Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review)

  • Authors:
    • Tomohiko Sato
    • Itsuki Takahashi
    • Yusuke Watanabe
    • Daiki Yokoyama
    • Noriaki Shimokawa
  • View Affiliations / Copyright

    Affiliations: Department of Physical Therapy, Ota College of Medical Technology, Ota, Gunma 373‑0812, Japan, Department of Nutrition, Takasaki University Graduate School of Health and Welfare, Takasaki, Gunma 370‑0033, Japan
    Copyright: © Sato et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 416
    |
    Published online on: September 4, 2024
       https://doi.org/10.3892/etm.2024.12705
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The normal structure of the spinal vertebrae is important for maintaining posture and the normal function of the thoracoabdominal organs and nervous system. Kyphoscoliosis occurs when the spinal vertebrae curve excessively beyond their physiological curvature to the back and side. Congenital kyphoscoliosis, a type of kyphoscoliosis, develops in the fetal period and is present in early childhood. However, neither the mechanism of pathogenesis nor the responsible gene has been identified. The lack of established animal models is a significant hurdle that limits the study of congenital kyphoscoliosis. Over the past 15 years, we have been accumulating data on this issue using rat models, based on the idea that the development of congenital kyphoscoliosis is caused by the abnormal expression of genes involved in normal bone formation. We hypothesize that analysis of an animal model of congenital kyphoscoliosis will provide a basis for the treatment of this disease in humans. The present review aimed to introduce molecules and mechanisms associated with the pathogenesis of kyphoscoliosis and to discuss the usefulness of studying this disease using model rats that develop kyphoscoliosis.
View Figures

Figure 1

Figure 2

View References

1 

Frost BA, Camarero-Espinosa S and Foster EJ: Materials for the Spine: Anatomy, problems, and solutions. Materials (Basel). 12(253)2019.PubMed/NCBI View Article : Google Scholar

2 

Galbusera F: The spine: Its evolution, function, and shape. In: Biomechanics of the Spine Basic Concepts, Spinal Disorders and Treatments. Galbusera F and Wilke HJ (eds). Academic Press, New York, NY, pp3-9, 2018.

3 

Izzoa R, Guarnieria G, Guglielmib G and Muto M: Biomechanics of the spine. Part I: Spinal stability. Eur J Radiol. 82:118–126. 2013.PubMed/NCBI View Article : Google Scholar

4 

Goldberg CJ, Moore DP, Fogarty EE and Dowling FE: Scoliosis: A review. Pediatr Surg Int. 24:129–144. 2008.PubMed/NCBI View Article : Google Scholar

5 

Goldstein LA and Waugh TR: Classification and terminology of scoliosis. Clin Orthop Relat Res. 93:10–22. 1973.PubMed/NCBI View Article : Google Scholar

6 

Agabegi ED and Agabegi SS: Step-Up to Medicine (Step-Up Series). Lippincott Williams & Wilkins., Philadelphia PH, pp90, 2008.

7 

Giampietro PF: Genetic aspects of congenital and idiopathic scoliosis. Scientifica (Cairo). 2012(152365)2012.PubMed/NCBI View Article : Google Scholar

8 

Giampietro PF, Raggio CL, Blank RD, McCarty C, Broeckel U and Pickart MA: Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol. 4:94–105. 2013.PubMed/NCBI View Article : Google Scholar

9 

Janssen MM, de Wilde RF, Kouwenhoven JW and Castelein RM: Experimental animal models in scoliosis research: A review of the literature. Spine J. 11:347–358. 2011.PubMed/NCBI View Article : Google Scholar

10 

Shimokawa N, Takahashi I and Iizuka H: Spinal malformation-A biochemical analysis using congenital kyphosis rats. J Cell Biochem. 123:501–505. 2022.PubMed/NCBI View Article : Google Scholar

11 

Terhune EA, Heyn PC, Piper CR and Hadley-Miller N: Genetic variants associated with the occurrence and progression of adolescent idiopathic scoliosis: A systematic review protocol. Syst Rev. 11(118)2022.PubMed/NCBI View Article : Google Scholar

12 

Qiu Y, Mao SH, Qian BP, Jiang J, Qui XS, Zhao Q and Liu Z: A promoter polymorphism of neurotrophin 3 gene is associated with curve severity and bracing effectiveness in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 37:127–133. 2012.PubMed/NCBI View Article : Google Scholar

13 

Ryzhkov II, Borzilov EE, Churnosov MI, Ataman AV, Dedkov AA and Polonikov AV: Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 38:E699–E704. 2013.PubMed/NCBI View Article : Google Scholar

14 

Ogura Y, Kou I, Miura S, Takahashi A, Xu L, Takeda K, Takahashi Y, Kono K, Kawakami N, Uno K, et al: A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet. 97:337–342. 2015.PubMed/NCBI View Article : Google Scholar

15 

Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, et al: A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 43:1237–1240. 2011.PubMed/NCBI View Article : Google Scholar

16 

Guo L, Yamashita H, Kou I, Takimoto A, Mrguro-Horie M, Horike S, Sakuma T, Miura S, Adachi T, Tamamoto T, et al: Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: Elevated expression of the ladybird homeobox gene causes body axis deformation. PLoS Genet. 12(e1005802)2016.PubMed/NCBI View Article : Google Scholar

17 

Kou I, Takahashi Y, Johnson TA, Tkahashi A, Guo L, Dai J, Qiu X, Sharma S, Takimoto A, Ogura Y, et al: Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 45:676–679. 2013.PubMed/NCBI View Article : Google Scholar

18 

De Salvatore S, Ruzzini L, Longo UG, Marino M, Greco A, Piergentili I, Costici PF and Denaro V: Exploring the association between specific genes and the onset of idiopathic scoliosis: A systematic review. BMC Med Genomics. 15(115)2022.PubMed/NCBI View Article : Google Scholar

19 

Fei Q, Wu Z, Wang H, Zhou X, Wang N, Ding Y, Wang Y and Qiu G: The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine (Phila Pa 1976). 35:983–988. 2010.PubMed/NCBI View Article : Google Scholar

20 

Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M, Shen Y, Yu G, Liu J, Xie H, et al: TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med. 372:341–350. 2015.PubMed/NCBI View Article : Google Scholar

21 

Takeda K, Kou I, Kawakami N, Iida A, Nakajima M, Ogura Y, Imagawa E, Miyake N, Matsumoto N, Yasuhiko Y, et al: Compound heterozygosity for null mutations and a common hypomorphic risk haplotype in TBX6 causes congenital scoliosis. Hum Mutat. 38:317–323. 2017.PubMed/NCBI View Article : Google Scholar

22 

Otomo N, Takeda K, Kawai S, Kou I, Guo L, Osawa M, Alev C, Kawakami N, Miyake N, Matsumoto N, et al: Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis. J Med Genet. 56:622–628. 2019.PubMed/NCBI View Article : Google Scholar

23 

Chapman DL, Agulnik I, Hancock S, Silver LM and Papaioannou VE: Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev Biol. 180:534–542. 1996.PubMed/NCBI View Article : Google Scholar

24 

Sadahiro T, Isomi M, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, Tamura F, Tani H, Tohyama S, Fujita J, et al: Tbx6 induces nascent mesoderm from pluripotent stem cells and temporally controls cardiac versus somite lineage diversification. Cell Stem Cell. 23:382–395.e5. 2018.PubMed/NCBI View Article : Google Scholar

25 

Chapman DL and Papaioannou VE: Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature. 391:695–697. 1998.PubMed/NCBI View Article : Google Scholar

26 

Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE and Kondoh H: Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature. 470:394–398. 2011.PubMed/NCBI View Article : Google Scholar

27 

Takeda K, Kou I, Mizumoto S, Yamada S, Kawakami N, Nakajima M, Otomo N, Ogura Y, Miyake N, Matsumoto N, et al: Screening of known disease genes in congenital scoliosis. Mol Genet Genomic Med. 6:966–974. 2018.PubMed/NCBI View Article : Google Scholar

28 

Turnpenny PD, Sloman M, Dunwoodie S, Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al: Spondylocostal Dysostosis, Autosomal Recessive. 2009 Aug 25 (Updated 2023 Aug 17). Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW and Amemiya A (eds). GeneReviews, Seattle, WA, 1993.

29 

Oda I, Cunningham BW, Buckley RA, Goebel MJ, Haggerty CJ, Orbegoso CM and McAfee PC: Does spinal kyphotic deformity influence the biomechanical characteristics of the adjacent motion segments? An in vivo animal model. Spine (Phila Pa 1976). 24:2139–2146. 1999.PubMed/NCBI View Article : Google Scholar

30 

Chae U, Park NR, Kim ES, Choi JY, Yim M, Lee HS, Lee SR, Lee S, Paerk JW and Lee DS: IDH2-deficient mice develop spinal deformities with aging. Physiol Res. 67:487–494. 2018.PubMed/NCBI View Article : Google Scholar

31 

Zaghini A, Sarli G, Barboni C, Sanapo M, Pellegrino V, Diana A, Linta N, Rambaldi J, D'Apice MR, Murdocca M, et al: Long term breeding of the Lmna G609G progeric mouse: Characterization of homozygous and heterozygous models. Exp Gerontol. 130(110784)2020.PubMed/NCBI View Article : Google Scholar

32 

Torres HM, Rodezno-Antunes T, VanCleave A, Cao Y, Callahan DL, Westendorf JJ and Tao J: Precise detection of a murine germline mutation of the Notch3 gene associated with kyphosis and developmental disorders. J Adv Vet Anim Res. 8:7–13. 2021.PubMed/NCBI View Article : Google Scholar

33 

Ishibashi M: Congenital vertebral malformation (Ishibashi rats). In: Handbook on Animal Models of Human Diseases. Kawamata J and Matushita H (eds). Ishiyaku Shuppan, Tokyo, pp430-434, 1979.

34 

Seki T, Shimokawa N, Iizuka H, Takagishi K and Koibuchi N: Abnormalities of vertebral formation and Hox expression in congenital kyphoscoliotic rat. Mol Cell Biochem. 312:193–199. 2008.PubMed/NCBI View Article : Google Scholar

35 

Esapa CT, Piret SE, Nesbit MA, Thomas GP, Coulton LA, Gallagher OM, Simon MM, Kumar S, Mallon AM, Bellantuono I, et al: An N-Ethyl-N-Nitrosourea (ENU) mutagenized mouse model for autosomal dominant nonsyndromic kyphoscoliosis due to vertebral fusion. JBMR Plus. 2:154–163. 2018.PubMed/NCBI View Article : Google Scholar

36 

Moritake S, Yamamuro T, Yamada J and Watanabe H: Progression of congenital kyphosis in Ishibashi rats. Acta Orthop Scand. 53:841–846. 1983.PubMed/NCBI View Article : Google Scholar

37 

Moritake S, Yamamuro T and Yamada J: Effects of sex hormones on congenital kyphosis in Ishibashi rats. Acta Orthop Scand. 57:62–66. 1986.PubMed/NCBI View Article : Google Scholar

38 

Maekawa R, Yamada J and Nikaido H: Genetical studies of low plasma alkaline phosphatase (ALP) activity in the IS strain of rats. Jikken Dobutsu. 31:13–19. 1982.PubMed/NCBI View Article : Google Scholar

39 

Yamada J, Nikaido H, Moritake S and Maekawa R: Genetic analyses of the vertebral anomalies of the IS strain of rat and the development of a BN congenic line with the anomalies. Lab Anim. 16:40–47. 1982.PubMed/NCBI View Article : Google Scholar

40 

Takano M, Katsumata Y, Ogawa J, Ebata T, Urasoko Y, Asano Y, Serikawa T and Kuramoto T: Morphological features of mutant rat, IS-Tlk/Kyo, fetuses with caudal vertebral anomalies. Congenit Anom (Kyoto). 52:42–47. 2012.PubMed/NCBI View Article : Google Scholar

41 

Takano M, Ogawa E, Saitou T, Yamaguchi Y, Asano Y, Serikawa T and Kuramoto T: Morphological features of adult rats of IS/Kyo and IS-Tlk/Kyo strains with lumbar and caudal vertebral anomalies. Exp Anim. 63:269–275. 2014.PubMed/NCBI View Article : Google Scholar

42 

Satokata I, Benson G and Maas R: Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature. 374:460–463. 1995.PubMed/NCBI View Article : Google Scholar

43 

Favier B, Rijli FM, Fromental-Ramain C, Fraulob V, Chambon P and Dollé P: Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development. 122:449–460. 1996.PubMed/NCBI View Article : Google Scholar

44 

Davis AP, Witte DP, Hsieh-Li HM, Potter SS and Capecchi MR: Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature. 375:791–795. 1995.PubMed/NCBI View Article : Google Scholar

45 

Boulet AM and Capecchi MR: Duplication of the Hoxd11 gene causes alterations in the axial and appendicular skeleton of the mouse. Dev Biol. 249:96–107. 2002.PubMed/NCBI View Article : Google Scholar

46 

Tsunoda D, Iizuka H, Ichinose T, Iizuka Y, Mieda T, Shimokawa N, Takagishi K and Koibuchi N: The Trk family of neurotrophin receptors is downregulated in the lumbar spines of rats with congenital kyphoscoliosis. Mol Cell Biochem. 412:11–18. 2016.PubMed/NCBI View Article : Google Scholar

47 

Sonoda H, Iizuka H, Ishiwata S, Tsunoda D, Abe M, Takagishi K, Chikuda H, Koibuchi N and Shimokawa N: The retinol-retinoic acid metabolic pathway is impaired in the lumbar spine of a rat model of congenital kyphoscoliosis. J Cell Biochem. 120:15007–15017. 2019.PubMed/NCBI View Article : Google Scholar

48 

Ishiwata S, Iizuka H, Sonoda H, Tsunoda D, Tajika Y, Chikuda H, Koibuchi N and Shimokawa N: Upregulated miR-224-5p suppresses osteoblast differentiation by increasing the expression of Pai-1 in the lumbar spine of a rat model of congenital kyphoscoliosis. Mol Cell Biochem. 475:53–62. 2020.PubMed/NCBI View Article : Google Scholar

49 

Maskos U and Southern EM: A novel method for the analysis of multiple sequence variants by hybridisation to oligonucleotides. Nucleic Acids Res. 21:2267–2268. 1993.PubMed/NCBI View Article : Google Scholar

50 

Schena M, Shalon D, Davis RW and Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270:467–470. 1995.PubMed/NCBI View Article : Google Scholar

51 

Emili AQ and Cagney G: Large-scale functional analysis using peptide or protein arrays. Nat Biotechnol. 18:393–397. 2000.PubMed/NCBI View Article : Google Scholar

52 

Uren RT and Turnley AM: Regulation of neurotrophin receptor (Trk) signaling: Suppressor of cytokines signaling 2 (SOCS2) is a new player. Front Mol Neurosci. 7(39)2014.PubMed/NCBI View Article : Google Scholar

53 

Tomlinson RE, Li Z, Zhang Q, Goh BC, Li Z, Thorek DLJ, Rajbhandari L, Brushart TM, Minichiello L, Zhou F, et al: NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone. Cell Rep. 16:2723–2735. 2016.PubMed/NCBI View Article : Google Scholar

54 

Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL and James AW: Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest. 129:5137–5150. 2019.PubMed/NCBI View Article : Google Scholar

55 

Rivera KO, Russo F, Boileau RM, Tomlinson RE, Miclau T, Marcucio RS, Desai TA and Bahney CS: Local injections of beta-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. Sci Rep. 10(22241)2020.PubMed/NCBI View Article : Google Scholar

56 

Wheeler EF, Gong H, Grimes R, Benoit D and Vazquez L: p75NTR and Trk receptors are expressed in reciprocal patterns in a wide variety of non-neural tissues during rat embryonic development, indicating independent receptor functions. J Comp Neurol. 391:407–428. 1998.PubMed/NCBI

57 

Yamashiro T, Fukunaga T, Yamashita K, Kobashi N and Takano-Yamamoto T: Gene and protein expression of brain-derived neurotrophic factor and TrkB in bone and cartilage. Bone. 28:404–409. 2001.PubMed/NCBI View Article : Google Scholar

58 

Hutchison MR: BDNF alters ERK/p38 MAPK activity ratios to promote differentiation in growth plate chondrocytes. Mol Endocrinol. 26:1406–1416. 2012.PubMed/NCBI View Article : Google Scholar

59 

Hutchison MR: Mice with a conditional deletion of the neurotrophin receptor TrkB are dwarfed, and are similar to mice with a MAPK14 deletion. PLoS One. 8(e66206)2013.PubMed/NCBI View Article : Google Scholar

60 

Asaumi K, Nakanishi T, Asahara H, Inoue H and Takigawa M: Expression of neurotrophins and their receptors (TRK) during fracture healing. Bone. 26:625–633. 2000.PubMed/NCBI View Article : Google Scholar

61 

Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, et al: Neurotrophin-3 induces BMP-2 and VEGF activities and promotes the bony repair of injured growth plate cartilage and bone in rats. J Bone Miner Res. 31:1258–1274. 2016.PubMed/NCBI View Article : Google Scholar

62 

Blomhoff R and Blomhoff HK: Overview of retinoid metabolism and function. J Neurobiol. 66:606–630. 2006.PubMed/NCBI View Article : Google Scholar

63 

See AW, Kaiser ME, White JC and Clagett-Dame M: A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development. Dev Biol. 316:171–190. 2008.PubMed/NCBI View Article : Google Scholar

64 

Li Z, Shen J, Wu WK, Wang X, Liang J, Qiu G and Liu J: Vitamin A deficiency induces congenital spinal deformities in rats. PLoS One. 7(e46565)2012.PubMed/NCBI View Article : Google Scholar

65 

Amengual J, Zhang N, Kemerer M, Maeda T, Palczewski K and Von Lintig J: STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum Mol Genet. 23:5402–5417. 2014.PubMed/NCBI View Article : Google Scholar

66 

Boncinelli E, Simeone A, Acampora D and Mavilio F: HOX gene activation by retinoic acid. Trends Genet. 7:329–334. 1991.PubMed/NCBI View Article : Google Scholar

67 

Marshall H, Morrison A, Studer M, Pöpperl H and Krumlauf R: Retinoids and Hox genes. FASEB J. 10:969–978. 1996.PubMed/NCBI

68 

Wellik DM and Capecchi MR: Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 301:363–367. 2003.PubMed/NCBI View Article : Google Scholar

69 

Rogers MB: Receptor-selective retinoids implicate retinoic acid receptor alpha and gamma in the regulation of bmp-2 and bmp-4 in F9 embryonal carcinoma cells. Cell Growth Differ. 7:115–122. 1996.PubMed/NCBI

70 

Kobayashi M, Fujii M, Kurihara K and Matsuoka I: Bone morphogenetic protein-2 and retinoic acid induce neurotrophin-3 responsiveness in developing rat sympathetic neurons. Brain Res Mol Brain Res. 53:206–217. 1998.PubMed/NCBI View Article : Google Scholar

71 

Nordin BE: Calcium and osteoporosis. Nutrition. 13:664–686. 1997.PubMed/NCBI View Article : Google Scholar

72 

Matikainen N, Pekkarinen T, Ryhänen EM and Schalin-Jäntti C: Physiology of calcium homeostasis: An overview. Endocrinol Metab Clin North Am. 50:575–590. 2021.PubMed/NCBI View Article : Google Scholar

73 

Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J and Hebert SC: Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature. 366:575–580. 1993.PubMed/NCBI View Article : Google Scholar

74 

Cianferotti L, Gomes AR, Fabbri S, Tanini A and Brandi ML: The calcium-sensing receptor in bone metabolism: From bench to bedside and back. Osteoporos Int. 26:2055–2071. 2015.PubMed/NCBI View Article : Google Scholar

75 

Takahashi I, Watanabe Y, Sonoda H, Tsunoda D, Amano I, Koibuchi N, Iizuka H and Shimokawa N: Calcium sensing and signaling are impaired in the lumbar spine of a rat model of congenital kyphosis. Eur Spine J. 32:3403–3412. 2023.PubMed/NCBI View Article : Google Scholar

76 

Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD and Julius D: The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature. 389:816–824. 1997.PubMed/NCBI View Article : Google Scholar

77 

Lieben L and Carmeliet G: The involvement of TRP channels in bone homeostasis. Front Endocrinol (Lausanne). 3(99)2012.PubMed/NCBI View Article : Google Scholar

78 

Liu N, Lu W, Dai X, Qu X and Zhu C: The role of TRPV channels in osteoporosis. Mol Biol Rep. 49:577–585. 2022.PubMed/NCBI View Article : Google Scholar

79 

Idris AI, Landao-Bassonga E and Ralston SH: The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone. 46:1089–1099. 2010.PubMed/NCBI View Article : Google Scholar

80 

He LH, Liu M, He Y, Xiao E, Zhao L, Zhang T, Yang HQ and Zhang Y: TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation. Sci Rep. 7(42385)2017.PubMed/NCBI View Article : Google Scholar

81 

Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K and Wang JC: The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 7:50–60. 2007.PubMed/NCBI View Article : Google Scholar

82 

Li C, Zhang X, Zheng Z, Nguyen A, Ting K and Soo C: Nell-1 is a key functional modulator in osteochondrogenesis and beyond. J Dent Res. 98:1458–1468. 2019.PubMed/NCBI View Article : Google Scholar

83 

Xu R, Zhang C, Shin DY, Kim JM, Lalani S, Li N, Yang YS, Liu Y, Eiseman M, Davis RJ, et al: c-Jun N-terminal kinases (JNKs) are critical mediators of osteoblast activity in vivo. J Bone Miner Res. 32:1811–1815. 2017.PubMed/NCBI View Article : Google Scholar

84 

Ke D, Ji L, Wang Y, Fu X, Chen J, Wang F, Zhao D, Xue Y, Lan X and Hou J: JNK1 regulates RANKL-induced osteoclastogenesis via activation of a novel Bcl-2-Beclin1-autophagy pathway. FASEB J. 33:11082–11095. 2019.PubMed/NCBI View Article : Google Scholar

85 

Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, et al: The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One. 3(e3642)2008.PubMed/NCBI View Article : Google Scholar

86 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar

87 

Moore BT and Xiao P: MiRNAs in bone diseases. Microrna. 2:20–31. 2013.PubMed/NCBI View Article : Google Scholar

88 

Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, et al: Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res. 28:559–573. 2013.PubMed/NCBI View Article : Google Scholar

89 

Li H, Xie H, Liu W, Hu R, Huang H, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP and Luo XH: A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 119:3666–3677. 2009.PubMed/NCBI View Article : Google Scholar

90 

Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, Wijnen AJ and Stein GS: A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA. 108:9863–9868. 2011.PubMed/NCBI View Article : Google Scholar

91 

Luo Y, Cao X, Chen J, Gu J, Zhao J and Sun J: MicroRNA-224 suppresses osteoblast differentiation by inhibiting SMAD4. J Cell Physiol. 233:6929–6937. 2018.PubMed/NCBI View Article : Google Scholar

92 

Ghosh AK, Bradham WS, Gleaves LA, De Taeye B, Murphy SB, Covington JW and Vaughan DE: Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: Involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition. Circulation. 122:1200–1209. 2010.PubMed/NCBI View Article : Google Scholar

93 

Mao L, Kawao N, Tamura Y, Okumoto K, Okada K, Yano M, Matsuo O and Kaji H: Plasminogen activator inhibitor-1 is involved in impaired bone repair associated with diabetes in female mice. PLoS One. 9(e92686)2014.PubMed/NCBI View Article : Google Scholar

94 

Ghali N, Sobey G and Burrows N: Ehlers-Danlos syndromes. BMJ. 366(l4966)2019.PubMed/NCBI View Article : Google Scholar

95 

Nuytinck L, Freund M, Lagae L, Pierard GE, Hermanns-Le T and De Paepe A: Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Am J Hum Genet. 66:1398–1402. 2000.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sato T, Takahashi I, Watanabe Y, Yokoyama D and Shimokawa N: Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review). Exp Ther Med 28: 416, 2024.
APA
Sato, T., Takahashi, I., Watanabe, Y., Yokoyama, D., & Shimokawa, N. (2024). Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review). Experimental and Therapeutic Medicine, 28, 416. https://doi.org/10.3892/etm.2024.12705
MLA
Sato, T., Takahashi, I., Watanabe, Y., Yokoyama, D., Shimokawa, N."Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review)". Experimental and Therapeutic Medicine 28.5 (2024): 416.
Chicago
Sato, T., Takahashi, I., Watanabe, Y., Yokoyama, D., Shimokawa, N."Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review)". Experimental and Therapeutic Medicine 28, no. 5 (2024): 416. https://doi.org/10.3892/etm.2024.12705
Copy and paste a formatted citation
x
Spandidos Publications style
Sato T, Takahashi I, Watanabe Y, Yokoyama D and Shimokawa N: Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review). Exp Ther Med 28: 416, 2024.
APA
Sato, T., Takahashi, I., Watanabe, Y., Yokoyama, D., & Shimokawa, N. (2024). Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review). Experimental and Therapeutic Medicine, 28, 416. https://doi.org/10.3892/etm.2024.12705
MLA
Sato, T., Takahashi, I., Watanabe, Y., Yokoyama, D., Shimokawa, N."Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review)". Experimental and Therapeutic Medicine 28.5 (2024): 416.
Chicago
Sato, T., Takahashi, I., Watanabe, Y., Yokoyama, D., Shimokawa, N."Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review)". Experimental and Therapeutic Medicine 28, no. 5 (2024): 416. https://doi.org/10.3892/etm.2024.12705
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team