Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review)

  • Authors:
    • Li Lin
    • Shaowei Xiang
    • Yuan Chen
    • Yan Liu
    • Dingwen Shen
    • Xiaoping Yu
    • Zhe Wu
    • Yanling Sun
    • Kequan Chen
    • Jia Luo
    • Guilai Wei
    • Zhiguo Wang
    • Zhifeng Ning
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Department of Neurosurgery, Enshi State Central Hospital, Enshi, Hubei 445000, P.R. China, Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Department of Internal Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Department of Parasitology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Department of Function, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, School of Sport, Xianning Vocational and Technical College, Xianning, Hubei 437100, P.R. China, School of Art and Design, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Department of Dermatology, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
    Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 427
    |
    Published online on: September 11, 2024
       https://doi.org/10.3892/etm.2024.12716
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The gut microbiota refers to the diverse bacterial community residing in the gastrointestinal tract. Recent data indicate a strong correlation between alterations in the gut microbiota composition and the onset of various diseases, notably cardiovascular disorders. Evidence suggests the gut‑cardiovascular axis signaling molecules released by the gut microbiota play a pivotal role in regulation. This review systematically delineates the association between dysbiosis of the gut microbiota and prevalent cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction and heart failure. Furthermore, it provides an overview of the putative pathogenic mechanisms by which dysbiosis in the gut microbiota contributes to the progression of cardiovascular ailments. The potential modulation of gut microbiota as a preventive strategy against cardiovascular diseases through dietary interventions, antibiotic therapies and probiotic supplementation is also explored and discussed within the present study.
View Figures

Figure 1

View References

1 

Barreto HC and Gordo I: Intrahost evolution of the gut microbiota. Nat Rev Microbiol. 21:590–603. 2023.PubMed/NCBI View Article : Google Scholar

2 

Guarner F and Malagelada JR: Gut flora in health and disease. Lancet. 361:512–519. 2003.PubMed/NCBI View Article : Google Scholar

3 

Shayya NW, Foote MS, Langfeld LQ, Du K, Bandick R, Mousani S, Bereswill S and Heimesaat MM: Human microbiota associated IL-10-/- mice: A valuable enterocolitis model to dissect the interactions of Campylobacter jejuni with host immunity and gut microbiota. Eur J Microbiol Immunol (Bp). 12:107–122. 2023.PubMed/NCBI View Article : Google Scholar

4 

Couvillion SP, Danczak RE, Cao X, Yang Q, Keerthising TP, McClure RS, Bitounis D, Bunret MC, Fansler SJ, Richardson RE, et al: Graphene oxide exposure alters gut microbial community composition and metabolism in an in vitro human model. NanoImpact. 30(100463)2023.PubMed/NCBI View Article : Google Scholar

5 

Mishra SP, Wang B, Jain S, Ding J, Rejeski J, Furdui CM, Kitzman DW, Taraohder S, Brechot C, Kumar A and Yadav H: A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut. Gut. 72:1848–1865. 2023.PubMed/NCBI View Article : Google Scholar

6 

Vallino L, Garavaglia B, Visciglia A, Amoruso A, Pane M, Ferraresi A and Lsidoro C: Cell-free Lactiplantibacillus plantarum OC01 supernatant suppresses IL-6-induced proliferation and invasion of human colorectal cancer cells: Effect on β-Catenin degradation and induction of autophagy. J Tradit Complement Med. 13:193–206. 2023.PubMed/NCBI View Article : Google Scholar

7 

Hooper LV and Gordon JI: Commensal host-bacterial relationships in the gut. Science. 292:1115–1118. 2001.PubMed/NCBI View Article : Google Scholar

8 

Dethlefsen L, McFall-Ngai M and Relman DA: An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 449:811–818. 2007.PubMed/NCBI View Article : Google Scholar

9 

Maciel-Fiuza MF, Muller GC, Campos DMS, Costa PSS, Peruzzo J, Bonamigo RR, Veit T and Vianna FSL: Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol. 14(1098386)2023.PubMed/NCBI View Article : Google Scholar

10 

Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R and Sun P: The interaction between mushroom polysaccharides and gut microbiota and their effect on human health: A review. Biology (Basel). 12(122)2023.PubMed/NCBI View Article : Google Scholar

11 

Belvoncikova P, Splichalova P, Videnska P and Gardlik R: The human mycobiome: Colonization, composition and the role in health and disease. J Fungi. 8(1046)2022.PubMed/NCBI View Article : Google Scholar

12 

Ley RE, Lozupone CA, Hamady M, Knight R and Gordon JI: Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 6:776–788. 2008.PubMed/NCBI View Article : Google Scholar

13 

Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J and Huttenhower C: Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 8(e1002606)2012.PubMed/NCBI View Article : Google Scholar

14 

Kwa WT, Sundarajoo S, Toh KY and Lee J: Application of emerging technologies for gut microbiome research. Singapore Med J. 64:45–52. 2023.PubMed/NCBI View Article : Google Scholar

15 

Sauceda C, Bayne C, Sudqi K, Gonzalez A, Dulai PS, Knight R, Gonzalez DJ and Gonzalez C: Stool multi-omics for the study of host-microbe interactions in inflammatory bowel disease. Gut Microbes. 14(2154092)2022.PubMed/NCBI View Article : Google Scholar

16 

Minj J, Riordan J, Teets C, Fernholz-Hartman H, Tanggono A, Lee Y, Chauvin T, Carbonero F and Solverson P: Diet-induced rodent obesity is prevented and the fecal microbiome is improved with elderberry (Sambucus nigra ssp. canadensis) juice powder. J Agric Food Chem. 72:12555–12565. 2024.PubMed/NCBI View Article : Google Scholar

17 

Rochoń J, Kalinowski P, Szymanek-Majchrzak K and Grąt M: Role of gut-liver axis and glucagon-like peptide-1 receptor agonists in the treatment of metabolic dysfunction-associated fatty liver disease. World J Gastroenterol. 30:2964–2980. 2024.PubMed/NCBI View Article : Google Scholar

18 

Zhang Y, Zheng T, Ma D, Shi P, Zhang H, Li J and Sun Z: Probiotics Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 prevent high blood pressure via modulating the gut microbiota composition and host metabolic products. mSystems. 8(e0033123)2023.PubMed/NCBI View Article : Google Scholar

19 

Yan D, Si W, Zhou X, Yang M, Chen Y, Chang Y, Lu Y, Liu J, Wang K, Yan M, et al: Eucommia ulmoides bark extract reduces blood pressure and inflammation by regulating the gut microbiota and enriching the Parabacteroides strain in high-salt diet and N(omega)-nitro-L-arginine methyl ester induced mice. Front Microbiol. 18(967649)2022.PubMed/NCBI View Article : Google Scholar

20 

Mao Y, Kong C, Zang T, You L, Wang LS, Shen L and Ge JB: Impact of the gut microbiome on atherosclerosis. mLife. 3:167–175. 2024.PubMed/NCBI View Article : Google Scholar

21 

Glorieux G, Nigam SK, Vanholder R and Verbeke F: Role of the microbiome in gut-heart-kidney cross talk. Circ Res. 132:1064–1083. 2023.PubMed/NCBI View Article : Google Scholar

22 

Hijová E: Benefits of biotics for cardiovascular diseases. Int J Mol Sci. 24(6292)2023.PubMed/NCBI View Article : Google Scholar

23 

Liao L, Huang J, Zheng J, Ma X, Huang L and Xu W: Gut microbiota in Chinese and Japanese patients with cardiovascular diseases: A systematic review and meta-analysis. Ann Saudi Med. 43:105–114. 2023.PubMed/NCBI View Article : Google Scholar

24 

Zhang H, Li H, Pan B, Zhang S, Su X, Sun W, Zhang T, Zhang Z, Lv S and Cui H: Integrated 16S rRNA Sequencing and untargeted metabolomics analysis to reveal the protective mechanisms of polygonatum sibiricum polysaccharide on type 2 diabetes mellitus model rats. Curr Drug Metab. 10(1389200224666230406114012)2023.PubMed/NCBI View Article : Google Scholar

25 

Song Z, Song R, Liu Y, Wu Z and Zhang X: Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Res Int. 167(112730)2023.PubMed/NCBI View Article : Google Scholar

26 

Sajdel-Sulkowska EM: Neuropsychiatric ramifications of COVID-19: Short-chain fatty acid deficiency and disturbance of microbiota-gut-brain axis signaling. Biomed Res Int. 2021(7880448)2021.PubMed/NCBI View Article : Google Scholar

27 

Shantsila E, Kamphuisen PW and Lip GY: Circulating microparticles in cardiovascular disease: Implications for atherogenesis and atherothrombosis. J Thromb Haemost. 8:2358–2368. 2010.PubMed/NCBI View Article : Google Scholar

28 

Philippova M, Suter Y, Toggweiler S, Schoenenberger AW, Joshi MB, Kyriakakis E, Erne P and Resink TJ: T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis. Eur Heart J. 32:760–771. 2011.PubMed/NCBI View Article : Google Scholar

29 

Markin AM, Markina YV, Bogatyreva AI, Tolstik TV, Chakal DA, Breshenkov DG and Charchyan ER: The role of cytokines in cholesterol accumulation in cells and atherosclerosis progression. Int J Mol Sci. 24(6426)2023.PubMed/NCBI View Article : Google Scholar

30 

Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F and Nielsen J: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 3(1245)2012.PubMed/NCBI View Article : Google Scholar

31 

Khalili L, Centner AM and Salazar G: Effects of berries, phytochemicals, and probiotics on atherosclerosis through gut microbiota modification: A meta-analysis of animal studies. Int J Mol Sci. 24(3084)2023.PubMed/NCBI View Article : Google Scholar

32 

Kumar T, Dutta RR, Velagala VR, Ghosh B and Mudey A: Analyzing the complicated connection between intestinal microbiota and cardiovascular diseases. Cureus. 14(e28165)2022.PubMed/NCBI View Article : Google Scholar

33 

Shi X, Wu H, Liu Y, Huang H, Liu L, Yang Y, Jiang T, Zhou M and Dai M: Inhibiting vascular smooth muscle cell proliferation mediated by osteopontin via regulating gut microbial lipopolysaccharide: A novel mechanism for paeonol in atherosclerosis treatment. Front Pharmacol. 13(936677)2022.PubMed/NCBI View Article : Google Scholar

34 

Liu S, He F, Zheng T, Wan S, Chen S, Yang F, Xu X and Pei X: Ligustrum robustum alleviates atherosclerosis by decreasing serum TMAO, modulating gut microbiota, and decreasing bile acid and cholesterol absorption in mice. Mol Nutr Food Res. 65(e2100014)2021.PubMed/NCBI View Article : Google Scholar

35 

Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen PB, Liu X, Wang YT, Cai XC, Tian JQ, et al: The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne). 14(1085041)2023.PubMed/NCBI View Article : Google Scholar

36 

Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC and Blanco-Vaca F: Trimethylamine N-Oxide: A link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int J Mol Sci. 19(3228)2018.PubMed/NCBI View Article : Google Scholar

37 

Shi C, Pei M, Wang Y, Chen Q, Cao P, Zhang L, Guo J, Deng W, Wang L, Li X and Gong Z: Changes of flavin-containing monooxygenases and trimethylamine-N-oxide may be involved in the promotion of non-alcoholic fatty liver disease by intestinal microbiota metabolite trimethylamine. Biochem Biophys Res Commun. 594:1–7. 2022.PubMed/NCBI View Article : Google Scholar

38 

Trenteseaux C, Gaston AT, Aguesse A, Poupeau G, Coppet P, Andriantsitohaina R, Laschet J, Amarger V, Krempf M, Nobecourt-Dupuy E and Ouguerram K: Perinatal hypercholesterolemia exacerbates atherosclerosis lesions in offspring by altering metabolism of trimethylamine-n-oxide and bile acids. Arterioscler Thromb Vasc Biol. 37:2053–2063. 2017.PubMed/NCBI View Article : Google Scholar

39 

Schleifer KH and Kandler O: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 36:407–477. 1972.PubMed/NCBI View Article : Google Scholar

40 

Popescu NI, Girton A, Burgett T, Lovelady K and Coggeshall KM: Monocyte procoagulant responses to anthrax peptidoglycan are reinforced by proinflammatory cytokine signaling. Blood Adv. 3:2436–2447. 2019.PubMed/NCBI View Article : Google Scholar

41 

Xie Y, Li Y, Cai X, Wang X and Li J: Interleukin-37 suppresses ICAM-1 expression in parallel with NF-κB down-regulation following TLR2 activation of human coronary artery endothelial cells. Int Immunopharmacol. 38:26–30. 2016.PubMed/NCBI View Article : Google Scholar

42 

Dong C, Zhang M, Song S, Wei F, Qin L, Fan P, Shi Y, Wang X and Wang R: A small subunit of Geranylgeranyl Diphosphate synthase functions as an active regulator of carotenoid synthesis in nicotiana tabacum. Int J Mol Sci. 24(992)2023.PubMed/NCBI View Article : Google Scholar

43 

Jo HE, Son SY and Lee CH: Comparison of metabolome and functional properties of three Korean cucumber cultivars. Front Plant Sci. 13(882120)2022.PubMed/NCBI View Article : Google Scholar

44 

Bocchini M, D'Amato R, Ciancaleoni S, Fontanella MC, Palmerini CA, Beone GM, Onofri A, Negri V, Marconi G, Albertini E and Businelli D: Soil Selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Front Plant Sci. 9(389)2018.PubMed/NCBI View Article : Google Scholar

45 

Wang Y, Zheng Y, Liu Y, Shan G, Zhang B, Cai Q, Lou J and Qu Y: The lipid-lowering effects of fenugreek gum, hawthorn pectin, and burdock inulin. Front Nutr. 10(1149094)2023.PubMed/NCBI View Article : Google Scholar

46 

Tahri K, Grill JP and Schneider F: Bifidobacteria strain behavior toward cholesterol: Coprecipitation with bile salts and assimilation. Curr Microbiol. 33:187–193. 1996.PubMed/NCBI View Article : Google Scholar

47 

Bordoni A, Amaretti A, Leonardi A, Boschetti E, Danesi F, Matteuzzi D, Roncaglia L, Raimondi S and Rossi M: Cholesterol-lowering probiotics: In vitro selection and in vivo testing of bifidobacteria. Appl Microbiol Biotechnol. 97:8273–8281. 2013.PubMed/NCBI View Article : Google Scholar

48 

Burnier M and Damianaki A: Hypertension as cardiovascular risk factor in chronic kidney disease. Circ Res. 132:1050–1063. 2023.PubMed/NCBI View Article : Google Scholar

49 

Mutengo KH, Masenga SK, Mweemba A, Mutale W and Kirabo A: Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol. 14(1075641)2023.PubMed/NCBI View Article : Google Scholar

50 

Honour JW, Borriello SP, Ganten U and Honour P: Antibiotics attenuate experimental hypertension in rats. J Endocrinol. 105:347–350. 1985.PubMed/NCBI View Article : Google Scholar

51 

Yang Z, Wang Q, Liu Y, Wang L, Ge Z, Li Z, Feng S and Wu C: Gut microbiota and hypertension: Association, mechanisms and treatment. Clin Exp Hypertens. 45(2195135)2023.PubMed/NCBI View Article : Google Scholar

52 

Li J, Zhao F, Wang Y, Chen J, Tao G, Tian G, Wu S, Liu W, Cui Q, Geng B, et al: Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 5(14)2017.PubMed/NCBI View Article : Google Scholar

53 

Jin J, Gao L, Zou X, Zhang Y, Zheng Z, Zhang X, Li J, Tian Z, Wang X, Gu J, et al: Gut dysbiosis promotes preeclampsia by regulating macrophages and trophoblasts. Circ Res. 131:492–506. 2022.PubMed/NCBI View Article : Google Scholar

54 

Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M and Nitert MD: SPRING Trial Group. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension. 68:974–981. 2016.PubMed/NCBI View Article : Google Scholar

55 

Lucas SE, Walton SL, Colafella KM, Mileto SJ, Lyras D and Denton KM: Antihypertensives and antibiotics: Impact on intestinal dysfunction and hypertension. Hypertension. 11:1393–1402. 2023.PubMed/NCBI View Article : Google Scholar

56 

Kyoung J and Yang T: Depletion of the gut microbiota enhances the blood pressure-lowering effect of captopril: Implication of the gut microbiota in resistant hypertension. Hypertens Res. 45:1505–1510. 2022.PubMed/NCBI View Article : Google Scholar

57 

Chen XF, Ren SC, Tang G, Wu C, Chen X and Tang XQ: Short-chain fatty acids in blood pressure, friend or foe. Chin Med J (Engl). 134:2393–2394. 2021.PubMed/NCBI View Article : Google Scholar

58 

Dinakis E, O'Donnell JA and Marques FZ: The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf). 20(e14193)2024.PubMed/NCBI View Article : Google Scholar

59 

Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, et al: Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci Transl Med. 6(277ra36)2014.PubMed/NCBI View Article : Google Scholar

60 

Ohman KP, Karlberg BE, Nilsson OR and Wettre S: Captopril in primary hypertension. Effects related to the renin-angiotensin-aldosterone and kallikrein-kinin systems. Acta Med Scand Suppl. 646:98–105. 1981.PubMed/NCBI

61 

Andrade JM, de Farias Lelis D, Mafra V and Cota J: The angiotensin converting enzyme 2 (ACE2), gut microbiota, and cardiovascular health. Protein Pept Lett. 24:827–832. 2017.PubMed/NCBI View Article : Google Scholar

62 

Perlot T and Penninger JM: ACE2-from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect. 15:866–873. 2013.PubMed/NCBI View Article : Google Scholar

63 

Zhang QL, Chen XH, Zhou SJ, Lei YQ, Huang JS, Chen Q and Cao H: Relationship between disorders of the intestinal microbiota and heart failure in infants with congenital heart disease. Front Cell Infect Microbiol. 13(1152348)2023.PubMed/NCBI View Article : Google Scholar

64 

Desai D, Desai A, Jamil A, Csendes D, Gutlapalli SD, Prakash K, Swarnakari KM, Bai M, Manoharan MP, Raja R and Khan S: Re-defining the gut heart axis: A systematic review of the literature on the role of gut microbial dysbiosis in patients with heart failure. Cureus. 15(e34902)2023.PubMed/NCBI View Article : Google Scholar

65 

Xu X, Hu H, Zeng H, Li B, Yin Q, Jiang Y, Zang L, Zhao C and Qian G: Sinisan ameliorates colonic injury induced by water immersion restraint stress by enhancing intestinal barrier function and the gut microbiota structure. Pharm Biol. 61:598–609. 2023.PubMed/NCBI View Article : Google Scholar

66 

Tousoulis D, Guzik T, Padro T, Duncker DJ, Luca GD, Eringa E, Vavlukis M, Antonopoulos AS, Katsimichas T, Cenko E, et al: Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: A position paper by the ESC working group on coronary pathophysiology and microcirculation. Cardiovasc Res. 118:3171–3182. 2022.PubMed/NCBI View Article : Google Scholar

67 

Cui X, Su Y, Huang X, Chen J, Ma J, Liao P and He X: Combined analysis of plasma metabolome and intestinal microbiome sequencing to explore jiashen prescription and its potential role in changing intestine-heart axis and effect on chronic heart failure. Front Cardiovasc Med. 10(1147438)2023.PubMed/NCBI View Article : Google Scholar

68 

Zong X, Fan Q, Yang Q, Pan R, Zhuang L, Xi R, Zhang R and Tao R: Trimethyllysine, a trimethylamine N-oxide precursor, predicts the presence, severity, and prognosis of heart failure. Front Cardiovasc Med. 9(907997)2022.PubMed/NCBI View Article : Google Scholar

69 

Li X, Fan Z, Cui J, Li D, Lu J, Cui X, Xie L, Wu Y, Lin Q and Li Y: Trimethylamine N-Oxide in heart failure: A meta-analysis of prognostic value. Front Cardiovasc Med. 16(817396)2022.PubMed/NCBI View Article : Google Scholar

70 

Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y and Hazen SL: Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 35:904–910. 2014.PubMed/NCBI View Article : Google Scholar

71 

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein EB, Britt EB, Fu X, Chung YM, et al: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 472:57–63. 2011.PubMed/NCBI View Article : Google Scholar

72 

Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, Gross GJ, Salzmman NH and Baker JE: Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 26:1727–1735. 2012.PubMed/NCBI View Article : Google Scholar

73 

Lam V, Su J, Hsu A, Gross GJ, Salzman NH and Baker JE: Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 11(e0160840)2016.PubMed/NCBI View Article : Google Scholar

74 

Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, Sidaway JE, Martin G, Gloor GB, Swann JR, et al: Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 7:491–499. 2014.PubMed/NCBI View Article : Google Scholar

75 

Tang WH and Hazen SL: The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 124:4204–4211. 2014.PubMed/NCBI View Article : Google Scholar

76 

Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF and Gordon JI: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 101:15718–15723. 2004.PubMed/NCBI View Article : Google Scholar

77 

Jones BV, Begley M, Hill C, Gahan CG and Marchesi JR: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA. 105:13580–13585. 2008.PubMed/NCBI View Article : Google Scholar

78 

Chiang JY: Bile acids: Regulation of synthesis. J Lipid Res. 50:1955–1966. 2009.PubMed/NCBI View Article : Google Scholar

79 

Ferrell JM, Boehme S, Li F and Chiang JY: Cholesterol 7α-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders. J Lipid Res. 57:1144–1154. 2016.PubMed/NCBI View Article : Google Scholar

80 

Li T, Francl JM, Boehme S, Ochoa A, Zhang Y, Klaassen CD, Erickson SK and Chiang JY: Glucose and insulin induction of bile acid synthesis: Mechanisms and implication in diabetes and obesity. J Biol Chem. 287:1861–1873. 2012.PubMed/NCBI View Article : Google Scholar

81 

Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, Tailleux A, Schaart G, Kouach M, Charton J, Deprez B, et al: The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22:418–426. 2015.PubMed/NCBI View Article : Google Scholar

82 

Kumar PS, Mason MR, Brooker MR and O'Brien K: Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol. 39:425–433. 2012.PubMed/NCBI View Article : Google Scholar

83 

Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, Dahl CP, Aukrust P, Gullestad L, Hov JR and Trøseid M: Increased Secondary/Primary bile acid ratio in chronic heart failure. J Card Fail. 23:666–671. 2017.PubMed/NCBI View Article : Google Scholar

84 

Dam H: The formation of coprosterol in the intestine: The action of intestinal bacteria on cholesterol. Biochem J. 28:820–825. 1934.PubMed/NCBI View Article : Google Scholar

85 

Lichtenstein AH: Intestinal cholesterol metabolism. Ann Med. 22:49–52. 1990.PubMed/NCBI View Article : Google Scholar

86 

Illman RJ, Storer GB and Topping DL: White wheat flour lowers plasma cholesterol and increases cecal steroids relative to whole wheat flour, wheat bran and wheat pollard in rats. J Nutr. 123:1094–1100. 1993.PubMed/NCBI View Article : Google Scholar

87 

Midtvedt AC and Midtvedt T: Conversion of cholesterol to coprostanol by the intestinal microflora during the first two years of human life. J Pediatr Gastroenterol Nutr. 17:161–168. 1993.PubMed/NCBI View Article : Google Scholar

88 

Benno P, Midtvedt K, Alam M, Collinder E, Norin E and Midtvedt T: Examination of intestinal conversion of cholesterol to coprostanol in 633 healthy subjects reveals an age- and sex-dependent pattern. Microbial Ecology in Health and Disease. 17:200–204. 2005.

89 

Midtvedt T, Lingaas E, Carlstedt-Duke B, Höverstad T, Midtvedt AC, Saxerholt H, Steinbakk M and Norin KE: Intestinal microbial conversion of cholesterol to coprostanol in man. Influence of antibiotics. APMIS. 98:839–844. 1990.PubMed/NCBI View Article : Google Scholar

90 

Veiga P, Juste C, Lepercq P, Saunier K, Béguet F and Gérard P: Correlation between faecal microbial community structure and cholesterol-to-coprostanol conversion in the human gut. FEMS Microbiol Lett. 242:81–86. 2005.PubMed/NCBI View Article : Google Scholar

91 

Gerard P, Lepercq P, Leclerc M, Gavini F, Raibaud P and Juste C: Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl Environ Microbiol. 73:5742–5749. 2007.PubMed/NCBI View Article : Google Scholar

92 

Ren D, Li L, Schwabacher AW, Young JW and Beitz DC: Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids. 61:33–40. 1996.PubMed/NCBI View Article : Google Scholar

93 

Li L, Baumann CA, Meling DD, Sell JL and Beitz DC: Effect of orally administered Eubacterium Coprostanoligenes ATCC 51222 on plasma cholesterol concentration in laying hens. Poult Sci. 75:743–745. 1996.PubMed/NCBI View Article : Google Scholar

94 

Rosenfeld RS, Fukushima DK, Hellman L and Gallagher TF: The transformation of cholesterol to coprostanol. J Biol Chem. 211:301–311. 1954.PubMed/NCBI

95 

Antharam VC, McEwen DC, Garrett TJ, Dossey AT, Li EC, Kozlov AN, Mesbah Z and Wang GP: An integrated metabolomic and microbiome analysis identified specific gut microbiota associated with fecal cholesterol and coprostanol in clostridium difficile infection. PLoS One. 11(e0148824)2016.PubMed/NCBI View Article : Google Scholar

96 

Lye HS, Rusul G and Liong MT: Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci. 93:1383–1392. 2010.PubMed/NCBI View Article : Google Scholar

97 

Tahri K, Grill JP and Schneider F: Involvement of trihydroxyconjugated bile salts in cholesterol assimilation by bifidobacteria. Curr Microbiol. 34:79–84. 1997.PubMed/NCBI View Article : Google Scholar

98 

Gérard P: Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 3:14–24. 2013.PubMed/NCBI View Article : Google Scholar

99 

Nutting CW, Islam S and Daugirdas JT: Vasorelaxant effects of short chain fatty acid salts in rat caudal artery. Am J Physiol. 261:H561–H567. 1991.PubMed/NCBI View Article : Google Scholar

100 

Macfarlane GT and Macfarlane S: Fermentation in the human large intestine: Its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 45 (Suppl):S120–S127. 2011.PubMed/NCBI View Article : Google Scholar

101 

Musso G, Gambino R and Cassader M: Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 62:361–380. 2011.PubMed/NCBI View Article : Google Scholar

102 

David LA, Maurice CF, Carmody RN, Gootenbreg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al: Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559–563. 2014.PubMed/NCBI View Article : Google Scholar

103 

Krishnan S, Alden N and Lee K: Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol. 36:137–145. 2015.PubMed/NCBI View Article : Google Scholar

104 

Pluznick J: A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 5:202–207. 2014.PubMed/NCBI View Article : Google Scholar

105 

Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, et al: Gut dysbiosis is linked to hypertension. Hypertension. 65:1331–1340. 2015.PubMed/NCBI View Article : Google Scholar

106 

Jama HA, Snelson M, Schutte AE, Muir J and Marques FZ: Recommendations for the use of dietary fiber to improve blood pressure control. Hypertension. 81:1450–1459. 2024.PubMed/NCBI View Article : Google Scholar

107 

Falony G, Vieira-Silva S and Raes J: Microbiology meets big data: The case of gut microbiota-derived Trimethylamine. Annu Rev Microbiol. 69:305–321. 2015.PubMed/NCBI View Article : Google Scholar

108 

Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al: Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 19:576–585. 2013.PubMed/NCBI View Article : Google Scholar

109 

Zeisel SH and Warrier M: Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr. 37:157–181. 2017.PubMed/NCBI View Article : Google Scholar

110 

Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y and Hazen SL: Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 368:1575–1584. 2013.PubMed/NCBI View Article : Google Scholar

111 

Chittim CL, del Campo AM and Balskus EP: Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline. Nat Microbiol. 4:155–163. 2019.PubMed/NCBI View Article : Google Scholar

112 

Allayee H and Hazen SL: Contribution of gut bacteria to lipid levels: Another metabolic role for microbes? Circ Res. 117:750–754. 2015.PubMed/NCBI View Article : Google Scholar

113 

Ghazalpour A, Cespedes I, Bennett BJ and Allayee H: Expanding role of gut microbiota in lipid metabolism. Curr Opin Lipidol. 27:141–147. 2016.PubMed/NCBI View Article : Google Scholar

114 

Al-Obaide MAI, Singh R, Datta P, Rewers-Felkins KA, Salguero MV, Al-Obaidi I, Kottapalli KR and Vasylyeva TL: Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J Clin Med. 6(86)2017.PubMed/NCBI View Article : Google Scholar

115 

Zhu W, Gregory JC, Org E, Buffa JA, Gupte N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al: Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 165:111–124. 2016.PubMed/NCBI View Article : Google Scholar

116 

Ley RE, Turnbaugh PJ, Klein S and Gordon JI: Microbial ecology: Human gut microbes associated with obesity. Nature. 444:1022–1023. 2006.PubMed/NCBI View Article : Google Scholar

117 

Liu TX, Niu HT and Zhang SY: Intestinal microbiota metabolism and atherosclerosis. Chin Med J (Engl). 128:2805–2811. 2015.PubMed/NCBI View Article : Google Scholar

118 

Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Oeg E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, et al: Non-lethal inhibition of gut microbial Trimethylamine production for the treatment of atherosclerosis. Cell. 163:1585–1595. 2015.PubMed/NCBI View Article : Google Scholar

119 

Martin FP, Wang Y, Sprenger N, Yap IKS, Lundsedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB, et al: Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol. 4(157)2008.PubMed/NCBI View Article : Google Scholar

120 

Nakamura Y, Masuda O and Takano T: Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci Biotechnol Biochem. 60:488–489. 1996.PubMed/NCBI View Article : Google Scholar

121 

Nakamura Y, Yamamoto N, Sakai K and Takano T: Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J Dairy Sci. 78:1253–1257. 1995.PubMed/NCBI View Article : Google Scholar

122 

Kim B, Park KY, Ji Y, Park S, Holzapfel W and Hyun CK: Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice. Biochem Biophys Res Commun. 473:530–536. 2016.PubMed/NCBI View Article : Google Scholar

123 

Derrien M and van Hylckama Vlieg JE: Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 23:354–366. 2015.PubMed/NCBI View Article : Google Scholar

124 

Deng M, Zhang S, Wu S, Jiang Q, Teng W, Luo T, Ouyang Y, Liu J and Gu B: Lactiplantibacillus plantarum N4 ameliorates lipid metabolism and gut microbiota structure in high fat diet-fed rats. Front Microbiol. 7(1390293)2024.PubMed/NCBI View Article : Google Scholar

125 

Ebel B, Lemetais G, Beney L, Cachon R, Sokol H, Langella P and Gervais P: Impact of probiotics on risk factors for cardiovascular diseases. A review. Crit Rev Food Sci Nutr. 54:175–189. 2014.PubMed/NCBI View Article : Google Scholar

126 

Khalesi S, Sun J, Buys N and Jayasinghe R: Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension. 64:897–903. 2014.PubMed/NCBI View Article : Google Scholar

127 

De Filippis F, Pellegrini N, Vannini L, Jeffery IB, Storia AL, Laghi L, Serrazanetti D, Cagno RD, Ferrocino I, Lazzi C, et al: High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 65:1812–1821. 2016.PubMed/NCBI View Article : Google Scholar

128 

Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E and Trichopoulos D: Mediterranean diet pyramid: A cultural model for healthy eating. Am J Clin Nutr. 61:1402S–1406S. 1995.PubMed/NCBI View Article : Google Scholar

129 

Sofi F, Abbate R, Gensini GF and Casini A: Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am J Clin Nutr. 92:1189–1196. 2010.PubMed/NCBI View Article : Google Scholar

130 

Lopez-Garcia E, Rodriguez-Artalejo F, Li TY, Fung TT, Li S, Willett WC, Rimm EB and Hu FB: The Mediterranean-style dietary pattern and mortality among men and women with cardiovascular disease. Am J Clin Nutr. 99:172–180. 2014.PubMed/NCBI View Article : Google Scholar

131 

Cani PD, Delzenne NM, Amar J and Burcelin R: Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol Biol (Paris). 56:305–309. 2008.PubMed/NCBI View Article : Google Scholar

132 

Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q, Li J, Liu X, Liu J, Guo Z, et al: Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 6(66)2018.PubMed/NCBI View Article : Google Scholar

133 

Qi Y, Aranda JM, Rodriguez V, Raizada MK and Pepine CJ: Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension-A case report. Int J Cardiol. 201:157–158. 2015.PubMed/NCBI View Article : Google Scholar

134 

Battson ML, Lee DM, Jarrell DK, Hou S, Ecton KE, Weir TL and Gentile CL: Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 314:E468–E477. 2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Luo J, et al: Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 28: 427, 2024.
APA
Lin, L., Xiang, S., Chen, Y., Liu, Y., Shen, D., Yu, X. ... Ning, Z. (2024). Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Experimental and Therapeutic Medicine, 28, 427. https://doi.org/10.3892/etm.2024.12716
MLA
Lin, L., Xiang, S., Chen, Y., Liu, Y., Shen, D., Yu, X., Wu, Z., Sun, Y., Chen, K., Luo, J., Wei, G., Wang, Z., Ning, Z."Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review)". Experimental and Therapeutic Medicine 28.5 (2024): 427.
Chicago
Lin, L., Xiang, S., Chen, Y., Liu, Y., Shen, D., Yu, X., Wu, Z., Sun, Y., Chen, K., Luo, J., Wei, G., Wang, Z., Ning, Z."Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review)". Experimental and Therapeutic Medicine 28, no. 5 (2024): 427. https://doi.org/10.3892/etm.2024.12716
Copy and paste a formatted citation
x
Spandidos Publications style
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Luo J, et al: Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 28: 427, 2024.
APA
Lin, L., Xiang, S., Chen, Y., Liu, Y., Shen, D., Yu, X. ... Ning, Z. (2024). Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Experimental and Therapeutic Medicine, 28, 427. https://doi.org/10.3892/etm.2024.12716
MLA
Lin, L., Xiang, S., Chen, Y., Liu, Y., Shen, D., Yu, X., Wu, Z., Sun, Y., Chen, K., Luo, J., Wei, G., Wang, Z., Ning, Z."Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review)". Experimental and Therapeutic Medicine 28.5 (2024): 427.
Chicago
Lin, L., Xiang, S., Chen, Y., Liu, Y., Shen, D., Yu, X., Wu, Z., Sun, Y., Chen, K., Luo, J., Wei, G., Wang, Z., Ning, Z."Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review)". Experimental and Therapeutic Medicine 28, no. 5 (2024): 427. https://doi.org/10.3892/etm.2024.12716
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team