1
|
Breault NM, Wu D, Dasgupta A, Chen KH and
Archer SL: Acquired disorders of mitochondrial metabolism and
dynamics in pulmonary arterial hypertension. Front Cell Dev Biol.
11(1105565)2023.PubMed/NCBI View Article : Google Scholar
|
2
|
Galiè N, McLaughlin VV, Rubin LJ and
Simonneau G: An overview of the 6th world symposium on pulmonary
hypertension. Eur Respir J. 53(1802148)2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Van Nuffel S, Quatredeniers M, Pirkl A,
Zakel J, Le Caer JP, Elie N, Vanbellingen QP, Dumas SJ, Nakhleh MK,
Ghigna MR, et al: Multimodal imaging mass spectrometry to identify
markers of pulmonary arterial hypertension in human lung tissue
using MALDI-ToF, ToF-SIMS, and hybrid SIMS. Anal Chem.
92:12079–12087. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Samokhin AO, Hsu S, Yu PB, Waxman AB, Alba
GA, Wertheim BM, Hopkins CD, Bowman F, Channick RN, Nikolic I, et
al: Circulating NEDD9 is increased in pulmonary arterial
hypertension: A multicenter, retrospective analysis. J Heart Lung
Transplant. 39:289–299. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Guignabert C, Savale L, Boucly A, Thuillet
R, Tu L, Ottaviani M, Rhodes CJ, De Groote P, Prévot G, Bergot E,
et al: Serum and pulmonary expression profiles of the activin
signaling system in pulmonary arterial hypertension. Circulation.
147:1809–1822. 2023.PubMed/NCBI View Article : Google Scholar
|
6
|
Tang H, Desai AA and Yuan JX: Genetic
insights into pulmonary arterial hypertension. application of
whole-exome sequencing to the study of pathogenic mechanisms. Am J
Respir Crit Care Med. 194:393–397. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Frid MG, McKeon BA, Thurman JM, Maron BA,
Li M, Zhang H, Kumar S, Sullivan T, Laskowsky J, Fini MA, et al:
Immunoglobulin-driven complement activation regulates
proinflammatory remodeling in pulmonary hypertension. Am J Respir
Crit Care Med. 201:224–239. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Yun X, Philip NM, Jiang H, Smith Z,
Huetsch JC, Damarla M, Suresh K and Shimoda LA: Upregulation of
aquaporin 1 mediates increased migration and proliferation in
pulmonary vascular cells from the rat SU5416/hypoxia model of
pulmonary hypertension. Front Physiol. 12(763444)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Luo L, Hong X, Diao B, Chen S and Hei M:
Sulfur dioxide attenuates hypoxia- induced pulmonary arteriolar
remodeling via Dkk1/Wnt signaling pathway. Biomed Pharmacother.
106:692–698. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Jia D, He Y, Zhu Q, Liu H, Zuo C, Chen G,
Yu Y and Lu A: RAGE-mediated extracellular matrix proteins
accumulation exacerbates HySu-induced pulmonary hypertension.
Cardiovasc Res. 113:586–597. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Dean A, Gregorc T, Docherty CK, Harvey KY,
Nilsen M, Morrell NW and MacLean MR: Role of the aryl hydrocarbon
receptor in sugen 5416-induced experimental pulmonary hypertension.
Am J Respir Cell Mol Biol. 58:320–330. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Parpaleix A, Amsellem V, Houssaini A, Abid
S, Breau M, Marcos E, Sawaki D, Delcroix M, Quarck R, Maillard A,
et al: Role of interleukin-1 receptor 1/MyD88 signalling in the
development and progression of pulmonary hypertension. Eur Respir
J. 48:470–483. 2016.PubMed/NCBI View Article : Google Scholar
|
13
|
Zehendner CM, Valasarajan C, Werner A,
Boeckel JN, Bischoff FC, John D, Weirick T, Glaser SF, Rossbach O,
Jaé N, et al: Long noncoding RNA TYKRIL plays a role in pulmonary
hypertension via the p53-mediated regulation of PDGFRβ. Am J Respir
Crit Care Med. 202:1445–1457. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang AP, Yang F, Tian Y, Su JH, Gu Q, Chen
W, Gong SX, Ma XF, Qin XP and Jiang ZS: Pulmonary artery smooth
muscle cell senescence promotes the proliferation of PASMCs by
paracrine IL-6 in hypoxia-induced pulmonary hypertension. Front
Physiol. 12(656139)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhaolin Z, Guohua L, Shiyuan W and Zuo W:
Role of pyroptosis in cardiovascular disease. Cell Prolif.
52(e12563)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Duan H, Zhang X, Song R, Liu T, Zhang Y
and Yu A: Upregulation of miR-133a by adiponectin inhibits
pyroptosis pathway and rescues acute aortic dissection. Acta
Biochim Biophys Sin (Shanghai). 52:988–997. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Gong T, Yang Y, Jin T, Jiang W and Zhou R:
Orchestration of NLRP3 inflammasome activation by ion fluxes.
Trends Immunol. 39:393–406. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Banerjee I, Behl B, Mendonca M,
Shrivastava G, Russo AJ, Menoret A, Ghosh A, Vella AT, Vanaja SK,
Sarkar SN, et al: Gasdermin D restrains type I interferon response
to cytosolic DNA by disrupting ionic homeostasis. Immunity.
49:413–426.e5. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli
VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes
pyroptosis by forming membrane pores. Nature. 535:153–158.
2016.PubMed/NCBI View Article : Google Scholar
|
20
|
Xu YJ, Zheng L, Hu YW and Wang Q:
Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta.
476:28–37. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Pan J, Han L, Guo J, Wang X, Liu D, Tian
J, Zhang M and An F: AIM2 accelerates the atherosclerotic plaque
progressions in ApoE-/- mice. Biochem Biophys Res Commun.
498:487–494. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Pan J, Lu L, Wang X, Liu D, Tian J, Liu H,
Zhang M, Xu F and An F: AIM2 regulates vascular smooth muscle cell
migration in atherosclerosis. Biochem Biophys Res Commun.
497:401–409. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Cheng KT, Xiong S, Ye Z, Hong Z, Di A,
Tsang KM, Gao X, An S, Mittal M, Vogel SM, et al:
Caspase-11-mediated endothelial pyroptosis underlies
endotoxemia-induced lung injury. J Clin Invest. 127:4124–4135.
2017.PubMed/NCBI View
Article : Google Scholar
|
24
|
Zhaolin Z, Jiaojiao C, Peng W, Yami L,
Tingting Z, Jun T, Shiyuan W, Jinyan X, Dangheng W, Zhisheng J and
Zuo W: OxLDL induces vascular endothelial cell pyroptosis through
miR-125a-5p/TET2 pathway. J Cell Physiol. 234:7475–7491.
2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Li P, Dong XR, Zhang B, Zhang XT, Liu JZ,
Ma DS and Ma L: Molecular mechanism and therapeutic targeting of
necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular
disease. Chin Med J (Engl). 134:2647–2655. 2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Wilson DW, Segall HJ, Pan LC, Lamé MW,
Estep JE and Morin D: Mechanisms and pathology of monocrotaline
pulmonary toxicity. Crit Rev Toxicol. 22:307–325. 1992.PubMed/NCBI View Article : Google Scholar
|
27
|
Kovacs SB and Miao EA: Gasdermins:
Effectors of pyroptosis. Trends Cell Biol. 27:673–684.
2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Wang L, Li K, Lin X, Yao Z, Wang S, Xiong
X, Ning Z, Wang J, Xu X, Jiang Y, et al: Metformin induces human
esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1
axis. Cancer Lett. 450:22–31. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
McKenzie BA, Mamik MK, Saito LB, Boghozian
R, Monaco MC, Major EO, Lu JQ, Branton WG and Power C: Caspase-1
inhibition prevents glial inflammasome activation and pyroptosis in
models of multiple sclerosis. Proc Natl Acad Sci USA.
115:E6065–E6074. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Wang AP, Li XH, Gong SX, Li WQ, Hu CP,
Zhang Z and Li YJ: miR-100 suppresses mTOR signaling in
hypoxia-induced pulmonary hypertension in rats. Eur J Pharmacol.
765:565–573. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Guo L, Li Y, Tian Y, Gong S, Chen X, Peng
T, Wang A and Jiang Z: eIF2α promotes vascular remodeling via
autophagy in monocrotaline-induced pulmonary arterial hypertension
rats. Drug Des Devel Ther. 13:2799–2809. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Liu B, Peng Y, Yi D, Machireddy N, Dong D,
Ramirez K, Dai J, Vanderpool R, Zhu MM, Dai Z and Zhao YY:
Endothelial PHD2 deficiency induces nitrative stress via
suppression of caveolin-1 in pulmonary hypertension. Eur Respir J.
60(2102643)2022.PubMed/NCBI View Article : Google Scholar
|
33
|
Sharifi Kia D, Kim K and Simon MA: Current
understanding of the right ventricle structure and function in
pulmonary arterial hypertension. Front Physiol.
12(641310)2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Wei Y, Lan B, Zheng T, Yang L, Zhang X,
Cheng L, Tuerhongjiang G, Yuan Z and Wu Y: GSDME-mediated
pyroptosis promotes the progression and associated inflammation of
atherosclerosis. Nat Commun. 14(929)2023.PubMed/NCBI View Article : Google Scholar
|
35
|
Yang F, Qin Y, Wang Y, Li A, Lv J, Sun X,
Che H, Han T, Meng S, Bai Y and Wang L: LncRNA KCNQ1OT1 mediates
pyroptosis in diabetic cardiomyopathy. Cell Physiol Biochem.
50:1230–1244. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Tonnus W, Maremonti F, Belavgeni A, Latk
M, Kusunoki Y, Brucker A, von Mässenhausen A, Meyer C, Locke S,
Gembardt F, et al: Gasdermin D-deficient mice are hypersensitive to
acute kidney injury. Cell Death Dis. 13(792)2022.PubMed/NCBI View Article : Google Scholar
|
37
|
Gaul S, Leszczynska A, Alegre F, Kaufmann
B, Johnson CD, Adams LA, Wree A, Damm G, Seehofer D, Calvente CJ,
et al: Hepatocyte pyroptosis and release of inflammasome particles
induce stellate cell activation and liver fibrosis. J Hepatol.
74:156–167. 2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Moonen S, Koper MJ, Van Schoor E,
Schaeverbeke JM, Vandenberghe R, von Arnim CAF, Tousseyn T, De
Strooper B and Thal DR: Pyroptosis in Alzheimer's disease: Cell
type-specific activation in microglia, astrocytes and neurons. Acta
Neuropathol. 145:175–195. 2023.PubMed/NCBI View Article : Google Scholar
|
39
|
Dai R, Ren Y, Lv X, Chang C, He S, Li Q,
Yang X, Ren L, Wei R and Su Q: MicroRNA-30e-3p reduces coronary
microembolism-induced cardiomyocyte pyroptosis and inflammation by
sequestering HDAC2 from the SMAD7 promoter. Am J Physiol
Cell Physiol. 324:C222–C235. 2023.PubMed/NCBI View Article : Google Scholar
|
40
|
Sukhanov S, Higashi Y, Yoshida T, Mummidi
S, Aroor AR, Jeffrey Russell J, Bender SB, DeMarco VG and
Chandrasekar B: The SGLT2 inhibitor empagliflozin attenuates
interleukin-17A-induced human aortic smooth muscle cell
proliferation and migration by targeting
TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion.
Cell Signal. 77(109825)2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Gomez D, Baylis RA, Durgin BG, Newman AAC,
Alencar GF, Mahan S, St Hilaire C, Müller W, Waisman A, Francis SE,
et al: Interleukin-1β has atheroprotective effects in advanced
atherosclerotic lesions of mice. Nat Med. 24:1418–1429.
2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Haldar S, Dru C, Choudhury D, Mishra R,
Fernandez A, Biondi S, Liu Z, Shimada K, Arditi M and Bhowmick NA:
Inflammation and pyroptosis mediate muscle expansion in an
interleukin-1β (IL-1β)-dependent manner. J Biol Chem.
290:6574–6583. 2015.PubMed/NCBI View Article : Google Scholar
|
43
|
Saito T, Miyagawa K, Chen SY, Tamosiuniene
R, Wang L, Sharpe O, Samayoa E, Harada D, Moonen JAJ, Cao A, et al:
Upregulation of human endogenous retrovirus-K is linked to immunity
and inflammation in pulmonary arterial hypertension. Circulation.
136:1920–1935. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Mavrogiannis E, Hagdorn QAJ, Bazioti V,
Douwes JM, Van Der Feen DE, Oberdorf-Maass SU, Westerterp M and
Berger RMF: Pirfenidone ameliorates pulmonary arterial pressure and
neointimal remodeling in experimental pulmonary arterial
hypertension by suppressing NLRP3 inflammasome activation. Pulm
Circ. 12(e12101)2022.PubMed/NCBI View Article : Google Scholar
|
45
|
Choudhury P, Dasgupta S, Kar A, Sarkar S,
Chakraborty P, Bhattacharyya P, Roychowdhury S and Chaudhury K:
Bioinformatics analysis of hypoxia associated genes and
inflammatory cytokine profiling in COPD-PH. Respir Med.
227(107658)2024.PubMed/NCBI View Article : Google Scholar
|
46
|
Chen X, He WT, Hu L, Li J, Fang Y, Wang X,
Xu X, Wang Z, Huang K and Han J: Pyroptosis is driven by
non-selective gasdermin-D pore and its morphology is different from
MLKL channel-mediated necroptosis. Cell Res. 26:1007–1020.
2016.PubMed/NCBI View Article : Google Scholar
|
47
|
Ding J, Wang K, Liu W, She Y, Sun Q, Shi
J, Sun H, Wang DC and Shao F: Pore-forming activity and structural
autoinhibition of the gasdermin family. Nature. 535:111–116.
2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y,
Zhao J, Ruan J, Luo X, Lou X, Bai Y, et al: FDA-approved disulfiram
inhibits pyroptosis by blocking gasdermin D pore formation. Nat
Immunol. 21:736–745. 2020.PubMed/NCBI View Article : Google Scholar
|
49
|
Liu S, Deng X, Zhang P, Wang X, Fan Y,
Zhou S, Mu S, Mehta JL and Ding Z: Blood flow patterns regulate
PCSK9 secretion via MyD88-mediated pro-inflammatory cytokines.
Cardiovasc Res. 116:1721–1732. 2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Westphal E, Herzberg M, Neumann I, Beibei
L, Pilowski C, Li C, Werdan K and Loppnow H: Neutrophils process
interleukin-1beta and interleukin-18 precursors in a caspase-1-like
fashion-processing is inhibited by human vascular smooth muscle
cells. Eur Cytokine Netw. 17:19–28. 2006.PubMed/NCBI
|
51
|
Porritt RA, Zemmour D, Abe M, Lee Y,
Narayanan M, Carvalho TT, Gomez AC, Martinon D, Santiskulvong C,
Fishbein MC, et al: NLRP3 inflammasome mediates immune-stromal
interactions in vasculitis. Circ Res. 129:e183–e200.
2021.PubMed/NCBI View Article : Google Scholar
|
52
|
Sahar S, Dwarakanath RS, Reddy MA, Lanting
L, Todorov I and Natarajan R: Angiotensin II enhances
interleukin-18 mediated inflammatory gene expression in vascular
smooth muscle cells: A novel cross-talk in the pathogenesis of
atherosclerosis. Circ Res. 96:1064–1071. 2005.PubMed/NCBI View Article : Google Scholar
|
53
|
Li P, Li YL, Li ZY, Wu YN, Zhang CC, A X,
Wang CX, Shi HT, Hui MZ, Xie B, et al: Cross talk between vascular
smooth muscle cells and monocytes through
interleukin-1β/interleukin-18 signaling promotes vein graft
thickening. Arterioscler Thromb Vasc Biol. 34:2001–2011.
2014.PubMed/NCBI View Article : Google Scholar
|
54
|
Rodriguez-Arias JJ and García-Álvarez A:
Sex differences in pulmonary hypertension. Front Aging.
2(727558)2021.PubMed/NCBI View Article : Google Scholar
|
55
|
Sun Y, Sangam S, Guo Q, Wang J, Tang H,
Black SM and Desai AA: Sex differences, estrogen metabolism and
signaling in the development of pulmonary arterial hypertension.
Front Cardiovasc Med. 8(719058)2021.PubMed/NCBI View Article : Google Scholar
|
56
|
Huang Y, Lei C, Xie W, Yan L, Wang Y, Yuan
S, Wang J, Zhao Y, Wang Z, Yang X, et al: Oxidation of ryanodine
receptors promotes Ca2+ leakage and contributes to right
ventricular dysfunction in pulmonary hypertension. Hypertension.
77:59–71. 2021.PubMed/NCBI View Article : Google Scholar
|
57
|
Yan X, Huang J, Zeng Y, Zhong X, Fu Y,
Xiao H, Wang X, Lian H, Luo H, Li D and Guo R: CGRP attenuates
pulmonary vascular remodeling by inhibiting the cGAS-STING-NFκB
pathway in pulmonary arterial hypertension. Biochem Pharmacol.
222(116093)2024.PubMed/NCBI View Article : Google Scholar
|
58
|
Williams TL, Nyimanu D, Kuc RE, Foster R,
Glen RC, Maguire JJ and Davenport AP: The biased apelin receptor
agonist, MM07, reverses sugen/hypoxia-induced pulmonary arterial
hypertension as effectively as the endothelin antagonist
macitentan. Front Pharmacol. 15(1369489)2024.PubMed/NCBI View Article : Google Scholar
|