|
1
|
Li J, Li C, Huang Z, Huang C, Liu J, Wu T,
Xu S, Mai P, Geng D, Zhou S, et al: Empagliflozin alleviates
atherosclerotic calcification by inhibiting osteogenic
differentiation of vascular smooth muscle cells. Front Pharmacol.
14(1295463)2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Urbain F, Ponnaiah M, Ichou F, Lhomme M,
Materne C, Galier S, Haroche J, Frisdal E, Mathian A, Durand H, et
al: Impaired metabolism predicts coronary artery calcification in
women with systemic lupus erythematosus. EBioMedicine.
96(104802)2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Zhang H, Li G, Yu X, Yang J, Jiang A,
Cheng H, Fu J, Liang X, Liu J, Lou J, et al: Progression of
vascular calcification and clinical outcomes in patients receiving
maintenance dialysis. JAMA Netw Open. 6(e2310909)2023.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Snell-Bergeon JK, Budoff MJ and Hokanson
JE: Vascular calcification in diabetes: Mechanisms and
implications. Curr Diab Rep. 13:391–402. 2013.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Alman AC, Maahs DM, Rewers MJ and
Snell-Bergeon JK: Ideal cardiovascular health and the prevalence
and progression of coronary artery calcification in adults with and
without type 1 diabetes. Diabetes Care. 37:521–528. 2014.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Berry C, Tardif JC and Bourassa MG:
Coronary heart disease in patients with diabetes: Part I: Recent
advances in prevention and noninvasive management. J Am Coll
Cardiol. 49:631–642. 2007.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Yahagi K, Kolodgie FD, Lutter C, Mori H,
Romero ME, Finn AV and Virmani R: Pathology of human coronary and
carotid artery atherosclerosis and vascular calcification in
diabetes mellitus. Arterioscler Thromb Vasc Biol. 37:191–204.
2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Doherty TM, Fitzpatrick LA, Inoue D, Qiao
JH, Fishbein MC, Detrano RC, Shah PK and Rajavashisth TB:
Molecular, endocrine, and genetic mechanisms of arterial
calcification. Endocr Rev. 25:629–672. 2004.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Stary HC, Chandler AB, Dinsmore RE, Fuster
V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD and
Wissler RW: A definition of advanced types of atherosclerotic
lesions and a histological classification of atherosclerosis. A
report from the committee on vascular lesions of the council on
arteriosclerosis, American heart association. Circulation.
92:1355–1374. 1995.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ross R: The pathogenesis of
atherosclerosis: A perspective for the 1990s. Nature. 362:801–809.
1993.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Sharif N, Gilani SZ, Suter D, Reid S,
Szulc P, Kimelman D, Monchka BA, Jozani MJ, Hodgson JM, Sim M, et
al: Machine learning for abdominal aortic calcification assessment
from bone density machine-derived lateral spine images.
EBioMedicine. 94(104676)2023.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Wang M, Niu G, Chen Y, Zhou Z, Feng D,
Zhang Y and Wu Y: China-DVD2 Study Group (Standard Evaluation and
Optimal Treatment for Elderly Patients with Valvular Heart Disease,
National Key R&D Program of China, NCT05044338):. Development
and validation of a deep learning-based fully automated algorithm
for pre-TAVR CT assessment of the aortic valvular complex and
detection of anatomical risk factors: A retrospective, multicentre
study. EBioMedicine. 96(104794)2023.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Park S, Choi ES, Jung HW, Lee JY, Park JW,
Bang JS and Jeon YT: Preoperative serum alkaline phosphatase and
neurological outcome of cerebrovascular surgery. J Clin Med.
11(2981)2022.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Bardeesi ASA, Gao J, Zhang K, Yu S, Wei M,
Liu P and Huang H: A novel role of cellular interactions in
vascular calcification. J Transl Med. 15(95)2017.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Durham AL, Speer MY, Scatena M, Giachelli
CM and Shanahan CM: Role of smooth muscle cells in vascular
calcification: Implications in atherosclerosis and arterial
stiffness. Cardiovasc Res. 114:590–600. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Niu Z, Su G, Li T, Yu H, Shen Y, Zhang D
and Liu X: Vascular calcification: New insights into BMP type I
receptor A. Front Pharmacol. 13(887253)2022.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Pan X, Pi C, Ruan X, Zheng H, Zhang D and
Liu X: Mammalian sirtuins and their relevance in vascular
calcification. Front Pharmacol. 13(907835)2022.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Feng S, Qi Y, Xiao Z, Chen H, Liu S, Luo
H, Wu H and Zhang W: CircHIPK3 relieves vascular calcification via
mediating SIRT1/PGC-1α/MFN2 pathway by interacting with FUS. BMC
Cardiovasc Disord. 23(583)2023.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Song GY, Guo XN, Yao J, Lu ZN, Xie JH, Wu
F, He J, Fu ZL and Han J: Differential expression profiles and
functional analysis of long non-coding RNAs in calcific aortic
valve disease. BMC Cardiovasc Disord. 23(326)2023.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Wu M, Rementer C and Giachelli CM:
Vascular calcification: An update on mechanisms and challenges in
treatment. Calcif Tissue Int. 93:365–373. 2013.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Demer LL and Tintut Y: Vascular
calcification: Pathobiology of a multifaceted disease. Circulation.
117:2938–2948. 2008.PubMed/NCBI View Article : Google Scholar
|
|
22
|
McCullough PA, Chinnaiyan KM, Agrawal V,
Danielewicz E and Abela GS: Amplification of atherosclerotic
calcification and Mönckeberg's sclerosis: A spectrum of the same
disease process. Adv Chronic Kidney Dis. 15:396–412.
2008.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Beltrao P, Bork P, Krogan NJ and van Noort
V: Evolution and functional cross-talk of protein
post-translational modifications. Mol Syst Biol.
9(714)2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Wang R and Wang G: Protein modification
and autophagy activation. Adv Exp Med Biol. 1206:237–259.
2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Liu Y and Peng FX: Research progress on
O-GlcNAcylation in the occurrence, development, and treatment of
colorectal cancer. World J Gastrointest Surg. 13:96–115.
2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Mir AR and Moinuddin : Glycoxidation
of histone proteins in autoimmune disorders. Clin Chim Acta.
450:25–30. 2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Tweedie-Cullen RY, Reck JM and Mansuy IM:
Comprehensive mapping of post-translational modifications on
synaptic, nuclear, and histone proteins in the adult mouse brain. J
Proteome Res. 8:4966–4982. 2009.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Voelkl J, Lang F, Eckardt KU, Amann K,
Kuro-O M, Pasch A, Pieske B and Alesutan I: Signaling pathways
involved in vascular smooth muscle cell calcification during
hyperphosphatemia. Cell Mol Life Sci. 76:2077–2091. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Lee HY, Lim S and Park S: Role of
inflammation in arterial calcification. Korean Circ J. 51:114–125.
2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Neutel CHG, Hendrickx JO, Martinet W, De
Meyer GRY and Guns PJ: The protective effects of the autophagic and
lysosomal machinery in vascular and valvular calcification: A
systematic review. Int J Mol Sci. 21(8933)2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kwon DH, Ryu J, Kim YK and Kook H: Roles
of histone acetylation modifiers and other epigenetic regulators in
vascular calcification. Int J Mol Sci. 21(3246)2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Wozney JM, Rosen V, Celeste AJ, Mitsock
LM, Whitters MJ, Kriz RW, Hewick RM and Wang EA: Novel regulators
of bone formation: Molecular clones and activities. Science.
242:1528–1534. 1988.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Cai J, Pardali E, Sánchez-Duffhues G and
ten Dijke P: BMP signaling in vascular diseases. FEBS Lett.
586:1993–2002. 2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Rong S, Zhao X, Jin X, Zhang Z, Chen L,
Zhu Y and Yuan W: Vascular calcification in chronic kidney disease
is induced by bone morphogenetic protein-2 via a mechanism
involving the Wnt/β-catenin pathway. Cell Physiol Biochem.
34:2049–2060. 2014.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Balderman JA, Lee HY, Mahoney CE, Handy
DE, White K, Annis S, Lebeche D, Hajjar RJ, Loscalzo J and Leopold
JA: Bone morphogenetic protein-2 decreases microRNA-30b and
microRNA-30c to promote vascular smooth muscle cell calcification.
J Am Heart Assoc. 1(e003905)2012.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Derwall M, Malhotra R, Lai CS, Beppu Y,
Aikawa E, Seehra JS, Zapol WM, Bloch KD and Yu PB: Inhibition of
bone morphogenetic protein signaling reduces vascular calcification
and atherosclerosis. Arterioscler Thromb Vasc Biol. 32:613–622.
2012.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Nakagawa Y, Ikeda K, Akakabe Y, Koide M,
Uraoka M, Yutaka KT, Kurimoto-Nakano R, Takahashi T, Matoba S,
Yamada H, et al: Paracrine osteogenic signals via bone
morphogenetic protein-2 accelerate the atherosclerotic intimal
calcification in vivo. Arterioscler Thromb Vasc Biol. 30:1908–1915.
2010.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Graciolli FG, Neves KR, dos Reis LM,
Graciolli RG, Noronha IL, Moysés RM and Jorgetti V: Phosphorus
overload and PTH induce aortic expression of Runx2 in experimental
uraemia. Nephrol Dial Transplant. 24:1416–1421. 2009.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Byon CH, Javed A, Dai Q, Kappes JC,
Clemens TL, Darley-Usmar VM, McDonald JM and Chen Y: Oxidative
stress induces vascular calcification through modulation of the
osteogenic transcription factor Runx2 by AKT signaling. J Biol
Chem. 283:15319–15327. 2008.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Lin ME, Chen T, Leaf EM, Speer MY and
Giachelli CM: Runx2 expression in smooth muscle cells is required
for arterial medial calcification in mice. Am J Pathol.
185:1958–1969. 2015.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Sun Y, Byon CH, Yuan K, Chen J, Mao X,
Heath JM, Javed A, Zhang K, Anderson PG and Chen Y: Smooth muscle
cell-specific runx2 deficiency inhibits vascular calcification.
Circ Res. 111:543–552. 2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Simonet WS, Lacey DL, Dunstan CR, Kelley
M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et
al: Osteoprotegerin: A novel secreted protein involved in the
regulation of bone density. Cell. 89:309–319. 1997.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Bucay N, Sarosi I, Dunstan CR, Morony S,
Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, et al:
Osteoprotegerin-deficient mice develop early onset osteoporosis and
arterial calcification. Genes Dev. 12:1260–1268. 1998.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Morony S, Tintut Y, Zhang Z, Cattley RC,
Van G, Dwyer D, Stolina M, Kostenuik PJ and Demer LL:
Osteoprotegerin inhibits vascular calcification without affecting
atherosclerosis in ldlr(-/-) mice. Circulation. 117:411–420.
2008.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Tschiderer L, Willeit J, Schett G, Kiechl
S and Willeit P: Osteoprotegerin concentration and risk of
cardiovascular outcomes in nine general population studies:
Literature-based meta-analysis involving 26, 442 participants. PLoS
One. 12(e0183910)2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Morena M, Jaussent I, Halkovich A, Dupuy
AM, Bargnoux AS, Chenine L, Leray-Moragues H, Klouche K, Vernhet H,
Canaud B and Cristol JP: Bone biomarkers help grading severity of
coronary calcifications in non dialysis chronic kidney disease
patients. PLoS One. 7(e36175)2012.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Valdivielso JM: Vascular calcification:
Types and mechanisms. Nefrologia. 31:142–147. 2011.PubMed/NCBI View Article : Google Scholar : (In Spanish).
|
|
48
|
Fitzpatrick LA, Severson A, Edwards WD and
Ingram RT: Diffuse calcification in human coronary arteries.
Association of osteopontin with atherosclerosis. J Clin Invest.
94:1597–1604. 1994.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Speer MY, McKee MD, Guldberg RE, Liaw L,
Yang HY, Tung E, Karsenty G and Giachelli CM: Inactivation of the
osteopontin gene enhances vascular calcification of matrix Gla
protein-deficient mice: Evidence for osteopontin as an inducible
inhibitor of vascular calcification in vivo. J Exp Med.
196:1047–1055. 2002.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Johnson ML and Rajamannan N: Diseases of
Wnt signaling. Rev Endocr Metab Disord. 7:41–49. 2006.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Heath JM, Sun Y, Yuan K, Bradley WE,
Litovsky S, Dell'Italia LJ, Chatham JC, Wu H and Chen Y: Activation
of AKT by O-linked N-acetylglucosamine induces vascular
calcification in diabetes mellitus. Circ Res. 114:1094–1102.
2014.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Deng L, Huang L, Sun Y, Heath JM, Wu H and
Chen Y: Inhibition of FOXO1/3 promotes vascular calcification.
Arterioscler Thromb Vasc Biol. 35:175–183. 2015.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Proudfoot D, Skepper JN, Hegyi L, Bennett
MR, Shanahan CM and Weissberg PL: Apoptosis regulates human
vascular calcification in vitro: Evidence for initiation of
vascular calcification by apoptotic bodies. Circ Res. 87:1055–1062.
2000.PubMed/NCBI View Article : Google Scholar
|
|
54
|
New SEP and Aikawa E: Role of
extracellular vesicles in de novo mineralization: An additional
novel mechanism of cardiovascular calcification. Arterioscler
Thromb Vasc Biol. 33:1753–1758. 2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Coscas R, Bensussan M, Jacob MP, Louedec
L, Massy Z, Sadoine J, Daudon M, Chaussain C, Bazin D and Michel
JB: Free DNA precipitates calcium phosphate apatite crystals in the
arterial wall in vivo. Atherosclerosis. 259:60–67. 2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X
and Liu NF: Programmed cell death in atherosclerosis and vascular
calcification. Cell Death Dis. 13(467)2022.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Chen Y, Wei L, Zhang X, Liu X, Chen Y,
Zhang S, Zhou L, Li Q, Pan Q, Zhao S and Liu H: 3-Bromopyruvate
sensitizes human breast cancer cells to TRAIL-induced apoptosis via
the phosphorylated AMPK-mediated upregulation of DR5. Oncol Rep.
40:2435–2444. 2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Chiong M, Cartes-Saavedra B,
Norambuena-Soto I, Mondaca-Ruff D, Morales PE, García-Miguel M and
Mellado R: Mitochondrial metabolism and the control of vascular
smooth muscle cell proliferation. Front Cell Dev Biol.
2(72)2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Chen WR, Zhou YJ, Yang JQ, Liu F, Wu XP
and Sha Y: Melatonin attenuates calcium deposition from vascular
smooth muscle cells by activating mitochondrial fusion and
mitophagy via an AMPK/OPA1 signaling pathway. Oxid Med Cell Longev.
2020(5298483)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Chen WR, Zhou YJ, Sha Y, Wu XP, Yang JQ
and Liu F: Melatonin attenuates vascular calcification by
inhibiting mitochondria fission via an AMPK/Drp1 signalling
pathway. J Cell Mol Med. 24:6043–6054. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Scheffner M, Nuber U and Huibregtse JM:
Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin
thioester cascade. Nature. 373:81–83. 1995.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Kaoutari AE, Fraunhoffer NA, Audebert S,
Camoin L, Berthois Y, Gayet O, Roques J, Bigonnet M, Bongrain C,
Ciccolini J, et al: Pancreatic ductal adenocarcinoma ubiquitination
profiling reveals specific prognostic and theranostic markers.
EBioMedicine. 92(104634)2023.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Frezza M, Schmitt S and Dou QP: Targeting
the ubiquitin-proteasome pathway: An emerging concept in cancer
therapy. Curr Top Med Chem. 11:2888–2905. 2011.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Xu Q, Pan G, Wang Z, Wang L, Tang Y, Dong
J and Qin JJ: Platycodin-D exerts its anti-cancer effect by
promoting c-Myc protein ubiquitination and degradation in gastric
cancer. Front Pharmacol. 14(1138658)2023.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Zhao M, Qiao M, Oyajobi BO, Mundy GR and
Chen D: E3 ubiquitin ligase Smurf1 mediates core-binding factor
alpha1/Runx2 degradation and plays a specific role in osteoblast
differentiation. J Biol Chem. 278:27939–27944. 2003.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Jiang Y, Zhang J, Li Z and Jia G: Bone
marrow mesenchymal stem cell-derived exosomal miR-25 regulates the
ubiquitination and degradation of Runx2 by SMURF1 to promote
fracture healing in mice. Front Med (Lausanne).
7(577578)2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Choi YH, Kim YJ, Jeong HM, Jin YH, Yeo CY
and Lee KY: Akt enhances Runx2 protein stability by regulating
Smurf2 function during osteoblast differentiation. FEBS J.
281:3656–3666. 2014.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Ouyang L, Yu C, Xie Z, Su X, Xu Z, Song P,
Li J, Huang H, Ding Y and Zou MH: Indoleamine 2,3-dioxygenase 1
deletion-mediated kynurenine insufficiency in vascular smooth
muscle cells exacerbates arterial calcification. Circulation.
145:1784–1798. 2022.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Kim BG, Lee JH, Yasuda J, Ryoo HM and Cho
JY: Phospho-Smad1 modulation by nedd4 E3 ligase in BMP/TGF-β
signaling. J Bone Miner Res. 26:1411–1424. 2011.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Kwon DH, Eom GH, Ko JH, Shin S, Joung H,
Choe N, Nam YS, Min HK, Kook T, Yoon S, et al: MDM2 E3
ligase-mediated ubiquitination and degradation of HDAC1 in vascular
calcification. Nat Commun. 7(10492)2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Weng X, Luo X, Dai X, Lv Y, Zhang S, Bai
X, Bao X, Wang Y, Zhao C, Zeng M, et al: Apigenin inhibits
macrophage pyroptosis through regulation of oxidative stress and
the NF-κB pathway and ameliorates atherosclerosis. Phytother Res.
37:5300–5314. 2023.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Al-Huseini I, Ashida N and Kimura T:
Deletion of IκB-kinase β in smooth muscle cells induces vascular
calcification through β-catenin-runt-related transcription factor 2
signaling. J Am Heart Assoc. 7(e007405)2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Ishiwata R and Morimoto Y:
Hyperphosphatemia-induced degradation of transcription factor EB
exacerbates vascular calcification. Biochim Biophys Acta Mol Basis
Dis. 1868(166323)2022.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Weinert BT, Iesmantavicius V, Moustafa T,
Schölz C, Wagner SA, Magnes C, Zechner R and Choudhary C:
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.
Mol Syst Biol. 10(716)2014.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Lin R, Tao R, Gao X, Li T, Zhou X, Guan
KL, Xiong Y and Lei QY: Acetylation stabilizes ATP-citrate lyase to
promote lipid biosynthesis and tumor growth. Mol Cell. 51:506–518.
2013.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Gu J, Lu Y, Deng M, Qiu M, Tian Y, Ji Y,
Zong P, Shao Y, Zheng R, Zhou B, et al: Inhibition of acetylation
of histones 3 and 4 attenuates aortic valve calcification. Exp Mol
Med. 51:1–14. 2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Li SJ, Kao YH, Chung CC, Chen WY, Cheng WL
and Chen YJ: Activated p300 acetyltransferase activity modulates
aortic valvular calcification with osteogenic transdifferentiation
and downregulation of Klotho. Int J Cardiol. 232:271–279.
2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Bouras T, Fu M, Sauve AA, Wang F, Quong
AA, Perkins ND, Hay RT, Gu W and Pestell RG: SIRT1 deacetylation
and repression of p300 involves lysine residues 1020/1024 within
the cell cycle regulatory domain 1. J Biol Chem. 280:10264–10276.
2005.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Hecht A, Vleminckx K, Stemmler MP, van Roy
F and Kemler R: The p300/CBP acetyltransferases function as
transcriptional coactivators of beta-catenin in vertebrates. EMBO
J. 19:1839–1850. 2000.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN,
Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, et al: Bone
morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem.
281:16502–16511. 2006.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS,
Ryoo HM and Baek JH: BMP2-activated Erk/MAP kinase stabilizes Runx2
by increasing p300 levels and histone acetyltransferase activity. J
Biol Chem. 285:36410–36419. 2010.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zhang Z, Deepak V, Meng L, Wang L, Li Y,
Jiang Q, Zeng X and Liu W: Analysis of HDAC1-mediated regulation of
Runx2-induced osteopontin gene expression in C3h10t1/2 cells.
Biotechnol Lett. 34:197–203. 2012.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Bae HS, Yoon WJ, Cho YD, Islam R, Shin HR,
Kim BS, Lim JM, Seo MS, Cho SA, Choi KY, et al: An HDAC inhibitor,
entinostat/MS-275, partially prevents delayed cranial suture
closure in heterozygous Runx2 null mice. J Bone Miner Res.
32:951–961. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Bartoli-Leonard F, Wilkinson FL,
Langford-Smith AWW, Alexander MY and Weston R: The interplay of
SIRT1 and Wnt signaling in vascular calcification. Front Cardiovasc
Med. 5(183)2018.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Takemura A, Iijima K, Ota H, Son BK, Ito
Y, Ogawa S, Eto M, Akishita M and Ouchi Y: Sirtuin 1 retards
hyperphosphatemia-induced calcification of vascular smooth muscle
cells. Arterioscler Thromb Vasc Biol. 31:2054–2062. 2011.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Lévy L, Wei Y, Labalette C, Wu Y, Renard
CA, Buendia MA and Neuveut C: Acetylation of beta-catenin by p300
regulates beta-catenin-Tcf4 interaction. Mol Cell Biol.
24:3404–3414. 2004.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Bartoli-Leonard F, Wilkinson FL, Schiro A,
Inglott FS, Alexander MY and Weston R: Suppression of SIRT1 in
diabetic conditions induces osteogenic differentiation of human
vascular smooth muscle cells via RUNX2 signalling. Sci Rep.
9(878)2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Rabadi MM, Xavier S, Vasko R, Kaur K,
Goligorksy MS and Ratliff BB: High-mobility group box 1 is a novel
deacetylation target of Sirtuin1. Kidney Int. 87:95–108.
2015.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Hwang JS, Choi HS, Ham SA, Yoo T, Lee WJ,
Paek KS and Seo HG: Deacetylation-mediated interaction of
SIRT1-HMGB1 improves survival in a mouse model of endotoxemia. Sci
Rep. 5(15971)2015.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Zhang Y, He L, Tu M, Huang M, Chen Y, Pan
D, Peng J and Shen X: The ameliorative effect of terpinen-4-ol on
ER stress-induced vascular calcification depends on SIRT1-mediated
regulation of PERK acetylation. Pharmacol Res.
170(105629)2021.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Sun Z, Zhang L, Yin K, Zang G, Qian Y, Mao
X, Li L, Jing Q and Wang Z: SIRT3-and FAK-mediated
acetylation-phosphorylation crosstalk of NFATc1 regulates
Nε-carboxymethyl-lysine-induced vascular calcification
in diabetes mellitus. Atherosclerosis. 377:43–59. 2023.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Jaisson S, Pietrement C and Gillery P:
Carbamylation-derived products: Bioactive compounds and potential
biomarkers in chronic renal failure and atherosclerosis. Clin Chem.
57:1499–1505. 2011.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Berg AH, Drechsler C, Wenger J, Buccafusca
R, Hod T, Kalim S, Ramma W, Parikh SM, Steen H, Friedman DJ, et al:
Carbamylation of serum albumin as a risk factor for mortality in
patients with kidney failure. Sci Transl Med.
5(175ra29)2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Mori D, Matsui I, Shimomura A, Hashimoto
N, Matsumoto A, Shimada K, Yamaguchi S, Oka T, Kubota K, Yonemoto
S, et al: Protein carbamylation exacerbates vascular calcification.
Kidney Int. 94:72–90. 2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Alesutan I, Luong TTD, Schelski N, Masyout
J, Hille S, Schneider MP, Graham D, Zickler D, Verheyen N, Estepa
M, et al: Circulating uromodulin inhibits vascular calcification by
interfering with pro-inflammatory cytokine signalling. Cardiovasc
Res. 117:930–941. 2021.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Goettsch C, Kjolby M and Aikawa E:
Sortilin and its multiple roles in cardiovascular and metabolic
diseases. Arterioscler Thromb Vasc Biol. 38:19–25. 2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Jankowski V, Saritas T, Kjolby M, Hermann
J, Speer T, Himmelsbach A, Mahr K, Marina Heuschkel A, Schunk SJ,
Thirup S, et al: Carbamylated sortilin associates with
cardiovascular calcification in patients with chronic kidney
disease. Kidney Int. 101:574–584. 2022.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Massy ZA and Liabeuf S: Sortilin,
carbamylation, and cardiovascular calcification in chronic kidney
disease. Kidney Int. 101:456–459. 2022.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Lumibao JC, Tremblay JR, Hsu J and Engle
DD: Altered glycosylation in pancreatic cancer and beyond. J Exp
Med. 219(e20211505)2022.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Karunakaran U and Jeoung NH: O-GlcNAc
modification: Friend or foe in diabetic cardiovascular disease.
Korean Diabetes J. 34:211–219. 2010.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Xu TH, Du Y, Sheng Z, Li Y, Qiu X, Tian B
and Yao L: OGT-mediated KEAP1 glycosylation accelerates NRF2
degradation leading to high phosphate-induced vascular
calcification in chronic kidney disease. Front Physiol.
11(1092)2020.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Xu TH, Sheng Z, Li Y, Qiu X, Tian B and
Yao L: OGT knockdown counteracts high phosphate-induced vascular
calcification in chronic kidney disease through autophagy
activation by downregulating YAP. Life Sci.
261(118121)2020.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Siddals KW, Allen J, Sinha S, Canfield AE,
Kalra PA and Gibson JM: Apposite insulin-like growth factor (IGF)
receptor glycosylation is critical to the maintenance of vascular
smooth muscle phenotype in the presence of factors promoting
osteogenic differentiation and mineralization. J Biol Chem.
286:16623–16630. 2011.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Watson KE, Boström K, Ravindranath R, Lam
T, Norton B and Demer LL: TGF-beta 1 and 25-hydroxycholesterol
stimulate osteoblast-like vascular cells to calcify. J Clin Invest.
93:2106–2113. 1994.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Kanno Y, Into T, Lowenstein CJ and
Matsushita K: Nitric oxide regulates vascular calcification by
interfering with TGF-signalling. Cardiovasc Res. 77:221–230.
2008.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Sha X, Brunner AM, Purchio AF and Gentry
LE: Transforming growth factor beta 1: Importance of glycosylation
and acidic proteases for processing and secretion. Mol Endocrinol.
3:1090–1098. 1989.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Watanabe S, Misawa M, Matsuzaki T, Sakurai
T, Muramatsu T and Sato M: A novel glycosylation signal regulates
transforming growth factor beta receptors as evidenced by
endo-beta-galactosidase C expression in rodent cells. Glycobiology.
21:482–492. 2011.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Wen X, Liu A, Yu C, Wang L, Zhou M, Wang
N, Fang M, Wang W and Lin H: Inhibiting post-translational core
fucosylation prevents vascular calcification in the model of
uremia. Int J Biochem Cell Biol. 79:69–79. 2016.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Miyata T, van Ypersele de Strihou C,
Kurokawa K and Baynes JW: Alterations in nonenzymatic biochemistry
in uremia: Origin and significance of ‘carbonyl stress’ in
long-term uremic complications. Kidney Int. 55:389–399.
1999.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Rabbani N and Thornalley PJ: Advanced
glycation end products in the pathogenesis of chronic kidney
disease. Kidney Int. 93:803–813. 2018.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Hangai M, Takebe N, Honma H, Sasaki A,
Chida A, Nakano R, Togashi H, Nakagawa R, Oda T, Matsui M, et al:
Association of advanced glycation end products with coronary artery
calcification in japanese subjects with type 2 diabetes as assessed
by skin autofluorescence. J Atheroscler Thromb. 23:1178–1187.
2016.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Janda K, Krzanowski M, Gajda M, Dumnicka
P, Jasek E, Fedak D, Pietrzycka A, Kuźniewski M, Litwin JA and
Sułowicz W: Vascular effects of advanced glycation end-products:
Content of immunohistochemically detected AGEs in radial artery
samples as a predictor for arterial calcification and
cardiovascular risk in asymptomatic patients with chronic kidney
disease. Dis Markers. 2015(153978)2015.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Koike S, Yano S, Tanaka S, Sheikh AM,
Nagai A and Sugimoto T: Advanced glycation end-products induce
apoptosis of vascular smooth muscle cells: A mechanism for vascular
calcification. Int J Mol Sci. 17(1567)2016.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Wei Q, Ren X, Jiang Y, Jin H, Liu N and Li
J: Advanced glycation end products accelerate rat vascular
calcification through RAGE/oxidative stress. BMC Cardiovasc Disord.
13(13)2013.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Bro S, Flyvbjerg A, Binder CJ, Bang CA,
Denner L, Olgaard K and Nielsen LB: A neutralizing antibody against
receptor for advanced glycation end products (RAGE) reduces
atherosclerosis in uremic mice. Atherosclerosis. 201:274–280.
2008.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Movérare-Skrtic S, Voelkl J, Nilsson KH,
Nethander M, Luong TTD, Alesutan I, Li L, Wu J, Horkeby K,
Lagerquist MK, et al: B4GALNT3 regulates glycosylation of
sclerostin and bone mass. EBioMedicine. 91(104546)2023.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Tong YT, Gao GJ, Chang H, Wu XW and Li MT:
Development and economic assessment of machine learning models to
predict glycosylated hemoglobin in type 2 diabetes. Front
Pharmacol. 14(1216182)2023.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Hoek AG, Zwakenberg SR, Elders PJM, de
Jong PA, Spiering W, Bartstra JW, Doesburg T, van der Heijden AA,
van der Schouw YT and Beulens JWJ: SMART Study Group. An elevated
ankle-brachial index is not a valid proxy for peripheral medial
arterial calcification. Atherosclerosis. 323:13–19. 2021.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Ferraresi R, Ucci A, Pizzuto A, Losurdo F,
Caminiti M, Minnella D, Casini A, Clerici G, Montero-Baker M and
Mills J: A novel scoring system for small artery disease and medial
arterial calcification is strongly associated with major adverse
limb events in patients with chronic limb-threatening ischemia. J
Endovasc Ther. 28:194–207. 2021.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Lanzer P, Hannan FM, Lanzer JD, Janzen J,
Raggi P, Furniss D, Schuchardt M, Thakker R, Fok PW, Saez-Rodriguez
J, et al: Medial arterial calcification: JACC state-of-the-art
review. J Am Coll Cardiol. 78:1145–1165. 2021.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Ruf N, Uhlenberg B, Terkeltaub R, Nürnberg
P and Rutsch F: The mutational spectrum of ENPP1 as arising after
the analysis of 23 unrelated patients with generalized arterial
calcification of infancy (GACI). Hum Mutat. 25(98)2005.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Nitschke Y, Baujat G, Botschen U,
Wittkampf T, du Moulin M, Stella J, Le Merrer M, Guest G, Lambot K,
Tazarourte-Pinturier MF, et al: Generalized arterial calcification
of infancy and pseudoxanthoma elasticum can be caused by mutations
in either ENPP1 or ABCC6. Am J Hum Genet. 90:25–39. 2012.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Harja E, Bu DX, Hudson BI, Chang JS, Shen
X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, et al:
Vascular and inflammatory stresses mediate atherosclerosis via RAGE
and its ligands in apoE-/- mice. J Clin Invest. 118:183–194.
2008.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Lin Y and Sun Z: Klotho deficiency-induced
arterial calcification involves osteoblastic transition of VSMCs
and activation of BMP signaling. J Cell Physiol. 237:720–729.
2022.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Pan W, Jie W and Huang H: Vascular
calcification: Molecular mechanisms and therapeutic interventions.
MedComm (2020). 4(e200)2023.PubMed/NCBI View Article : Google Scholar
|
|
126
|
UniProt Consortium: UniProt: The universal
protein knowledgebase in 2021. Nucleic Acids Res. 49
(D1):D480–D489. 2021.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Luo S, Kong C, Zhao S, Tang X, Wang Y,
Zhou X, Li R, Liu X, Tang X, Sun S, et al: Endothelial
HDAC1-ZEB2-NuRD complex drives aortic aneurysm and dissection
through regulation of protein S-sulfhydration. Circulation.
147:1382–1403. 2023.PubMed/NCBI View Article : Google Scholar
|