|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang M, Herbst RS and Boshoff C: Toward
personalized treatment approaches for non-small-cell lung cancer.
Nat Med. 27:1345–1356. 2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Travis WD, Brambilla E, Nicholson AG,
Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E,
Flieder DB, et al: The 2015 World Health Organization
Classification of lung tumors: Impact of genetic, clinical and
radiologic advances since the 2004 classification. J Thorac Oncol.
10:1243–1260. 2015.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Rudin CM, Brambilla E, Faivre-Finn C and
Sage J: Small-cell lung cancer. Nat Rev Dis Primers.
7(3)2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Prabavathy D and Ramadoss N: Heterogeneity
of small cell lung cancer stem cells. Adv Exp Med Biol. 1139:41–57.
2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zhang Y, Chang L, Yang Y, Fang W, Guan Y,
Wu A, Hong S, Zhou H, Chen G, Chen X, et al: Intratumor
heterogeneity comparison among different subtypes of non-small-cell
lung cancer through multi-region tissue and matched ctDNA
sequencing. Mol Cancer. 18(7)2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
de Sousa VML and Carvalho L: Heterogeneity
in lung cancer. Pathobiology. 85:96–107. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Krohn A, Ahrens T, Yalcin A, Plönes T,
Wehrle J, Taromi S, Wollner S, Follo M, Brabletz T, Mani SA, et al:
Tumor cell heterogeneity in small cell lung cancer (SCLC):
Phenotypical and functional differences associated with
Epithelial-Mesenchymal Transition (EMT) and DNA methylation
changes. PLoS One. 9(e100249)2014.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Liao H, Luo X, Huang Y, Yang X, Zheng Y,
Qin X, Tan J, Shen P, Tian R, Cai W, et al: Mining the prognostic
role of DNA methylation heterogeneity in lung adenocarcinoma. Dis
Markers. 2022(9389372)2022.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Arora L, Kalia M, Dasgupta S, Singh N,
Verma AK and Pal D: Development of a Multicellular 3D tumor model
to study cellular heterogeneity and plasticity in NSCLC tumor
microenvironment. Front Oncol. 12(881207)2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Wang Q, Li M, Yang M, Yang Y, Song F,
Zhang W, Li X and Chen K: Analysis of immune-related signatures of
lung adenocarcinoma identified two distinct subtypes: Implications
for immune checkpoint blockade therapy. Aging (Albany NY).
12:3312–3339. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Liu LP, Lu L, Zhao QQ, Kou QJ, Jiang ZZ,
Gui R, Luo YW and Zhao QY: Identification and validation of the
pyroptosis-related molecular subtypes of lung adenocarcinoma by
bioinformatics and machine learning. Front Cell Dev Biol.
9(756340)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Kogure Y, Iwasawa S, Saka H, Hamamoto Y,
Kada A, Hashimoto H, Atagi S, Takiguchi Y, Ebi N, Inoue A, et al:
Efficacy and safety of carboplatin with nab-paclitaxel versus
docetaxel in older patients with squamous non-small-cell lung
cancer (CAPITAL): A randomised, multicentre, open-label, phase 3
trial. Lancet Healthy Longev. 2:e791–e800. 2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Spigel DR, Vicente D, Ciuleanu TE,
Gettinger S, Peters S, Horn L, Audigier-Valette C, Pardo Aranda N,
Juan-Vidal O, Cheng Y, et al: Second-line nivolumab in relapsed
small-cell lung cancer: CheckMate 331(☆). Ann Oncol. 32:631–641.
2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Lee J, Kotliarova S, Kotliarov Y, Li A, Su
Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al:
Tumor stem cells derived from glioblastomas cultured in bFGF and
EGF more closely mirror the phenotype and genotype of primary
tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403.
2006.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Muff R, Rath P, Ram Kumar RM, Husmann K,
Born W, Baudis M and Fuchs B: Genomic instability of osteosarcoma
cell lines in culture: Impact on the prediction of metastasis
relevant genes. PLoS One. 10(e0125611)2015.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Kasai F, Hirayama N, Ozawa M, Iemura M and
Kohara A: Changes of heterogeneous cell populations in the Ishikawa
cell line during long-term culture: Proposal for an in vitro clonal
evolution model of tumor cells. Genomics. 107:259–266.
2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Bahcecioglu G, Basara G, Ellis BW, Ren X
and Zorlutuna P: Breast cancer models: Engineering the tumor
microenvironment. Acta Biomater. 106:1–21. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Nolan JC, Frawley T, Tighe J, Soh H,
Curtin C and Piskareva O: Preclinical models for neuroblastoma:
Advances and challenges. Cancer Lett. 474:53–62. 2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Lee SW, Kwak HS, Kang MH, Park YY and
Jeong GS: Fibroblast-associated tumour microenvironment induces
vascular structure-networked tumouroid. Sci Rep.
8(2365)2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Salinas-Vera YM, Valdés J, Hidalgo-Miranda
A, Cisneros-Villanueva M, Marchat LA, Nuñez-Olvera SI, Ramos-Payán
R, Pérez-Plasencia C, Arriaga-Pizano LA, Prieto-Chávez JL, et al:
Three-dimensional organotypic cultures reshape the microRNAs
transcriptional program in breast cancer cells. Cancers (Basel).
14(2490)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Jo Y, Choi N, Kim K, Koo HJ, Choi J and
Kim HN: Chemoresistance of cancer cells: Requirements of tumor
microenvironment-mimicking in vitro models in anti-cancer drug
development. Theranostics. 8:5259–5275. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Shang M, Soon RH, Lim CT, Khoo BL and Han
J: Microfluidic modelling of the tumor microenvironment for
anti-cancer drug development. Lab Chip. 19:369–386. 2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Siolas D and Hannon GJ: Patient-derived
tumor xenografts: Transforming clinical samples into mouse models.
Cancer Res. 73:5315–5319. 2013.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Lin D, Wyatt AW, Xue H, Wang Y, Dong X,
Haegert A, Wu R, Brahmbhatt S, Mo F, Jong L, et al: High fidelity
patient-derived xenografts for accelerating prostate cancer
discovery and drug development. Cancer Res. 74:1272–1283.
2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Xiao T, Li W, Wang X, Xu H, Yang J, Wu Q,
Huang Y, Geradts J, Jiang P, Fei T, et al: Estrogen-regulated
feedback loop limits the efficacy of estrogen receptor-targeted
breast cancer therapy. Proc Natl Acad Sci USA. 115:7869–7878.
2018.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Yoshida GJ: Applications of
patient-derived tumor xenograft models and tumor organoids. J
Hematol Oncol. 13(4)2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu
F, Sun G, Sun G, Lv C and Hui B: Application of animal models in
cancer research: Recent progress and future prospects. Cancer Manag
Res. 13:2455–2475. 2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Kuwata T, Yanagihara K, Iino Y, Komatsu T,
Ochiai A, Sekine S, Taniguchi H, Katai H, Kinoshita T and Ohtsu A:
Establishment of novel gastric cancer patient-derived xenografts
and cell lines: Pathological comparison between primary tumor,
patient-derived, and cell-line derived xenografts. Cells.
8(585)2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Recondo G, Mahjoubi L, Maillard A, Loriot
Y, Bigot L, Facchinetti F, Bahleda R, Gazzah A, Hollebecque A,
Mezquita L, et al: Feasibility and first reports of the MATCH-R
repeated biopsy trial at Gustave Roussy. NPJ Precis Oncol.
4(27)2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Heo EJ, Cho YJ, Cho WC, Hong JE, Jeon HK,
Oh DY, Choi YL, Song SY, Choi JJ, Bae DS, et al: Patient-derived
xenograft models of epithelial ovarian cancer for preclinical
studies. Cancer Res Treat. 49:915–926. 2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Tucker ER, George S, Angelini P, Bruna A
and Chesler L: The promise of Patient-derived preclinical models to
accelerate the implementation of personalised medicine for children
with neuroblastoma. J Pers Med. 11(248)2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Zhuang Y, Grainger JM, Vedell PT, Yu J,
Moyer AM, Gao H, Fan XY, Qin S, Liu D, Kalari KR, et al:
Establishment and characterization of immortalized human breast
cancer cell lines from breast cancer patient-derived xenografts
(PDX). NPJ Breast Cancer. 7(79)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Martinez-Garcia R, Juan D, Rausell A,
Muñoz M, Baños N, Menéndez C, Lopez-Casas PP, Rico D, Valencia A
and Hidalgo M: Transcriptional dissection of pancreatic tumors
engrafted in mice. Genome Med. 6(27)2014.PubMed/NCBI View
Article : Google Scholar
|
|
35
|
Hakuno SK, Michiels E, Kuhlemaijer EB,
Rooman I, Hawinkels L and Slingerland M: Multicellular modelling of
Difficult-to-Treat gastrointestinal cancers: Current possibilities
and challenges. Int J Mol Sci. 23(3147)2022.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Jung J, Seol HS and Chang S: The
generation and application of Patient-derived xenograft model for
cancer research. Cancer Res Treat. 50:1–10. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Meraz IM, Majidi M, Meng F, Shao R, Ha MJ,
Neri S, Fang B, Lin SH, Tinkey PT, Shpall EJ, et al: An Improved
Patient-derived xenograft humanized mouse model for evaluation of
lung cancer immune responses. Cancer Immunol Res. 7:1267–1279.
2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Ganesh K, Wu C, O'Rourke KP, Szeglin BC,
Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al:
A rectal cancer organoid platform to study individual responses to
chemoradiation. Nat Med. 25:1607–1614. 2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Xia X, Li F, He J, Aji R and Gao D:
Organoid technology in cancer precision medicine. Cancer Lett.
457:20–27. 2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Brassard JA and Lutolf MP: Engineering
stem cell Self-organization to Build better organoids. Cell Stem
Cell. 24:860–876. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L,
Xia F, Fu G, Deng Y, Pan M, et al: Patient-derived organoids
predict chemoradiation responses of locally advanced rectal cancer.
Cell Stem Cell. 26:17–26.e6. 2020.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Lõhmussaar K, Oka R, Espejo Valle-Inclan
J, Smits MHH, Wardak H, Korving J, Begthel H, Proost N, van de Ven
M, Kranenburg OW, et al: Patient-derived organoids model cervical
tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem
Cell. 28:1380–1396.e6. 2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Lee SH, Hu W, Matulay JT, Silva MV,
Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB, et
al: Tumor evolution and drug response in patient-derived organoid
models of bladder cancer. Cell. 173:515–528.e17. 2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Servant R, Garioni M, Vlajnic T, Blind M,
Pueschel H, Müller DC, Zellweger T, Templeton AJ, Garofoli A,
Maletti S, et al: Prostate cancer patient-derived organoids:
Detailed outcome from a prospective cohort of 81 clinical
specimens. J Pathol. 254:543–555. 2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Chen P, Zhang X, Ding R, Yang L, Lyu X,
Zeng J, Lei JH, Wang L, Bi J, Shao N, et al: Patient-derived
organoids can guide personalized-therapies for patients with
advanced breast cancer. Adv Sci (Weinh). 8(e2101176)2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Seidlitz T and Stange DE: Gastrointestinal
cancer organoids-applications in basic and translational cancer
research. Exp Mol Med. 53:1459–1470. 2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Broutier L, Mastrogiovanni G, Verstegen
MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R,
Sidorova O, Gaspersz MP, et al: Human primary liver cancer-derived
organoid cultures for disease modeling and drug screening. Nat Med.
23:1424–1435. 2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Ogawa H, Koyanagi-Aoi M, Otani K, Zen Y,
Maniwa Y and Aoi T: Interleukin-6 blockade attenuates lung cancer
tissue construction integrated by cancer stem cells. Sci Rep.
7(12317)2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Li YF, Gao Y, Liang BW, Cao XQ, Sun ZJ, Yu
JH, Liu ZD and Han Y: Patient-derived organoids of non-small cells
lung cancer and their application for drug screening. Neoplasma.
67:430–437. 2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Han Y, Lee T, He Y, Raman R, Irizarry A,
Martin ML and Giaccone G: The regulation of CD73 in non-small cell
lung cancer. Eur J Cancer. 170:91–102. 2022.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Wang Y, Jiang T, Qin Z, Jiang J, Wang Q,
Yang S, Rivard C, Gao G, Ng TL, Tu MM, et al: HER2 exon 20
insertions in non-small-cell lung cancer are sensitive to the
irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib.
Ann Oncol. 30:447–455. 2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Zhang P, He B, Cai Q, Tu G, Peng X, Zhao
Z, Peng W, Yu F, Wang M, Tao Y, et al: Decreased IL-6 and NK cells
in Early-stage lung adenocarcinoma presenting as ground-glass
opacity. Front Oncol. 11(705888)2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Li Z, Qian Y, Li W, Liu L, Yu L, Liu X, Wu
G, Wang Y, Luo W, Fang F, et al: Human Lung adenocarcinoma-derived
organoid models for drug screening. iScience.
23(101411)2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Li Z, Yu L, Chen D, Meng Z, Chen W and
Huang W: Protocol for generation of lung adenocarcinoma organoids
from clinical samples. STAR Protoc. 2(100239)2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Shi R, Radulovich N, Ng C, Liu N, Notsuda
H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al:
Organoid cultures as preclinical models of Non-small cell lung
cancer. Clin Cancer Res. 26:1162–1174. 2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Liu T, Guo W, Luo K, Li L, Dong J, Liu M,
Shi X, Wang Z, Zhang J, Yin J, et al: Smoke-induced SAV1 gene
promoter hypermethylation disrupts YAP negative feedback and
promotes malignant progression of non-small cell lung cancer. Int J
Biol Sci. 18:4497–4512. 2022.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Sachs N, Papaspyropoulos A, Zomer-van
Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G,
Iakobachvili N, Amatngalim GD, et al: Long-term expanding human
airway organoids for disease modeling. EMBO J.
38(e100300)2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Dijkstra KK, Cattaneo CM, Weeber F,
Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL,
Kaing S, Kelderman S, et al: Generation of Tumor-Reactive T cells
by Co-culture of peripheral blood lymphocytes and tumor organoids.
Cell. 174:1586–1598.e12. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Cattaneo CM, Dijkstra KK, Fanchi LF,
Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN
and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc.
15:15–39. 2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Dijkstra KK, Monkhorst K, Schipper LJ,
Hartemink KJ, Smit EF, Kaing S, de Groot R, Wolkers MC, Clevers H,
Cuppen E, et al: Challenges in establishing pure lung cancer
organoids limit their utility for personalized medicine. Cell Rep.
31(107588)2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Bie Y, Wang J, Xiong L, Wang D, Liao J,
Zhang Y and Lin H: Lung adenocarcinoma organoids harboring EGFR
19Del and L643V double mutations respond to osimertinib and
gefitinib: A case report. Medicine (Baltimore).
100(e24793)2021.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Sándor GO, Soós A, Lörincz P, Rojkó L,
Harkó T, Bogyó L, Tölgyes T, Bursics A, Buzás EI, Moldvay J, et al:
Wnt activity and cell proliferation are coupled to extracellular
vesicle release in multiple organoid models. Front Cell Dev Biol.
9(670825)2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Kim SY, Kim SM, Lim S, Lee JY, Choi SJ,
Yang SD, Yun MR, Kim CG, Gu SR, Park C, et al: Modeling clinical
responses to targeted therapies by patient-derived organoids of
advanced lung adenocarcinoma. Clin Cancer Res. 27:4397–4409.
2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Padmanabhan J, Saha B, Powell C, Mo Q,
Perez BA and Chellappan S: Inhibitors targeting CDK9 show high
efficacy against osimertinib and AMG510 resistant lung
adenocarcinoma cells. Cancers (Basel). 13(3909)2021.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Yokota E, Iwai M, Yukawa T, Yoshida M,
Naomoto Y, Haisa M, Monobe Y, Takigawa N, Guo M, Maeda Y, et al:
Clinical application of a lung cancer organoid (tumoroid) culture
system. NPJ Precis Oncol. 5(29)2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Tamura H, Higa A, Hoshi H, Hiyama G,
Takahashi N, Ryufuku M, Morisawa G, Yanagisawa Y, Ito E, Imai JI,
et al: Evaluation of anticancer agents using patient-derived tumor
organoids characteristically similar to source tissues. Oncol Rep.
40:635–646. 2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Takahashi N, Hoshi H, Higa A, Hiyama G,
Tamura H, Ogawa M, Takagi K, Goda K, Okabe N, Muto S, et al: An in
vitro system for evaluating molecular targeted drugs using lung
patient-derived tumor organoids. Cells. 8(481)2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Ma X, Yang S, Jiang H, Wang Y and Xiang Z:
Transcriptomic analysis of tumor tissues and organoids reveals the
crucial genes regulating the proliferation of lung adenocarcinoma.
J Transl Med. 19(368)2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Mazzocchi A, Dominijanni A and Soker S:
Pleural effusion aspirate for use in 3D lung cancer modeling and
chemotherapy screening. Methods Mol Biol. 2394:471–483.
2022.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Hu Y, Sui X, Song F, Li Y, Li K, Chen Z,
Yang F, Chen X, Zhang Y, Wang X, et al: Lung cancer organoids
analyzed on microwell arrays predict drug responses of patients
within a week. Nat Commun. 12(2581)2021.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ,
Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived
lung cancer organoids as in vitro cancer models for therapeutic
screening. Nat Commun. 10(3991)2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Jung DJ, Shin TH, Kim M, Sung CO, Jang SJ
and Jeong GS: A one-stop microfluidic-based lung cancer organoid
culture platform for testing drug sensitivity. Lab Chip.
19:2854–2865. 2019.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Chen JH, Chu XP, Zhang JT, Nie Q, Tang WF,
Su J, Yan HH, Zheng HP, Chen ZX, Chen X, et al: Genomic
characteristics and drug screening among organoids derived from
non-small cell lung cancer patients. Thorac Cancer. 11:2279–2290.
2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Chen X, Liu Y, Wang Y, Wang C, Chen X,
Xiong Y, Liu L, Yuan X, Tang H, Shu C, et al: CYP4F2-catalyzed
metabolism of arachidonic acid promotes stromal cell-mediated
immunosuppression in non-small cell lung cancer. Cancer Res.
82:4016–4030. 2022.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Peng KC, Su JW, Xie Z, Wang HM, Fang MM,
Li WF, Chen YQ, Guan XH, Su J, Yan HH, et al: Clinical outcomes of
EGFR+/METamp+ vs. EGFR+/METamp-untreated patients with advanced
non-small cell lung cancer. Thorac Cancer. 13:1619–1630.
2022.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Choi SY, Cho YH, Kim DS, Ji W, Choi CM,
Lee JC, Rho JK and Jeong GS: Establishment and long-term expansion
of small cell lung cancer patient-derived tumor organoids. Int J
Mol Sci. 22(1349)2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Choi YJ, Lee H, Kim DS, Kim DH, Kang MH,
Cho YH, Choi CM, Yoo J, Lee KO, Choi EK, et al: Discovery of a
novel CDK7 inhibitor YPN-005 in small cell lung cancer. Eur J
Pharmacol. 907(174298)2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Gmeiner WH, Miller LD, Chou JW,
Dominijanni A, Mutkus L, Marini F, Ruiz J, Dotson T, Thomas KW,
Parks G, et al: Dysregulated pyrimidine biosynthesis contributes to
5-FU resistance in SCLC Patient-derived organoids but response to a
novel polymeric fluoropyrimidine, CF10. Cancers (Basel).
12(788)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Chen J, Hu Y, Zhang J, Wang Q, Wu X, Huang
W, Wang Q, Cai G, Wang H, Ou T, et al: Therapeutic targeting RORγ
with natural product N-hydroxyapiosporamide for small cell lung
cancer by reprogramming neuroendocrine fate. Pharmacol Res.
178(106160)2022.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Redin E, Garrido-Martin EM, Valencia K,
Redrado M, Solorzano JL, Carias R, Echepare M, Exposito F, Serrano
D, Ferrer I, et al: YES1 is a druggable oncogenic target in Small
Cell Lung Cancer. J Thorac Oncol. 17:1387–1403. 2022.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Lancaster MA and Knoblich JA:
Organogenesis in a dish: Modeling development and disease using
organoid technologies. Science. 345(1247125)2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Suzuka J, Tsuda M, Wang L, Kohsaka S,
Kishida K, Semba S, Sugino H, Aburatani S, Frauenlob M, Kurokawa T,
et al: Rapid reprogramming of tumour cells into cancer stem cells
on double-network hydrogels. Nat Biomed Eng. 5:914–925.
2021.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Xu Z, Jia Y, Huang X, Feng N and Li Y:
Rapid induction of pancreatic cancer cells to cancer stem cells via
heterochromatin modulation. Cell Cycle. 17:1487–1495.
2018.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Ishiguro T, Ohata H, Sato A, Yamawaki K,
Enomoto T and Okamoto K: Tumor-derived spheroids: Relevance to
cancer stem cells and clinical applications. Cancer Sci.
108:283–289. 2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Weiswald LB, Bellet D and Dangles-Marie V:
Spherical cancer models in tumor biology. Neoplasia. 17:1–15.
2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Oshima N, Yamada Y, Nagayama S, Kawada K,
Hasegawa S, Okabe H, Sakai Y and Aoi T: Induction of cancer stem
cell properties in colon cancer cells by defined factors. PLoS One.
9(e101735)2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega
VB, Wong E, Orlov YL, Zhang W, Jiang J, et al: Integration of
external signaling pathways with the core transcriptional network
in embryonic stem cells. Cell. 133:1106–1117. 2008.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Zhang CC, Li CG, Wang YF, Xu LH, He XH,
Zeng QZ, Zeng CY, Mai FY, Hu B and Ouyang DY: Chemotherapeutic
paclitaxel and cisplatin differentially induce pyroptosis in A549
lung cancer cells via caspase-3/GSDME activation. Apoptosis.
24:312–325. 2019.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Long K, Gu L, Li L, Zhang Z, Li E, Zhang
Y, He L, Pan F, Guo Z and Hu Z: Small-molecule inhibition of APE1
induces apoptosis, pyroptosis, and necroptosis in non-small cell
lung cancer. Cell Death Dis. 12(503)2021.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Song J, Sun Y, Cao H, Liu Z, Xi L, Dong C,
Yang R and Shi Y: A novel pyroptosis-related lncRNA signature for
prognostic prediction in patients with lung adenocarcinoma.
Bioengineered. 12:5932–5949. 2021.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Coleman CN, Higgins GS, Brown JM, Baumann
M, Kirsch DG, Willers H, Prasanna PG, Dewhirst MW, Bernhard EJ and
Ahmed MM: Improving the predictive value of preclinical studies in
support of radiotherapy clinical trials. Clin Cancer Res.
22:3138–3147. 2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Sereti E, Karagianellou T, Kotsoni I,
Magouliotis D, Kamposioras K, Ulukaya E, Sakellaridis N,
Zacharoulis D and Dimas K: Patient derived xenografts (PDX) for
personalized treatment of pancreatic cancer: Emerging allies in the
war on a devastating cancer? J Proteomics. 188:107–118.
2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Invrea F, Rovito R, Torchiaro E, Petti C,
Isella C and Medico E: Patient-derived xenografts (PDXs) as model
systems for human cancer. Curr Opin Biotechnol. 63:151–156.
2020.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Beshiri ML, Tice CM, Tran C, Nguyen HM,
Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, et
al: A PDX/Organoid biobank of advanced prostate cancers captures
genomic and phenotypic heterogeneity for disease modeling and
therapeutic screening. Clin Cancer Res. 24:4332–4345.
2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Fujii E, Kato A and Suzuki M:
Patient-derived xenograft (PDX) models: Characteristics and points
to consider for the process of establishment. J Toxicol Pathol.
33:153–160. 2020.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S,
Saleh M, Asadzadeh Aghdaei H and Baghaei K: Patient-derived
xenograft (PDX) models, applications and challenges in cancer
research. J Transl Med. 20(206)2022.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Fong ELS, Toh TB, Lin QXX, Liu Z, Hooi L,
Mohd Abdul Rashid MB, Benoukraf T, Chow EK, Huynh TH and Yu H:
Generation of matched patient-derived xenograft in vitro-in vivo
models using 3D macroporous hydrogels for the study of liver
cancer. Biomaterials. 159:229–240. 2018.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Nelson SR, Zhang C, Roche S, O'Neill F,
Swan N, Luo Y, Larkin A, Crown J and Walsh N: Modelling of
pancreatic cancer biology: Transcriptomic signature for 3D
PDX-derived organoids and primary cell line organoid development.
Sci Rep. 10(2778)2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Romero-Calvo I, Weber CR, Ray M, Brown M,
Kirby K, Nandi RK, Long TM, Sparrow SM, Ugolkov A, Qiang W, et al:
Human organoids share structural and genetic features with primary
pancreatic adenocarcinoma tumors. Mol Cancer Res. 17:70–83.
2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Chauhan AF and Liu SV: Small cell lung
cancer: Advances in diagnosis and management. Semin Respir Crit
Care Med. 41:435–446. 2020.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Wang Y, Zou S, Zhao Z, Liu P, Ke C and Xu
S: New insights into small-cell lung cancer development and
therapy. Cell Biol Int. 44:1564–1576. 2020.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wang WZ, Shulman A, Amann JM, Carbone DP
and Tsichlis PN: Small cell lung cancer: Subtypes and therapeutic
implications. Semin Cancer Biol. 86:543–554. 2022.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Ireland AS, Micinski AM, Kastner DW, Guo
B, Wait SJ, Spainhower KB, Conley CC, Chen OS, Guthrie MR, Soltero
D, et al: MYC drives temporal evolution of small cell lung cancer
subtypes by reprogramming neuroendocrine fate. Cancer Cell.
38:60–78.e12. 2020.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Kalemkerian GP, Loo BW, Akerley W, Attia
A, Bassetti M, Boumber Y, Decker R, Dobelbower MC, Dowlati A,
Downey RJ, et al: NCCN Guidelines Insights: Small cell lung cancer,
version 2.2018. J Natl Compr Canc Netw. 16:1171–1182.
2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Drapkin BJ and Rudin CM: Advances in
small-cell lung cancer (SCLC) translational research. Cold Spring
Harb Perspect Med. 11(a038240)2021.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Fan J, Lv Z, Yang G, Liao TT, Xu J, Wu F,
Huang Q, Guo M, Hu G, Zhou M, et al: Retinoic acid receptor-related
orphan receptors: Critical roles in tumorigenesis. Front Immunol.
9(1187)2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Hogan S, O'Gara JP and O'Neill E: Novel
treatment of staphylococcus aureus Device-related infections using
fibrinolytic agents. Antimicrob Agents Chemother. 62:e02008–17.
2018.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Gobin CM, Menefee JN, Lattimore CC, Doty A
and Fredenburg KM: Cell Dissociation enzymes affect Annexin
V/Flow-cytometric apoptotic assay outcomes After miRNA-based
transient transfection. Anticancer Res. 42:2819–2825.
2022.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Maruyama I, Yoshida C, Kobayashi M,
Oyamada H and Momose K: Preparation of single smooth muscle cells
from guinea pig taenia coli by combinations of purified collagenase
and papain. J Pharmacol Methods. 18:151–161. 1987.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Wise DR and Thompson CB: Glutamine
addiction: A new therapeutic target in cancer. Trends Biochem Sci.
35:427–433. 2010.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Richards NG and Schuster SM: Mechanistic
issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas
Mol Biol. 72:145–198. 1998.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Wellen KE, Lu C, Mancuso A, Lemons JM,
Ryczko M, Dennis JW, Rabinowitz JD, Coller HA and Thompson CB: The
hexosamine biosynthetic pathway couples growth factor-induced
glutamine uptake to glucose metabolism. Genes Dev. 24:2784–2799.
2010.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Zhang J, Pavlova NN and Thompson CB:
Cancer cell metabolism: The essential role of the nonessential
amino acid, glutamine. EMBO J. 36:1302–1315. 2017.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Heeneman S, Deutz NE and Buurman WA: The
concentrations of glutamine and ammonia in commercially available
cell culture media. J Immunol Methods. 166:85–91. 1993.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Schneider M, Marison IW and von Stockar U:
The importance of ammonia in mammalian cell culture. J Biotechnol.
46:161–185. 1996.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Imamoto Y, Tanaka H, Takahashi K, Konno Y
and Suzawa T: Advantages of AlaGln as an additive to cell culture
medium: Use with anti-CD20 chimeric antibody-producing POTELLIGENT™
CHO cell lines. Cytotechnology. 65:135–143. 2013.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Yoshida Y, Soma T, Matsuzaki T and
Kishimoto J: Wnt activator CHIR99021-stimulated human dermal
papilla spheroids contribute to hair follicle formation and
production of reconstituted follicle-enriched human skin. Biochem
Biophys Res Commun. 516:599–605. 2019.PubMed/NCBI View Article : Google Scholar
|
|
118
|
An WF, Germain AR, Bishop JA, Nag PP,
Metkar S, Ketterman J, Walk M, Weiwer M, Liu X, Patnaik D, et al:
Discovery of potent and highly selective inhibitors of GSK3b. In:
Probe Reports from the NIH Molecular Libraries Program. National
Center for Biotechnology Information (US), Bethesda (MD), 2010.
|
|
119
|
Takahashi T and Shiraishi A: Stem cell
signaling pathways in the small intestine. Int J Mol Sci.
21(2032)2020.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Vincan E, Schwab RHM, Flanagan DJ, Moselen
JM, Tran BM, Barker N and Phesse TJ: The Central role of wnt
signaling and organoid technology in personalizing anticancer
therapy. Prog Mol Biol Transl Sci. 153:299–319. 2018.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Yoshida T, Singh AK, Bishai WR, McConkey
DJ and Bivalacqua TJ: Organoid culture of bladder cancer cells.
Investig Clin Urol. 59:149–151. 2018.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Djomehri SI, Burman B, Gonzalez ME,
Takayama S and Kleer CG: A reproducible scaffold-free 3D organoid
model to study neoplastic progression in breast cancer. J Cell
Commun Signal. 13:129–143. 2019.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Ahn Y, An JH, Yang HJ, Lee DG, Kim J, Koh
H, Park YH, Song BS, Sim BW, Lee HJ, et al: Human blood vessel
organoids penetrate human cerebral organoids and form a Vessel-like
system. Cells. 10(2036)2021.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Li Y, Wang R, Huang D, Ma X, Mo S, Guo Q,
Fu G, Li Y, Xu X, Hu X, et al: A novel human colon signet-ring cell
carcinoma organoid line: Establishment, characterization and
application. Carcinogenesis. 41:993–1004. 2020.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Ma HC, Zhu YJ, Zhou R, Yu YY, Xiao ZZ and
Zhang HB: Lung cancer organoids, a promising model still with long
way to go. Crit Rev Oncol Hematol. 171(103610)2022.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Maddalo G, Spolverato Y, Rugge M and
Farinati F: Gastrin: From pathophysiology to cancer prevention and
treatment. Eur J Cancer Prev. 23:258–263. 2014.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Zheng B, Ko KP, Fang X, Wang X, Zhang J,
Jun S, Kim BJ, Luo W, Kim MJ, Jung YS, et al: A new murine
esophageal organoid culture method and organoid-based model of
esophageal squamous cell neoplasia. iScience.
24(103440)2021.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Tsai S, McOlash L, Palen K, Johnson B,
Duris C, Yang Q, Dwinell MB, Hunt B, Evans DB, Gershan J, et al:
Development of primary human pancreatic cancer organoids, matched
stromal and immune cells and 3D tumor microenvironment models. BMC
Cancer. 18(335)2018.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Kawasaki K, Toshimitsu K, Matano M, Fujita
M, Fujii M, Togasaki K, Ebisudani T, Shimokawa M, Takano A,
Takahashi S, et al: An organoid biobank of neuroendocrine neoplasms
enables genotype-phenotype mapping. Cell. 183:1420–1435.e21.
2020.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Shiota J, Samuelson LC and Razumilava N:
Hepatobiliary organoids and their applications for studies of liver
health and disease: Are We There Yet? Hepatology. 74:2251–2263.
2021.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Dong R, Zhang B and Zhang X: Liver
organoids: An in vitro 3D model for liver cancer study. Cell
Biosci. 12(152)2022.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Sato T, Stange DE, Ferrante M, Vries RG,
Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J,
Siersema PD, et al: Long-term expansion of epithelial organoids
from human colon, adenoma, adenocarcinoma, and Barrett's
epithelium. Gastroenterology. 141:1762–1772. 2011.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Fatehullah A, Tan SH and Barker N:
Organoids as an in vitro model of human development and disease.
Nat Cell Biol. 18:246–254. 2016.PubMed/NCBI View Article : Google Scholar
|
|
134
|
van de Wetering M, Francies HE, Francis
JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J,
Taylor-Weiner A, Kester L, et al: Prospective derivation of a
living organoid biobank of colorectal cancer patients. Cell.
161:933–945. 2015.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Karthaus WR, Iaquinta PJ, Drost J,
Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel
H, Sachs N, et al: Identification of multipotent luminal progenitor
cells in human prostate organoid cultures. Cell. 159:163–175.
2014.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Verissimo CS, Overmeer RM, Ponsioen B,
Drost J, Mertens S, Verlaan-Klink I, Gerwen BV, van der Ven M,
Wetering MV, Egan DA, et al: Targeting mutant RAS in
patient-derived colorectal cancer organoids by combinatorial drug
screening. Elife. 5(e18489)2016.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Gohi B, Liu XY, Zeng HY, Xu S, Ake KMH,
Cao XJ, Zou KM and Namulondo S: Enhanced efficiency in isolation
and expansion of hAMSCs via dual enzyme digestion and
micro-carrier. Cell Biosci. 10(2)2020.PubMed/NCBI View Article : Google Scholar
|