Recent advances in lung cancer organoid (tumoroid) research (Review)
- Authors:
- Qiang Zhang
- Mingyang Zhang
-
Affiliations: Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: August 1, 2024 https://doi.org/10.3892/etm.2024.12672
- Article Number: 383
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang M, Herbst RS and Boshoff C: Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 27:1345–1356. 2021.PubMed/NCBI View Article : Google Scholar | |
Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, et al: The 2015 World Health Organization Classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 10:1243–1260. 2015.PubMed/NCBI View Article : Google Scholar | |
Rudin CM, Brambilla E, Faivre-Finn C and Sage J: Small-cell lung cancer. Nat Rev Dis Primers. 7(3)2021.PubMed/NCBI View Article : Google Scholar | |
Prabavathy D and Ramadoss N: Heterogeneity of small cell lung cancer stem cells. Adv Exp Med Biol. 1139:41–57. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Chang L, Yang Y, Fang W, Guan Y, Wu A, Hong S, Zhou H, Chen G, Chen X, et al: Intratumor heterogeneity comparison among different subtypes of non-small-cell lung cancer through multi-region tissue and matched ctDNA sequencing. Mol Cancer. 18(7)2019.PubMed/NCBI View Article : Google Scholar | |
de Sousa VML and Carvalho L: Heterogeneity in lung cancer. Pathobiology. 85:96–107. 2018.PubMed/NCBI View Article : Google Scholar | |
Krohn A, Ahrens T, Yalcin A, Plönes T, Wehrle J, Taromi S, Wollner S, Follo M, Brabletz T, Mani SA, et al: Tumor cell heterogeneity in small cell lung cancer (SCLC): Phenotypical and functional differences associated with Epithelial-Mesenchymal Transition (EMT) and DNA methylation changes. PLoS One. 9(e100249)2014.PubMed/NCBI View Article : Google Scholar | |
Liao H, Luo X, Huang Y, Yang X, Zheng Y, Qin X, Tan J, Shen P, Tian R, Cai W, et al: Mining the prognostic role of DNA methylation heterogeneity in lung adenocarcinoma. Dis Markers. 2022(9389372)2022.PubMed/NCBI View Article : Google Scholar | |
Arora L, Kalia M, Dasgupta S, Singh N, Verma AK and Pal D: Development of a Multicellular 3D tumor model to study cellular heterogeneity and plasticity in NSCLC tumor microenvironment. Front Oncol. 12(881207)2022.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Li M, Yang M, Yang Y, Song F, Zhang W, Li X and Chen K: Analysis of immune-related signatures of lung adenocarcinoma identified two distinct subtypes: Implications for immune checkpoint blockade therapy. Aging (Albany NY). 12:3312–3339. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu LP, Lu L, Zhao QQ, Kou QJ, Jiang ZZ, Gui R, Luo YW and Zhao QY: Identification and validation of the pyroptosis-related molecular subtypes of lung adenocarcinoma by bioinformatics and machine learning. Front Cell Dev Biol. 9(756340)2021.PubMed/NCBI View Article : Google Scholar | |
Kogure Y, Iwasawa S, Saka H, Hamamoto Y, Kada A, Hashimoto H, Atagi S, Takiguchi Y, Ebi N, Inoue A, et al: Efficacy and safety of carboplatin with nab-paclitaxel versus docetaxel in older patients with squamous non-small-cell lung cancer (CAPITAL): A randomised, multicentre, open-label, phase 3 trial. Lancet Healthy Longev. 2:e791–e800. 2021.PubMed/NCBI View Article : Google Scholar | |
Spigel DR, Vicente D, Ciuleanu TE, Gettinger S, Peters S, Horn L, Audigier-Valette C, Pardo Aranda N, Juan-Vidal O, Cheng Y, et al: Second-line nivolumab in relapsed small-cell lung cancer: CheckMate 331(☆). Ann Oncol. 32:631–641. 2021.PubMed/NCBI View Article : Google Scholar | |
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403. 2006.PubMed/NCBI View Article : Google Scholar | |
Muff R, Rath P, Ram Kumar RM, Husmann K, Born W, Baudis M and Fuchs B: Genomic instability of osteosarcoma cell lines in culture: Impact on the prediction of metastasis relevant genes. PLoS One. 10(e0125611)2015.PubMed/NCBI View Article : Google Scholar | |
Kasai F, Hirayama N, Ozawa M, Iemura M and Kohara A: Changes of heterogeneous cell populations in the Ishikawa cell line during long-term culture: Proposal for an in vitro clonal evolution model of tumor cells. Genomics. 107:259–266. 2016.PubMed/NCBI View Article : Google Scholar | |
Bahcecioglu G, Basara G, Ellis BW, Ren X and Zorlutuna P: Breast cancer models: Engineering the tumor microenvironment. Acta Biomater. 106:1–21. 2020.PubMed/NCBI View Article : Google Scholar | |
Nolan JC, Frawley T, Tighe J, Soh H, Curtin C and Piskareva O: Preclinical models for neuroblastoma: Advances and challenges. Cancer Lett. 474:53–62. 2020.PubMed/NCBI View Article : Google Scholar | |
Lee SW, Kwak HS, Kang MH, Park YY and Jeong GS: Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci Rep. 8(2365)2018.PubMed/NCBI View Article : Google Scholar | |
Salinas-Vera YM, Valdés J, Hidalgo-Miranda A, Cisneros-Villanueva M, Marchat LA, Nuñez-Olvera SI, Ramos-Payán R, Pérez-Plasencia C, Arriaga-Pizano LA, Prieto-Chávez JL, et al: Three-dimensional organotypic cultures reshape the microRNAs transcriptional program in breast cancer cells. Cancers (Basel). 14(2490)2022.PubMed/NCBI View Article : Google Scholar | |
Jo Y, Choi N, Kim K, Koo HJ, Choi J and Kim HN: Chemoresistance of cancer cells: Requirements of tumor microenvironment-mimicking in vitro models in anti-cancer drug development. Theranostics. 8:5259–5275. 2018.PubMed/NCBI View Article : Google Scholar | |
Shang M, Soon RH, Lim CT, Khoo BL and Han J: Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip. 19:369–386. 2019.PubMed/NCBI View Article : Google Scholar | |
Siolas D and Hannon GJ: Patient-derived tumor xenografts: Transforming clinical samples into mouse models. Cancer Res. 73:5315–5319. 2013.PubMed/NCBI View Article : Google Scholar | |
Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, Wu R, Brahmbhatt S, Mo F, Jong L, et al: High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74:1272–1283. 2014.PubMed/NCBI View Article : Google Scholar | |
Xiao T, Li W, Wang X, Xu H, Yang J, Wu Q, Huang Y, Geradts J, Jiang P, Fei T, et al: Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy. Proc Natl Acad Sci USA. 115:7869–7878. 2018.PubMed/NCBI View Article : Google Scholar | |
Yoshida GJ: Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 13(4)2020.PubMed/NCBI View Article : Google Scholar | |
Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C and Hui B: Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag Res. 13:2455–2475. 2021.PubMed/NCBI View Article : Google Scholar | |
Kuwata T, Yanagihara K, Iino Y, Komatsu T, Ochiai A, Sekine S, Taniguchi H, Katai H, Kinoshita T and Ohtsu A: Establishment of novel gastric cancer patient-derived xenografts and cell lines: Pathological comparison between primary tumor, patient-derived, and cell-line derived xenografts. Cells. 8(585)2019.PubMed/NCBI View Article : Google Scholar | |
Recondo G, Mahjoubi L, Maillard A, Loriot Y, Bigot L, Facchinetti F, Bahleda R, Gazzah A, Hollebecque A, Mezquita L, et al: Feasibility and first reports of the MATCH-R repeated biopsy trial at Gustave Roussy. NPJ Precis Oncol. 4(27)2020.PubMed/NCBI View Article : Google Scholar | |
Heo EJ, Cho YJ, Cho WC, Hong JE, Jeon HK, Oh DY, Choi YL, Song SY, Choi JJ, Bae DS, et al: Patient-derived xenograft models of epithelial ovarian cancer for preclinical studies. Cancer Res Treat. 49:915–926. 2017.PubMed/NCBI View Article : Google Scholar | |
Tucker ER, George S, Angelini P, Bruna A and Chesler L: The promise of Patient-derived preclinical models to accelerate the implementation of personalised medicine for children with neuroblastoma. J Pers Med. 11(248)2021.PubMed/NCBI View Article : Google Scholar | |
Zhuang Y, Grainger JM, Vedell PT, Yu J, Moyer AM, Gao H, Fan XY, Qin S, Liu D, Kalari KR, et al: Establishment and characterization of immortalized human breast cancer cell lines from breast cancer patient-derived xenografts (PDX). NPJ Breast Cancer. 7(79)2021.PubMed/NCBI View Article : Google Scholar | |
Martinez-Garcia R, Juan D, Rausell A, Muñoz M, Baños N, Menéndez C, Lopez-Casas PP, Rico D, Valencia A and Hidalgo M: Transcriptional dissection of pancreatic tumors engrafted in mice. Genome Med. 6(27)2014.PubMed/NCBI View Article : Google Scholar | |
Hakuno SK, Michiels E, Kuhlemaijer EB, Rooman I, Hawinkels L and Slingerland M: Multicellular modelling of Difficult-to-Treat gastrointestinal cancers: Current possibilities and challenges. Int J Mol Sci. 23(3147)2022.PubMed/NCBI View Article : Google Scholar | |
Jung J, Seol HS and Chang S: The generation and application of Patient-derived xenograft model for cancer research. Cancer Res Treat. 50:1–10. 2018.PubMed/NCBI View Article : Google Scholar | |
Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, Neri S, Fang B, Lin SH, Tinkey PT, Shpall EJ, et al: An Improved Patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol Res. 7:1267–1279. 2019.PubMed/NCBI View Article : Google Scholar | |
Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al: A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 25:1607–1614. 2019.PubMed/NCBI View Article : Google Scholar | |
Xia X, Li F, He J, Aji R and Gao D: Organoid technology in cancer precision medicine. Cancer Lett. 457:20–27. 2019.PubMed/NCBI View Article : Google Scholar | |
Brassard JA and Lutolf MP: Engineering stem cell Self-organization to Build better organoids. Cell Stem Cell. 24:860–876. 2019.PubMed/NCBI View Article : Google Scholar | |
Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al: Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 26:17–26.e6. 2020.PubMed/NCBI View Article : Google Scholar | |
Lõhmussaar K, Oka R, Espejo Valle-Inclan J, Smits MHH, Wardak H, Korving J, Begthel H, Proost N, van de Ven M, Kranenburg OW, et al: Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell. 28:1380–1396.e6. 2021.PubMed/NCBI View Article : Google Scholar | |
Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB, et al: Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 173:515–528.e17. 2018.PubMed/NCBI View Article : Google Scholar | |
Servant R, Garioni M, Vlajnic T, Blind M, Pueschel H, Müller DC, Zellweger T, Templeton AJ, Garofoli A, Maletti S, et al: Prostate cancer patient-derived organoids: Detailed outcome from a prospective cohort of 81 clinical specimens. J Pathol. 254:543–555. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen P, Zhang X, Ding R, Yang L, Lyu X, Zeng J, Lei JH, Wang L, Bi J, Shao N, et al: Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer. Adv Sci (Weinh). 8(e2101176)2021.PubMed/NCBI View Article : Google Scholar | |
Seidlitz T and Stange DE: Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med. 53:1459–1470. 2021.PubMed/NCBI View Article : Google Scholar | |
Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, et al: Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 23:1424–1435. 2017.PubMed/NCBI View Article : Google Scholar | |
Ogawa H, Koyanagi-Aoi M, Otani K, Zen Y, Maniwa Y and Aoi T: Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Sci Rep. 7(12317)2017.PubMed/NCBI View Article : Google Scholar | |
Li YF, Gao Y, Liang BW, Cao XQ, Sun ZJ, Yu JH, Liu ZD and Han Y: Patient-derived organoids of non-small cells lung cancer and their application for drug screening. Neoplasma. 67:430–437. 2020.PubMed/NCBI View Article : Google Scholar | |
Han Y, Lee T, He Y, Raman R, Irizarry A, Martin ML and Giaccone G: The regulation of CD73 in non-small cell lung cancer. Eur J Cancer. 170:91–102. 2022.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Jiang T, Qin Z, Jiang J, Wang Q, Yang S, Rivard C, Gao G, Ng TL, Tu MM, et al: HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann Oncol. 30:447–455. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang P, He B, Cai Q, Tu G, Peng X, Zhao Z, Peng W, Yu F, Wang M, Tao Y, et al: Decreased IL-6 and NK cells in Early-stage lung adenocarcinoma presenting as ground-glass opacity. Front Oncol. 11(705888)2021.PubMed/NCBI View Article : Google Scholar | |
Li Z, Qian Y, Li W, Liu L, Yu L, Liu X, Wu G, Wang Y, Luo W, Fang F, et al: Human Lung adenocarcinoma-derived organoid models for drug screening. iScience. 23(101411)2020.PubMed/NCBI View Article : Google Scholar | |
Li Z, Yu L, Chen D, Meng Z, Chen W and Huang W: Protocol for generation of lung adenocarcinoma organoids from clinical samples. STAR Protoc. 2(100239)2021.PubMed/NCBI View Article : Google Scholar | |
Shi R, Radulovich N, Ng C, Liu N, Notsuda H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al: Organoid cultures as preclinical models of Non-small cell lung cancer. Clin Cancer Res. 26:1162–1174. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu T, Guo W, Luo K, Li L, Dong J, Liu M, Shi X, Wang Z, Zhang J, Yin J, et al: Smoke-induced SAV1 gene promoter hypermethylation disrupts YAP negative feedback and promotes malignant progression of non-small cell lung cancer. Int J Biol Sci. 18:4497–4512. 2022.PubMed/NCBI View Article : Google Scholar | |
Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD, et al: Long-term expanding human airway organoids for disease modeling. EMBO J. 38(e100300)2019.PubMed/NCBI View Article : Google Scholar | |
Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of Tumor-Reactive T cells by Co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018.PubMed/NCBI View Article : Google Scholar | |
Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc. 15:15–39. 2020.PubMed/NCBI View Article : Google Scholar | |
Dijkstra KK, Monkhorst K, Schipper LJ, Hartemink KJ, Smit EF, Kaing S, de Groot R, Wolkers MC, Clevers H, Cuppen E, et al: Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep. 31(107588)2020.PubMed/NCBI View Article : Google Scholar | |
Bie Y, Wang J, Xiong L, Wang D, Liao J, Zhang Y and Lin H: Lung adenocarcinoma organoids harboring EGFR 19Del and L643V double mutations respond to osimertinib and gefitinib: A case report. Medicine (Baltimore). 100(e24793)2021.PubMed/NCBI View Article : Google Scholar | |
Sándor GO, Soós A, Lörincz P, Rojkó L, Harkó T, Bogyó L, Tölgyes T, Bursics A, Buzás EI, Moldvay J, et al: Wnt activity and cell proliferation are coupled to extracellular vesicle release in multiple organoid models. Front Cell Dev Biol. 9(670825)2021.PubMed/NCBI View Article : Google Scholar | |
Kim SY, Kim SM, Lim S, Lee JY, Choi SJ, Yang SD, Yun MR, Kim CG, Gu SR, Park C, et al: Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin Cancer Res. 27:4397–4409. 2021.PubMed/NCBI View Article : Google Scholar | |
Padmanabhan J, Saha B, Powell C, Mo Q, Perez BA and Chellappan S: Inhibitors targeting CDK9 show high efficacy against osimertinib and AMG510 resistant lung adenocarcinoma cells. Cancers (Basel). 13(3909)2021.PubMed/NCBI View Article : Google Scholar | |
Yokota E, Iwai M, Yukawa T, Yoshida M, Naomoto Y, Haisa M, Monobe Y, Takigawa N, Guo M, Maeda Y, et al: Clinical application of a lung cancer organoid (tumoroid) culture system. NPJ Precis Oncol. 5(29)2021.PubMed/NCBI View Article : Google Scholar | |
Tamura H, Higa A, Hoshi H, Hiyama G, Takahashi N, Ryufuku M, Morisawa G, Yanagisawa Y, Ito E, Imai JI, et al: Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues. Oncol Rep. 40:635–646. 2018.PubMed/NCBI View Article : Google Scholar | |
Takahashi N, Hoshi H, Higa A, Hiyama G, Tamura H, Ogawa M, Takagi K, Goda K, Okabe N, Muto S, et al: An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells. 8(481)2019.PubMed/NCBI View Article : Google Scholar | |
Ma X, Yang S, Jiang H, Wang Y and Xiang Z: Transcriptomic analysis of tumor tissues and organoids reveals the crucial genes regulating the proliferation of lung adenocarcinoma. J Transl Med. 19(368)2021.PubMed/NCBI View Article : Google Scholar | |
Mazzocchi A, Dominijanni A and Soker S: Pleural effusion aspirate for use in 3D lung cancer modeling and chemotherapy screening. Methods Mol Biol. 2394:471–483. 2022.PubMed/NCBI View Article : Google Scholar | |
Hu Y, Sui X, Song F, Li Y, Li K, Chen Z, Yang F, Chen X, Zhang Y, Wang X, et al: Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun. 12(2581)2021.PubMed/NCBI View Article : Google Scholar | |
Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 10(3991)2019.PubMed/NCBI View Article : Google Scholar | |
Jung DJ, Shin TH, Kim M, Sung CO, Jang SJ and Jeong GS: A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity. Lab Chip. 19:2854–2865. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen JH, Chu XP, Zhang JT, Nie Q, Tang WF, Su J, Yan HH, Zheng HP, Chen ZX, Chen X, et al: Genomic characteristics and drug screening among organoids derived from non-small cell lung cancer patients. Thorac Cancer. 11:2279–2290. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen X, Liu Y, Wang Y, Wang C, Chen X, Xiong Y, Liu L, Yuan X, Tang H, Shu C, et al: CYP4F2-catalyzed metabolism of arachidonic acid promotes stromal cell-mediated immunosuppression in non-small cell lung cancer. Cancer Res. 82:4016–4030. 2022.PubMed/NCBI View Article : Google Scholar | |
Peng KC, Su JW, Xie Z, Wang HM, Fang MM, Li WF, Chen YQ, Guan XH, Su J, Yan HH, et al: Clinical outcomes of EGFR+/METamp+ vs. EGFR+/METamp-untreated patients with advanced non-small cell lung cancer. Thorac Cancer. 13:1619–1630. 2022.PubMed/NCBI View Article : Google Scholar | |
Choi SY, Cho YH, Kim DS, Ji W, Choi CM, Lee JC, Rho JK and Jeong GS: Establishment and long-term expansion of small cell lung cancer patient-derived tumor organoids. Int J Mol Sci. 22(1349)2021.PubMed/NCBI View Article : Google Scholar | |
Choi YJ, Lee H, Kim DS, Kim DH, Kang MH, Cho YH, Choi CM, Yoo J, Lee KO, Choi EK, et al: Discovery of a novel CDK7 inhibitor YPN-005 in small cell lung cancer. Eur J Pharmacol. 907(174298)2021.PubMed/NCBI View Article : Google Scholar | |
Gmeiner WH, Miller LD, Chou JW, Dominijanni A, Mutkus L, Marini F, Ruiz J, Dotson T, Thomas KW, Parks G, et al: Dysregulated pyrimidine biosynthesis contributes to 5-FU resistance in SCLC Patient-derived organoids but response to a novel polymeric fluoropyrimidine, CF10. Cancers (Basel). 12(788)2020.PubMed/NCBI View Article : Google Scholar | |
Chen J, Hu Y, Zhang J, Wang Q, Wu X, Huang W, Wang Q, Cai G, Wang H, Ou T, et al: Therapeutic targeting RORγ with natural product N-hydroxyapiosporamide for small cell lung cancer by reprogramming neuroendocrine fate. Pharmacol Res. 178(106160)2022.PubMed/NCBI View Article : Google Scholar | |
Redin E, Garrido-Martin EM, Valencia K, Redrado M, Solorzano JL, Carias R, Echepare M, Exposito F, Serrano D, Ferrer I, et al: YES1 is a druggable oncogenic target in Small Cell Lung Cancer. J Thorac Oncol. 17:1387–1403. 2022.PubMed/NCBI View Article : Google Scholar | |
Lancaster MA and Knoblich JA: Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345(1247125)2014.PubMed/NCBI View Article : Google Scholar | |
Suzuka J, Tsuda M, Wang L, Kohsaka S, Kishida K, Semba S, Sugino H, Aburatani S, Frauenlob M, Kurokawa T, et al: Rapid reprogramming of tumour cells into cancer stem cells on double-network hydrogels. Nat Biomed Eng. 5:914–925. 2021.PubMed/NCBI View Article : Google Scholar | |
Xu Z, Jia Y, Huang X, Feng N and Li Y: Rapid induction of pancreatic cancer cells to cancer stem cells via heterochromatin modulation. Cell Cycle. 17:1487–1495. 2018.PubMed/NCBI View Article : Google Scholar | |
Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T and Okamoto K: Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 108:283–289. 2017.PubMed/NCBI View Article : Google Scholar | |
Weiswald LB, Bellet D and Dangles-Marie V: Spherical cancer models in tumor biology. Neoplasia. 17:1–15. 2015.PubMed/NCBI View Article : Google Scholar | |
Oshima N, Yamada Y, Nagayama S, Kawada K, Hasegawa S, Okabe H, Sakai Y and Aoi T: Induction of cancer stem cell properties in colon cancer cells by defined factors. PLoS One. 9(e101735)2014.PubMed/NCBI View Article : Google Scholar | |
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, et al: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 133:1106–1117. 2008.PubMed/NCBI View Article : Google Scholar | |
Zhang CC, Li CG, Wang YF, Xu LH, He XH, Zeng QZ, Zeng CY, Mai FY, Hu B and Ouyang DY: Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 24:312–325. 2019.PubMed/NCBI View Article : Google Scholar | |
Long K, Gu L, Li L, Zhang Z, Li E, Zhang Y, He L, Pan F, Guo Z and Hu Z: Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer. Cell Death Dis. 12(503)2021.PubMed/NCBI View Article : Google Scholar | |
Song J, Sun Y, Cao H, Liu Z, Xi L, Dong C, Yang R and Shi Y: A novel pyroptosis-related lncRNA signature for prognostic prediction in patients with lung adenocarcinoma. Bioengineered. 12:5932–5949. 2021.PubMed/NCBI View Article : Google Scholar | |
Coleman CN, Higgins GS, Brown JM, Baumann M, Kirsch DG, Willers H, Prasanna PG, Dewhirst MW, Bernhard EJ and Ahmed MM: Improving the predictive value of preclinical studies in support of radiotherapy clinical trials. Clin Cancer Res. 22:3138–3147. 2016.PubMed/NCBI View Article : Google Scholar | |
Sereti E, Karagianellou T, Kotsoni I, Magouliotis D, Kamposioras K, Ulukaya E, Sakellaridis N, Zacharoulis D and Dimas K: Patient derived xenografts (PDX) for personalized treatment of pancreatic cancer: Emerging allies in the war on a devastating cancer? J Proteomics. 188:107–118. 2018.PubMed/NCBI View Article : Google Scholar | |
Invrea F, Rovito R, Torchiaro E, Petti C, Isella C and Medico E: Patient-derived xenografts (PDXs) as model systems for human cancer. Curr Opin Biotechnol. 63:151–156. 2020.PubMed/NCBI View Article : Google Scholar | |
Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, et al: A PDX/Organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 24:4332–4345. 2018.PubMed/NCBI View Article : Google Scholar | |
Fujii E, Kato A and Suzuki M: Patient-derived xenograft (PDX) models: Characteristics and points to consider for the process of establishment. J Toxicol Pathol. 33:153–160. 2020.PubMed/NCBI View Article : Google Scholar | |
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H and Baghaei K: Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med. 20(206)2022.PubMed/NCBI View Article : Google Scholar | |
Fong ELS, Toh TB, Lin QXX, Liu Z, Hooi L, Mohd Abdul Rashid MB, Benoukraf T, Chow EK, Huynh TH and Yu H: Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials. 159:229–240. 2018.PubMed/NCBI View Article : Google Scholar | |
Nelson SR, Zhang C, Roche S, O'Neill F, Swan N, Luo Y, Larkin A, Crown J and Walsh N: Modelling of pancreatic cancer biology: Transcriptomic signature for 3D PDX-derived organoids and primary cell line organoid development. Sci Rep. 10(2778)2020.PubMed/NCBI View Article : Google Scholar | |
Romero-Calvo I, Weber CR, Ray M, Brown M, Kirby K, Nandi RK, Long TM, Sparrow SM, Ugolkov A, Qiang W, et al: Human organoids share structural and genetic features with primary pancreatic adenocarcinoma tumors. Mol Cancer Res. 17:70–83. 2019.PubMed/NCBI View Article : Google Scholar | |
Chauhan AF and Liu SV: Small cell lung cancer: Advances in diagnosis and management. Semin Respir Crit Care Med. 41:435–446. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zou S, Zhao Z, Liu P, Ke C and Xu S: New insights into small-cell lung cancer development and therapy. Cell Biol Int. 44:1564–1576. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang WZ, Shulman A, Amann JM, Carbone DP and Tsichlis PN: Small cell lung cancer: Subtypes and therapeutic implications. Semin Cancer Biol. 86:543–554. 2022.PubMed/NCBI View Article : Google Scholar | |
Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, Conley CC, Chen OS, Guthrie MR, Soltero D, et al: MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell. 38:60–78.e12. 2020.PubMed/NCBI View Article : Google Scholar | |
Kalemkerian GP, Loo BW, Akerley W, Attia A, Bassetti M, Boumber Y, Decker R, Dobelbower MC, Dowlati A, Downey RJ, et al: NCCN Guidelines Insights: Small cell lung cancer, version 2.2018. J Natl Compr Canc Netw. 16:1171–1182. 2018.PubMed/NCBI View Article : Google Scholar | |
Drapkin BJ and Rudin CM: Advances in small-cell lung cancer (SCLC) translational research. Cold Spring Harb Perspect Med. 11(a038240)2021.PubMed/NCBI View Article : Google Scholar | |
Fan J, Lv Z, Yang G, Liao TT, Xu J, Wu F, Huang Q, Guo M, Hu G, Zhou M, et al: Retinoic acid receptor-related orphan receptors: Critical roles in tumorigenesis. Front Immunol. 9(1187)2018.PubMed/NCBI View Article : Google Scholar | |
Hogan S, O'Gara JP and O'Neill E: Novel treatment of staphylococcus aureus Device-related infections using fibrinolytic agents. Antimicrob Agents Chemother. 62:e02008–17. 2018.PubMed/NCBI View Article : Google Scholar | |
Gobin CM, Menefee JN, Lattimore CC, Doty A and Fredenburg KM: Cell Dissociation enzymes affect Annexin V/Flow-cytometric apoptotic assay outcomes After miRNA-based transient transfection. Anticancer Res. 42:2819–2825. 2022.PubMed/NCBI View Article : Google Scholar | |
Maruyama I, Yoshida C, Kobayashi M, Oyamada H and Momose K: Preparation of single smooth muscle cells from guinea pig taenia coli by combinations of purified collagenase and papain. J Pharmacol Methods. 18:151–161. 1987.PubMed/NCBI View Article : Google Scholar | |
Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010.PubMed/NCBI View Article : Google Scholar | |
Richards NG and Schuster SM: Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol. 72:145–198. 1998.PubMed/NCBI View Article : Google Scholar | |
Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA and Thompson CB: The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 24:2784–2799. 2010.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Pavlova NN and Thompson CB: Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine. EMBO J. 36:1302–1315. 2017.PubMed/NCBI View Article : Google Scholar | |
Heeneman S, Deutz NE and Buurman WA: The concentrations of glutamine and ammonia in commercially available cell culture media. J Immunol Methods. 166:85–91. 1993.PubMed/NCBI View Article : Google Scholar | |
Schneider M, Marison IW and von Stockar U: The importance of ammonia in mammalian cell culture. J Biotechnol. 46:161–185. 1996.PubMed/NCBI View Article : Google Scholar | |
Imamoto Y, Tanaka H, Takahashi K, Konno Y and Suzawa T: Advantages of AlaGln as an additive to cell culture medium: Use with anti-CD20 chimeric antibody-producing POTELLIGENT™ CHO cell lines. Cytotechnology. 65:135–143. 2013.PubMed/NCBI View Article : Google Scholar | |
Yoshida Y, Soma T, Matsuzaki T and Kishimoto J: Wnt activator CHIR99021-stimulated human dermal papilla spheroids contribute to hair follicle formation and production of reconstituted follicle-enriched human skin. Biochem Biophys Res Commun. 516:599–605. 2019.PubMed/NCBI View Article : Google Scholar | |
An WF, Germain AR, Bishop JA, Nag PP, Metkar S, Ketterman J, Walk M, Weiwer M, Liu X, Patnaik D, et al: Discovery of potent and highly selective inhibitors of GSK3b. In: Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information (US), Bethesda (MD), 2010. | |
Takahashi T and Shiraishi A: Stem cell signaling pathways in the small intestine. Int J Mol Sci. 21(2032)2020.PubMed/NCBI View Article : Google Scholar | |
Vincan E, Schwab RHM, Flanagan DJ, Moselen JM, Tran BM, Barker N and Phesse TJ: The Central role of wnt signaling and organoid technology in personalizing anticancer therapy. Prog Mol Biol Transl Sci. 153:299–319. 2018.PubMed/NCBI View Article : Google Scholar | |
Yoshida T, Singh AK, Bishai WR, McConkey DJ and Bivalacqua TJ: Organoid culture of bladder cancer cells. Investig Clin Urol. 59:149–151. 2018.PubMed/NCBI View Article : Google Scholar | |
Djomehri SI, Burman B, Gonzalez ME, Takayama S and Kleer CG: A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer. J Cell Commun Signal. 13:129–143. 2019.PubMed/NCBI View Article : Google Scholar | |
Ahn Y, An JH, Yang HJ, Lee DG, Kim J, Koh H, Park YH, Song BS, Sim BW, Lee HJ, et al: Human blood vessel organoids penetrate human cerebral organoids and form a Vessel-like system. Cells. 10(2036)2021.PubMed/NCBI View Article : Google Scholar | |
Li Y, Wang R, Huang D, Ma X, Mo S, Guo Q, Fu G, Li Y, Xu X, Hu X, et al: A novel human colon signet-ring cell carcinoma organoid line: Establishment, characterization and application. Carcinogenesis. 41:993–1004. 2020.PubMed/NCBI View Article : Google Scholar | |
Ma HC, Zhu YJ, Zhou R, Yu YY, Xiao ZZ and Zhang HB: Lung cancer organoids, a promising model still with long way to go. Crit Rev Oncol Hematol. 171(103610)2022.PubMed/NCBI View Article : Google Scholar | |
Maddalo G, Spolverato Y, Rugge M and Farinati F: Gastrin: From pathophysiology to cancer prevention and treatment. Eur J Cancer Prev. 23:258–263. 2014.PubMed/NCBI View Article : Google Scholar | |
Zheng B, Ko KP, Fang X, Wang X, Zhang J, Jun S, Kim BJ, Luo W, Kim MJ, Jung YS, et al: A new murine esophageal organoid culture method and organoid-based model of esophageal squamous cell neoplasia. iScience. 24(103440)2021.PubMed/NCBI View Article : Google Scholar | |
Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, Dwinell MB, Hunt B, Evans DB, Gershan J, et al: Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 18(335)2018.PubMed/NCBI View Article : Google Scholar | |
Kawasaki K, Toshimitsu K, Matano M, Fujita M, Fujii M, Togasaki K, Ebisudani T, Shimokawa M, Takano A, Takahashi S, et al: An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell. 183:1420–1435.e21. 2020.PubMed/NCBI View Article : Google Scholar | |
Shiota J, Samuelson LC and Razumilava N: Hepatobiliary organoids and their applications for studies of liver health and disease: Are We There Yet? Hepatology. 74:2251–2263. 2021.PubMed/NCBI View Article : Google Scholar | |
Dong R, Zhang B and Zhang X: Liver organoids: An in vitro 3D model for liver cancer study. Cell Biosci. 12(152)2022.PubMed/NCBI View Article : Google Scholar | |
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, et al: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141:1762–1772. 2011.PubMed/NCBI View Article : Google Scholar | |
Fatehullah A, Tan SH and Barker N: Organoids as an in vitro model of human development and disease. Nat Cell Biol. 18:246–254. 2016.PubMed/NCBI View Article : Google Scholar | |
van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161:933–945. 2015.PubMed/NCBI View Article : Google Scholar | |
Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, et al: Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159:163–175. 2014.PubMed/NCBI View Article : Google Scholar | |
Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S, Verlaan-Klink I, Gerwen BV, van der Ven M, Wetering MV, Egan DA, et al: Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. Elife. 5(e18489)2016.PubMed/NCBI View Article : Google Scholar | |
Gohi B, Liu XY, Zeng HY, Xu S, Ake KMH, Cao XJ, Zou KM and Namulondo S: Enhanced efficiency in isolation and expansion of hAMSCs via dual enzyme digestion and micro-carrier. Cell Biosci. 10(2)2020.PubMed/NCBI View Article : Google Scholar |