 

Sereti E, Karagianellou T, Kotsoni I, Magouliotis D, Kamposioras K, Ulukaya E, Sakellaridis N, Zacharoulis D and Dimas K: Patient derived xenografts (PDX) for personalized treatment of pancreatic cancer: Emerging allies in the war on a devastating cancer? J Proteomics. 188:107–118. 2018.PubMed/NCBI View Article : Google Scholar

93 

Invrea F, Rovito R, Torchiaro E, Petti C, Isella C and Medico E: Patient-derived xenografts (PDXs) as model systems for human cancer. Curr Opin Biotechnol. 63:151–156. 2020.PubMed/NCBI View Article : Google Scholar

94 

Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, et al: A PDX/Organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 24:4332–4345. 2018.PubMed/NCBI View Article : Google Scholar

95 

Fujii E, Kato A and Suzuki M: Patient-derived xenograft (PDX) models: Characteristics and points to consider for the process of establishment. J Toxicol Pathol. 33:153–160. 2020.PubMed/NCBI View Article : Google Scholar

96 

Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H and Baghaei K: Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med. 20(206)2022.PubMed/NCBI View Article : Google Scholar

97 

Fong ELS, Toh TB, Lin QXX, Liu Z, Hooi L, Mohd Abdul Rashid MB, Benoukraf T, Chow EK, Huynh TH and Yu H: Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials. 159:229–240. 2018.PubMed/NCBI View Article : Google Scholar

98 

Nelson SR, Zhang C, Roche S, O'Neill F, Swan N, Luo Y, Larkin A, Crown J and Walsh N: Modelling of pancreatic cancer biology: Transcriptomic signature for 3D PDX-derived organoids and primary cell line organoid development. Sci Rep. 10(2778)2020.PubMed/NCBI View Article : Google Scholar

99 

Romero-Calvo I, Weber CR, Ray M, Brown M, Kirby K, Nandi RK, Long TM, Sparrow SM, Ugolkov A, Qiang W, et al: Human organoids share structural and genetic features with primary pancreatic adenocarcinoma tumors. Mol Cancer Res. 17:70–83. 2019.PubMed/NCBI View Article : Google Scholar

100 

Chauhan AF and Liu SV: Small cell lung cancer: Advances in diagnosis and management. Semin Respir Crit Care Med. 41:435–446. 2020.PubMed/NCBI View Article : Google Scholar

101 

Wang Y, Zou S, Zhao Z, Liu P, Ke C and Xu S: New insights into small-cell lung cancer development and therapy. Cell Biol Int. 44:1564–1576. 2020.PubMed/NCBI View Article : Google Scholar

102 

Wang WZ, Shulman A, Amann JM, Carbone DP and Tsichlis PN: Small cell lung cancer: Subtypes and therapeutic implications. Semin Cancer Biol. 86:543–554. 2022.PubMed/NCBI View Article : Google Scholar

103 

Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, Conley CC, Chen OS, Guthrie MR, Soltero D, et al: MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell. 38:60–78.e12. 2020.PubMed/NCBI View Article : Google Scholar

104 

Kalemkerian GP, Loo BW, Akerley W, Attia A, Bassetti M, Boumber Y, Decker R, Dobelbower MC, Dowlati A, Downey RJ, et al: NCCN Guidelines Insights: Small cell lung cancer, version 2.2018. J Natl Compr Canc Netw. 16:1171–1182. 2018.PubMed/NCBI View Article : Google Scholar

105 

Drapkin BJ and Rudin CM: Advances in small-cell lung cancer (SCLC) translational research. Cold Spring Harb Perspect Med. 11(a038240)2021.PubMed/NCBI View Article : Google Scholar

106 

Fan J, Lv Z, Yang G, Liao TT, Xu J, Wu F, Huang Q, Guo M, Hu G, Zhou M, et al: Retinoic acid receptor-related orphan receptors: Critical roles in tumorigenesis. Front Immunol. 9(1187)2018.PubMed/NCBI View Article : Google Scholar

107 

Hogan S, O'Gara JP and O'Neill E: Novel treatment of staphylococcus aureus Device-related infections using fibrinolytic agents. Antimicrob Agents Chemother. 62:e02008–17. 2018.PubMed/NCBI View Article : Google Scholar

108 

Gobin CM, Menefee JN, Lattimore CC, Doty A and Fredenburg KM: Cell Dissociation enzymes affect Annexin V/Flow-cytometric apoptotic assay outcomes After miRNA-based transient transfection. Anticancer Res. 42:2819–2825. 2022.PubMed/NCBI View Article : Google Scholar

109 

Maruyama I, Yoshida C, Kobayashi M, Oyamada H and Momose K: Preparation of single smooth muscle cells from guinea pig taenia coli by combinations of purified collagenase and papain. J Pharmacol Methods. 18:151–161. 1987.PubMed/NCBI View Article : Google Scholar

110 

Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010.PubMed/NCBI View Article : Google Scholar

111 

Richards NG and Schuster SM: Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol. 72:145–198. 1998.PubMed/NCBI View Article : Google Scholar

112 

Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA and Thompson CB: The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 24:2784–2799. 2010.PubMed/NCBI View Article : Google Scholar

113 

Zhang J, Pavlova NN and Thompson CB: Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine. EMBO J. 36:1302–1315. 2017.PubMed/NCBI View Article : Google Scholar

114 

Heeneman S, Deutz NE and Buurman WA: The concentrations of glutamine and ammonia in commercially available cell culture media. J Immunol Methods. 166:85–91. 1993.PubMed/NCBI View Article : Google Scholar

115 

Schneider M, Marison IW and von Stockar U: The importance of ammonia in mammalian cell culture. J Biotechnol. 46:161–185. 1996.PubMed/NCBI View Article : Google Scholar

116 

Imamoto Y, Tanaka H, Takahashi K, Konno Y and Suzawa T: Advantages of AlaGln as an additive to cell culture medium: Use with anti-CD20 chimeric antibody-producing POTELLIGENT™ CHO cell lines. Cytotechnology. 65:135–143. 2013.PubMed/NCBI View Article : Google Scholar

117 

Yoshida Y, Soma T, Matsuzaki T and Kishimoto J: Wnt activator CHIR99021-stimulated human dermal papilla spheroids contribute to hair follicle formation and production of reconstituted follicle-enriched human skin. Biochem Biophys Res Commun. 516:599–605. 2019.PubMed/NCBI View Article : Google Scholar

118 

An WF, Germain AR, Bishop JA, Nag PP, Metkar S, Ketterman J, Walk M, Weiwer M, Liu X, Patnaik D, et al: Discovery of potent and highly selective inhibitors of GSK3b. In: Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information (US), Bethesda (MD), 2010.

119 

Takahashi T and Shiraishi A: Stem cell signaling pathways in the small intestine. Int J Mol Sci. 21(2032)2020.PubMed/NCBI View Article : Google Scholar

120 

Vincan E, Schwab RHM, Flanagan DJ, Moselen JM, Tran BM, Barker N and Phesse TJ: The Central role of wnt signaling and organoid technology in personalizing anticancer therapy. Prog Mol Biol Transl Sci. 153:299–319. 2018.PubMed/NCBI View Article : Google Scholar

121 

Yoshida T, Singh AK, Bishai WR, McConkey DJ and Bivalacqua TJ: Organoid culture of bladder cancer cells. Investig Clin Urol. 59:149–151. 2018.PubMed/NCBI View Article : Google Scholar

122 

Djomehri SI, Burman B, Gonzalez ME, Takayama S and Kleer CG: A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer. J Cell Commun Signal. 13:129–143. 2019.PubMed/NCBI View Article : Google Scholar

123 

Ahn Y, An JH, Yang HJ, Lee DG, Kim J, Koh H, Park YH, Song BS, Sim BW, Lee HJ, et al: Human blood vessel organoids penetrate human cerebral organoids and form a Vessel-like system. Cells. 10(2036)2021.PubMed/NCBI View Article : Google Scholar

124 

Li Y, Wang R, Huang D, Ma X, Mo S, Guo Q, Fu G, Li Y, Xu X, Hu X, et al: A novel human colon signet-ring cell carcinoma organoid line: Establishment, characterization and application. Carcinogenesis. 41:993–1004. 2020.PubMed/NCBI View Article : Google Scholar

125 

Ma HC, Zhu YJ, Zhou R, Yu YY, Xiao ZZ and Zhang HB: Lung cancer organoids, a promising model still with long way to go. Crit Rev Oncol Hematol. 171(103610)2022.PubMed/NCBI View Article : Google Scholar

126 

Maddalo G, Spolverato Y, Rugge M and Farinati F: Gastrin: From pathophysiology to cancer prevention and treatment. Eur J Cancer Prev. 23:258–263. 2014.PubMed/NCBI View Article : Google Scholar

127 

Zheng B, Ko KP, Fang X, Wang X, Zhang J, Jun S, Kim BJ, Luo W, Kim MJ, Jung YS, et al: A new murine esophageal organoid culture method and organoid-based model of esophageal squamous cell neoplasia. iScience. 24(103440)2021.PubMed/NCBI View Article : Google Scholar

128 

Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, Dwinell MB, Hunt B, Evans DB, Gershan J, et al: Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 18(335)2018.PubMed/NCBI View Article : Google Scholar

129 

Kawasaki K, Toshimitsu K, Matano M, Fujita M, Fujii M, Togasaki K, Ebisudani T, Shimokawa M, Takano A, Takahashi S, et al: An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell. 183:1420–1435.e21. 2020.PubMed/NCBI View Article : Google Scholar

130 

Shiota J, Samuelson LC and Razumilava N: Hepatobiliary organoids and their applications for studies of liver health and disease: Are We There Yet? Hepatology. 74:2251–2263. 2021.PubMed/NCBI View Article : Google Scholar

131 

Dong R, Zhang B and Zhang X: Liver organoids: An in vitro 3D model for liver cancer study. Cell Biosci. 12(152)2022.PubMed/NCBI View Article : Google Scholar

132 

Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, et al: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141:1762–1772. 2011.PubMed/NCBI View Article : Google Scholar

133 

Fatehullah A, Tan SH and Barker N: Organoids as an in vitro model of human development and disease. Nat Cell Biol. 18:246–254. 2016.PubMed/NCBI View Article : Google Scholar

134 

van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161:933–945. 2015.PubMed/NCBI View Article : Google Scholar

135 

Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, et al: Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159:163–175. 2014.PubMed/NCBI View Article : Google Scholar

136 

Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S, Verlaan-Klink I, Gerwen BV, van der Ven M, Wetering MV, Egan DA, et al: Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. Elife. 5(e18489)2016.PubMed/NCBI View Article : Google Scholar

137 

Gohi B, Liu XY, Zeng HY, Xu S, Ake KMH, Cao XJ, Zou KM and Namulondo S: Enhanced efficiency in isolation and expansion of hAMSCs via dual enzyme digestion and micro-carrier. Cell Biosci. 10(2)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Q and Zhang M: Recent advances in lung cancer organoid (tumoroid) research (Review). Exp Ther Med 28: 383, 2024.
APA
Zhang, Q., & Zhang, M. (2024). Recent advances in lung cancer organoid (tumoroid) research (Review). Experimental and Therapeutic Medicine, 28, 383. https://doi.org/10.3892/etm.2024.12672
MLA
Zhang, Q., Zhang, M."Recent advances in lung cancer organoid (tumoroid) research (Review)". Experimental and Therapeutic Medicine 28.4 (2024): 383.
Chicago
Zhang, Q., Zhang, M."Recent advances in lung cancer organoid (tumoroid) research (Review)". Experimental and Therapeutic Medicine 28, no. 4 (2024): 383. https://doi.org/10.3892/etm.2024.12672
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Q and Zhang M: Recent advances in lung cancer organoid (tumoroid) research (Review). Exp Ther Med 28: 383, 2024.
APA
Zhang, Q., & Zhang, M. (2024). Recent advances in lung cancer organoid (tumoroid) research (Review). Experimental and Therapeutic Medicine, 28, 383. https://doi.org/10.3892/etm.2024.12672
MLA
Zhang, Q., Zhang, M."Recent advances in lung cancer organoid (tumoroid) research (Review)". Experimental and Therapeutic Medicine 28.4 (2024): 383.
Chicago
Zhang, Q., Zhang, M."Recent advances in lung cancer organoid (tumoroid) research (Review)". Experimental and Therapeutic Medicine 28, no. 4 (2024): 383. https://doi.org/10.3892/etm.2024.12672
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team