Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review)
- Authors:
- Published online on: September 4, 2024 https://doi.org/10.3892/etm.2024.12705
- Article Number: 416
-
Copyright: © Sato et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
The normal structure of the spinal vertebrae is important for maintaining posture and the normal function of the thoracoabdominal organs and nervous system. Kyphoscoliosis occurs when the spinal vertebrae curve excessively beyond their physiological curvature to the back and side. Congenital kyphoscoliosis, a type of kyphoscoliosis, develops in the fetal period and is present in early childhood. However, neither the mechanism of pathogenesis nor the responsible gene has been identified. The lack of established animal models is a significant hurdle that limits the study of congenital kyphoscoliosis. Over the past 15 years, we have been accumulating data on this issue using rat models, based on the idea that the development of congenital kyphoscoliosis is caused by the abnormal expression of genes involved in normal bone formation. We hypothesize that analysis of an animal model of congenital kyphoscoliosis will provide a basis for the treatment of this disease in humans. The present review aimed to introduce molecules and mechanisms associated with the pathogenesis of kyphoscoliosis and to discuss the usefulness of studying this disease using model rats that develop kyphoscoliosis.