|
1
|
Barreto HC and Gordo I: Intrahost
evolution of the gut microbiota. Nat Rev Microbiol. 21:590–603.
2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Guarner F and Malagelada JR: Gut flora in
health and disease. Lancet. 361:512–519. 2003.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Shayya NW, Foote MS, Langfeld LQ, Du K,
Bandick R, Mousani S, Bereswill S and Heimesaat MM: Human
microbiota associated IL-10-/- mice: A valuable enterocolitis model
to dissect the interactions of Campylobacter jejuni with host
immunity and gut microbiota. Eur J Microbiol Immunol (Bp).
12:107–122. 2023.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Couvillion SP, Danczak RE, Cao X, Yang Q,
Keerthising TP, McClure RS, Bitounis D, Bunret MC, Fansler SJ,
Richardson RE, et al: Graphene oxide exposure alters gut microbial
community composition and metabolism in an in vitro human model.
NanoImpact. 30(100463)2023.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Mishra SP, Wang B, Jain S, Ding J, Rejeski
J, Furdui CM, Kitzman DW, Taraohder S, Brechot C, Kumar A and Yadav
H: A mechanism by which gut microbiota elevates permeability and
inflammation in obese/diabetic mice and human gut. Gut.
72:1848–1865. 2023.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Vallino L, Garavaglia B, Visciglia A,
Amoruso A, Pane M, Ferraresi A and Lsidoro C: Cell-free
Lactiplantibacillus plantarum OC01 supernatant suppresses
IL-6-induced proliferation and invasion of human colorectal cancer
cells: Effect on β-Catenin degradation and induction of autophagy.
J Tradit Complement Med. 13:193–206. 2023.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Hooper LV and Gordon JI: Commensal
host-bacterial relationships in the gut. Science. 292:1115–1118.
2001.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Dethlefsen L, McFall-Ngai M and Relman DA:
An ecological and evolutionary perspective on human-microbe
mutualism and disease. Nature. 449:811–818. 2007.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Maciel-Fiuza MF, Muller GC, Campos DMS,
Costa PSS, Peruzzo J, Bonamigo RR, Veit T and Vianna FSL: Role of
gut microbiota in infectious and inflammatory diseases. Front
Microbiol. 14(1098386)2023.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S,
Zhang A, He R and Sun P: The interaction between mushroom
polysaccharides and gut microbiota and their effect on human
health: A review. Biology (Basel). 12(122)2023.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Belvoncikova P, Splichalova P, Videnska P
and Gardlik R: The human mycobiome: Colonization, composition and
the role in health and disease. J Fungi. 8(1046)2022.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Ley RE, Lozupone CA, Hamady M, Knight R
and Gordon JI: Worlds within worlds: Evolution of the vertebrate
gut microbiota. Nat Rev Microbiol. 6:776–788. 2008.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Faust K, Sathirapongsasuti JF, Izard J,
Segata N, Gevers D, Raes J and Huttenhower C: Microbial
co-occurrence relationships in the human microbiome. PLoS Comput
Biol. 8(e1002606)2012.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kwa WT, Sundarajoo S, Toh KY and Lee J:
Application of emerging technologies for gut microbiome research.
Singapore Med J. 64:45–52. 2023.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Sauceda C, Bayne C, Sudqi K, Gonzalez A,
Dulai PS, Knight R, Gonzalez DJ and Gonzalez C: Stool multi-omics
for the study of host-microbe interactions in inflammatory bowel
disease. Gut Microbes. 14(2154092)2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Minj J, Riordan J, Teets C,
Fernholz-Hartman H, Tanggono A, Lee Y, Chauvin T, Carbonero F and
Solverson P: Diet-induced rodent obesity is prevented and the fecal
microbiome is improved with elderberry (Sambucus nigra ssp.
canadensis) juice powder. J Agric Food Chem. 72:12555–12565.
2024.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rochoń J, Kalinowski P, Szymanek-Majchrzak
K and Grąt M: Role of gut-liver axis and glucagon-like peptide-1
receptor agonists in the treatment of metabolic
dysfunction-associated fatty liver disease. World J Gastroenterol.
30:2964–2980. 2024.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zhang Y, Zheng T, Ma D, Shi P, Zhang H, Li
J and Sun Z: Probiotics Bifidobacterium lactis M8 and Lactobacillus
rhamnosus M9 prevent high blood pressure via modulating the gut
microbiota composition and host metabolic products. mSystems.
8(e0033123)2023.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Yan D, Si W, Zhou X, Yang M, Chen Y, Chang
Y, Lu Y, Liu J, Wang K, Yan M, et al: Eucommia ulmoides bark
extract reduces blood pressure and inflammation by regulating the
gut microbiota and enriching the Parabacteroides strain in
high-salt diet and N(omega)-nitro-L-arginine methyl ester induced
mice. Front Microbiol. 18(967649)2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Mao Y, Kong C, Zang T, You L, Wang LS,
Shen L and Ge JB: Impact of the gut microbiome on atherosclerosis.
mLife. 3:167–175. 2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Glorieux G, Nigam SK, Vanholder R and
Verbeke F: Role of the microbiome in gut-heart-kidney cross talk.
Circ Res. 132:1064–1083. 2023.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Hijová E: Benefits of biotics for
cardiovascular diseases. Int J Mol Sci. 24(6292)2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Liao L, Huang J, Zheng J, Ma X, Huang L
and Xu W: Gut microbiota in Chinese and Japanese patients with
cardiovascular diseases: A systematic review and meta-analysis. Ann
Saudi Med. 43:105–114. 2023.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhang H, Li H, Pan B, Zhang S, Su X, Sun
W, Zhang T, Zhang Z, Lv S and Cui H: Integrated 16S rRNA Sequencing
and untargeted metabolomics analysis to reveal the protective
mechanisms of polygonatum sibiricum polysaccharide on type 2
diabetes mellitus model rats. Curr Drug Metab.
10(1389200224666230406114012)2023.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Song Z, Song R, Liu Y, Wu Z and Zhang X:
Effects of ultra-processed foods on the microbiota-gut-brain axis:
The bread-and-butter issue. Food Res Int.
167(112730)2023.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Sajdel-Sulkowska EM: Neuropsychiatric
ramifications of COVID-19: Short-chain fatty acid deficiency and
disturbance of microbiota-gut-brain axis signaling. Biomed Res Int.
2021(7880448)2021.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Shantsila E, Kamphuisen PW and Lip GY:
Circulating microparticles in cardiovascular disease: Implications
for atherogenesis and atherothrombosis. J Thromb Haemost.
8:2358–2368. 2010.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Philippova M, Suter Y, Toggweiler S,
Schoenenberger AW, Joshi MB, Kyriakakis E, Erne P and Resink TJ:
T-cadherin is present on endothelial microparticles and is elevated
in plasma in early atherosclerosis. Eur Heart J. 32:760–771.
2011.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Markin AM, Markina YV, Bogatyreva AI,
Tolstik TV, Chakal DA, Breshenkov DG and Charchyan ER: The role of
cytokines in cholesterol accumulation in cells and atherosclerosis
progression. Int J Mol Sci. 24(6426)2023.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Karlsson FH, Fåk F, Nookaew I, Tremaroli
V, Fagerberg B, Petranovic D, Bäckhed F and Nielsen J: Symptomatic
atherosclerosis is associated with an altered gut metagenome. Nat
Commun. 3(1245)2012.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Khalili L, Centner AM and Salazar G:
Effects of berries, phytochemicals, and probiotics on
atherosclerosis through gut microbiota modification: A
meta-analysis of animal studies. Int J Mol Sci.
24(3084)2023.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kumar T, Dutta RR, Velagala VR, Ghosh B
and Mudey A: Analyzing the complicated connection between
intestinal microbiota and cardiovascular diseases. Cureus.
14(e28165)2022.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Shi X, Wu H, Liu Y, Huang H, Liu L, Yang
Y, Jiang T, Zhou M and Dai M: Inhibiting vascular smooth muscle
cell proliferation mediated by osteopontin via regulating gut
microbial lipopolysaccharide: A novel mechanism for paeonol in
atherosclerosis treatment. Front Pharmacol.
13(936677)2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Liu S, He F, Zheng T, Wan S, Chen S, Yang
F, Xu X and Pei X: Ligustrum robustum alleviates atherosclerosis by
decreasing serum TMAO, modulating gut microbiota, and decreasing
bile acid and cholesterol absorption in mice. Mol Nutr Food Res.
65(e2100014)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen
PB, Liu X, Wang YT, Cai XC, Tian JQ, et al: The gut microbial
metabolite trimethylamine N-oxide and cardiovascular diseases.
Front Endocrinol (Lausanne). 14(1085041)2023.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Canyelles M, Tondo M, Cedó L, Farràs M,
Escolà-Gil JC and Blanco-Vaca F: Trimethylamine N-Oxide: A link
among diet, gut microbiota, gene regulation of liver and intestine
cholesterol homeostasis and HDL function. Int J Mol Sci.
19(3228)2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Shi C, Pei M, Wang Y, Chen Q, Cao P, Zhang
L, Guo J, Deng W, Wang L, Li X and Gong Z: Changes of
flavin-containing monooxygenases and trimethylamine-N-oxide may be
involved in the promotion of non-alcoholic fatty liver disease by
intestinal microbiota metabolite trimethylamine. Biochem Biophys
Res Commun. 594:1–7. 2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Trenteseaux C, Gaston AT, Aguesse A,
Poupeau G, Coppet P, Andriantsitohaina R, Laschet J, Amarger V,
Krempf M, Nobecourt-Dupuy E and Ouguerram K: Perinatal
hypercholesterolemia exacerbates atherosclerosis lesions in
offspring by altering metabolism of trimethylamine-n-oxide and bile
acids. Arterioscler Thromb Vasc Biol. 37:2053–2063. 2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Schleifer KH and Kandler O: Peptidoglycan
types of bacterial cell walls and their taxonomic implications.
Bacteriol Rev. 36:407–477. 1972.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Popescu NI, Girton A, Burgett T, Lovelady
K and Coggeshall KM: Monocyte procoagulant responses to anthrax
peptidoglycan are reinforced by proinflammatory cytokine signaling.
Blood Adv. 3:2436–2447. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Xie Y, Li Y, Cai X, Wang X and Li J:
Interleukin-37 suppresses ICAM-1 expression in parallel with NF-κB
down-regulation following TLR2 activation of human coronary artery
endothelial cells. Int Immunopharmacol. 38:26–30. 2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Dong C, Zhang M, Song S, Wei F, Qin L, Fan
P, Shi Y, Wang X and Wang R: A small subunit of Geranylgeranyl
Diphosphate synthase functions as an active regulator of carotenoid
synthesis in nicotiana tabacum. Int J Mol Sci.
24(992)2023.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Jo HE, Son SY and Lee CH: Comparison of
metabolome and functional properties of three Korean cucumber
cultivars. Front Plant Sci. 13(882120)2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Bocchini M, D'Amato R, Ciancaleoni S,
Fontanella MC, Palmerini CA, Beone GM, Onofri A, Negri V, Marconi
G, Albertini E and Businelli D: Soil Selenium (Se) biofortification
changes the physiological, biochemical and epigenetic responses to
water stress in Zea mays L. by inducing a higher drought tolerance.
Front Plant Sci. 9(389)2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Wang Y, Zheng Y, Liu Y, Shan G, Zhang B,
Cai Q, Lou J and Qu Y: The lipid-lowering effects of fenugreek gum,
hawthorn pectin, and burdock inulin. Front Nutr.
10(1149094)2023.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Tahri K, Grill JP and Schneider F:
Bifidobacteria strain behavior toward cholesterol: Coprecipitation
with bile salts and assimilation. Curr Microbiol. 33:187–193.
1996.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Bordoni A, Amaretti A, Leonardi A,
Boschetti E, Danesi F, Matteuzzi D, Roncaglia L, Raimondi S and
Rossi M: Cholesterol-lowering probiotics: In vitro selection and in
vivo testing of bifidobacteria. Appl Microbiol Biotechnol.
97:8273–8281. 2013.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Burnier M and Damianaki A: Hypertension as
cardiovascular risk factor in chronic kidney disease. Circ Res.
132:1050–1063. 2023.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Mutengo KH, Masenga SK, Mweemba A, Mutale
W and Kirabo A: Gut microbiota dependant trimethylamine N-oxide and
hypertension. Front Physiol. 14(1075641)2023.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Honour JW, Borriello SP, Ganten U and
Honour P: Antibiotics attenuate experimental hypertension in rats.
J Endocrinol. 105:347–350. 1985.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Yang Z, Wang Q, Liu Y, Wang L, Ge Z, Li Z,
Feng S and Wu C: Gut microbiota and hypertension: Association,
mechanisms and treatment. Clin Exp Hypertens.
45(2195135)2023.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Li J, Zhao F, Wang Y, Chen J, Tao G, Tian
G, Wu S, Liu W, Cui Q, Geng B, et al: Gut microbiota dysbiosis
contributes to the development of hypertension. Microbiome.
5(14)2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Jin J, Gao L, Zou X, Zhang Y, Zheng Z,
Zhang X, Li J, Tian Z, Wang X, Gu J, et al: Gut dysbiosis promotes
preeclampsia by regulating macrophages and trophoblasts. Circ Res.
131:492–506. 2022.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Gomez-Arango LF, Barrett HL, McIntyre HD,
Callaway LK, Morrison M and Nitert MD: SPRING Trial Group.
Increased systolic and diastolic blood pressure is associated with
altered gut microbiota composition and butyrate production in early
pregnancy. Hypertension. 68:974–981. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Lucas SE, Walton SL, Colafella KM, Mileto
SJ, Lyras D and Denton KM: Antihypertensives and antibiotics:
Impact on intestinal dysfunction and hypertension. Hypertension.
11:1393–1402. 2023.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Kyoung J and Yang T: Depletion of the gut
microbiota enhances the blood pressure-lowering effect of
captopril: Implication of the gut microbiota in resistant
hypertension. Hypertens Res. 45:1505–1510. 2022.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Chen XF, Ren SC, Tang G, Wu C, Chen X and
Tang XQ: Short-chain fatty acids in blood pressure, friend or foe.
Chin Med J (Engl). 134:2393–2394. 2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Dinakis E, O'Donnell JA and Marques FZ:
The gut-immune axis during hypertension and cardiovascular
diseases. Acta Physiol (Oxf). 20(e14193)2024.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Spencer AG, Labonte ED, Rosenbaum DP,
Plato CF, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy
S, He L, et al: Intestinal inhibition of the Na+/H+ exchanger 3
prevents cardiorenal damage in rats and inhibits Na+
uptake in humans. Sci Transl Med. 6(277ra36)2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Ohman KP, Karlberg BE, Nilsson OR and
Wettre S: Captopril in primary hypertension. Effects related to the
renin-angiotensin-aldosterone and kallikrein-kinin systems. Acta
Med Scand Suppl. 646:98–105. 1981.PubMed/NCBI
|
|
61
|
Andrade JM, de Farias Lelis D, Mafra V and
Cota J: The angiotensin converting enzyme 2 (ACE2), gut microbiota,
and cardiovascular health. Protein Pept Lett. 24:827–832.
2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Perlot T and Penninger JM: ACE2-from the
renin-angiotensin system to gut microbiota and malnutrition.
Microbes Infect. 15:866–873. 2013.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Zhang QL, Chen XH, Zhou SJ, Lei YQ, Huang
JS, Chen Q and Cao H: Relationship between disorders of the
intestinal microbiota and heart failure in infants with congenital
heart disease. Front Cell Infect Microbiol.
13(1152348)2023.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Desai D, Desai A, Jamil A, Csendes D,
Gutlapalli SD, Prakash K, Swarnakari KM, Bai M, Manoharan MP, Raja
R and Khan S: Re-defining the gut heart axis: A systematic review
of the literature on the role of gut microbial dysbiosis in
patients with heart failure. Cureus. 15(e34902)2023.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Xu X, Hu H, Zeng H, Li B, Yin Q, Jiang Y,
Zang L, Zhao C and Qian G: Sinisan ameliorates colonic injury
induced by water immersion restraint stress by enhancing intestinal
barrier function and the gut microbiota structure. Pharm Biol.
61:598–609. 2023.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Tousoulis D, Guzik T, Padro T, Duncker DJ,
Luca GD, Eringa E, Vavlukis M, Antonopoulos AS, Katsimichas T,
Cenko E, et al: Mechanisms, therapeutic implications, and
methodological challenges of gut microbiota and cardiovascular
diseases: A position paper by the ESC working group on coronary
pathophysiology and microcirculation. Cardiovasc Res.
118:3171–3182. 2022.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Cui X, Su Y, Huang X, Chen J, Ma J, Liao P
and He X: Combined analysis of plasma metabolome and intestinal
microbiome sequencing to explore jiashen prescription and its
potential role in changing intestine-heart axis and effect on
chronic heart failure. Front Cardiovasc Med.
10(1147438)2023.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Zong X, Fan Q, Yang Q, Pan R, Zhuang L, Xi
R, Zhang R and Tao R: Trimethyllysine, a trimethylamine N-oxide
precursor, predicts the presence, severity, and prognosis of heart
failure. Front Cardiovasc Med. 9(907997)2022.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Li X, Fan Z, Cui J, Li D, Lu J, Cui X, Xie
L, Wu Y, Lin Q and Li Y: Trimethylamine N-Oxide in heart failure: A
meta-analysis of prognostic value. Front Cardiovasc Med.
16(817396)2022.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Wang Z, Tang WH, Buffa JA, Fu X, Britt EB,
Koeth RA, Levison BS, Fan Y, Wu Y and Hazen SL: Prognostic value of
choline and betaine depends on intestinal microbiota-generated
metabolite trimethylamine-N-oxide. Eur Heart J. 35:904–910.
2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Wang Z, Klipfell E, Bennett BJ, Koeth R,
Levison BS, Dugar B, Feldstein EB, Britt EB, Fu X, Chung YM, et al:
Gut flora metabolism of phosphatidylcholine promotes cardiovascular
disease. Nature. 472:57–63. 2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Lam V, Su J, Koprowski S, Hsu A, Tweddell
JS, Rafiee P, Gross GJ, Salzmman NH and Baker JE: Intestinal
microbiota determine severity of myocardial infarction in rats.
FASEB J. 26:1727–1735. 2012.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Lam V, Su J, Hsu A, Gross GJ, Salzman NH
and Baker JE: Intestinal microbial metabolites are linked to
severity of myocardial infarction in rats. PLoS One.
11(e0160840)2016.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Gan XT, Ettinger G, Huang CX, Burton JP,
Haist JV, Rajapurohitam V, Sidaway JE, Martin G, Gloor GB, Swann
JR, et al: Probiotic administration attenuates myocardial
hypertrophy and heart failure after myocardial infarction in the
rat. Circ Heart Fail. 7:491–499. 2014.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Tang WH and Hazen SL: The contributory
role of gut microbiota in cardiovascular disease. J Clin Invest.
124:4204–4211. 2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Bäckhed F, Ding H, Wang T, Hooper LV, Koh
GY, Nagy A, Semenkovich CF and Gordon JI: The gut microbiota as an
environmental factor that regulates fat storage. Proc Natl Acad Sci
USA. 101:15718–15723. 2004.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Jones BV, Begley M, Hill C, Gahan CG and
Marchesi JR: Functional and comparative metagenomic analysis of
bile salt hydrolase activity in the human gut microbiome. Proc Natl
Acad Sci USA. 105:13580–13585. 2008.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Chiang JY: Bile acids: Regulation of
synthesis. J Lipid Res. 50:1955–1966. 2009.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Ferrell JM, Boehme S, Li F and Chiang JY:
Cholesterol 7α-hydroxylase-deficient mice are protected from
high-fat/high-cholesterol diet-induced metabolic disorders. J Lipid
Res. 57:1144–1154. 2016.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Li T, Francl JM, Boehme S, Ochoa A, Zhang
Y, Klaassen CD, Erickson SK and Chiang JY: Glucose and insulin
induction of bile acid synthesis: Mechanisms and implication in
diabetes and obesity. J Biol Chem. 287:1861–1873. 2012.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Broeders EP, Nascimento EB, Havekes B,
Brans B, Roumans KH, Tailleux A, Schaart G, Kouach M, Charton J,
Deprez B, et al: The bile acid chenodeoxycholic acid increases
human brown adipose tissue activity. Cell Metab. 22:418–426.
2015.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Kumar PS, Mason MR, Brooker MR and O'Brien
K: Pyrosequencing reveals unique microbial signatures associated
with healthy and failing dental implants. J Clin Periodontol.
39:425–433. 2012.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Mayerhofer CCK, Ueland T, Broch K, Vincent
RP, Cross GF, Dahl CP, Aukrust P, Gullestad L, Hov JR and Trøseid
M: Increased Secondary/Primary bile acid ratio in chronic heart
failure. J Card Fail. 23:666–671. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Dam H: The formation of coprosterol in the
intestine: The action of intestinal bacteria on cholesterol.
Biochem J. 28:820–825. 1934.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Lichtenstein AH: Intestinal cholesterol
metabolism. Ann Med. 22:49–52. 1990.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Illman RJ, Storer GB and Topping DL: White
wheat flour lowers plasma cholesterol and increases cecal steroids
relative to whole wheat flour, wheat bran and wheat pollard in
rats. J Nutr. 123:1094–1100. 1993.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Midtvedt AC and Midtvedt T: Conversion of
cholesterol to coprostanol by the intestinal microflora during the
first two years of human life. J Pediatr Gastroenterol Nutr.
17:161–168. 1993.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Benno P, Midtvedt K, Alam M, Collinder E,
Norin E and Midtvedt T: Examination of intestinal conversion of
cholesterol to coprostanol in 633 healthy subjects reveals an age-
and sex-dependent pattern. Microbial Ecology in Health and Disease.
17:200–204. 2005.
|
|
89
|
Midtvedt T, Lingaas E, Carlstedt-Duke B,
Höverstad T, Midtvedt AC, Saxerholt H, Steinbakk M and Norin KE:
Intestinal microbial conversion of cholesterol to coprostanol in
man. Influence of antibiotics. APMIS. 98:839–844. 1990.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Veiga P, Juste C, Lepercq P, Saunier K,
Béguet F and Gérard P: Correlation between faecal microbial
community structure and cholesterol-to-coprostanol conversion in
the human gut. FEMS Microbiol Lett. 242:81–86. 2005.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Gerard P, Lepercq P, Leclerc M, Gavini F,
Raibaud P and Juste C: Bacteroides sp. strain D8, the first
cholesterol-reducing bacterium isolated from human feces. Appl
Environ Microbiol. 73:5742–5749. 2007.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Ren D, Li L, Schwabacher AW, Young JW and
Beitz DC: Mechanism of cholesterol reduction to coprostanol by
Eubacterium coprostanoligenes ATCC 51222. Steroids. 61:33–40.
1996.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Li L, Baumann CA, Meling DD, Sell JL and
Beitz DC: Effect of orally administered Eubacterium
Coprostanoligenes ATCC 51222 on plasma cholesterol concentration in
laying hens. Poult Sci. 75:743–745. 1996.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Rosenfeld RS, Fukushima DK, Hellman L and
Gallagher TF: The transformation of cholesterol to coprostanol. J
Biol Chem. 211:301–311. 1954.PubMed/NCBI
|
|
95
|
Antharam VC, McEwen DC, Garrett TJ, Dossey
AT, Li EC, Kozlov AN, Mesbah Z and Wang GP: An integrated
metabolomic and microbiome analysis identified specific gut
microbiota associated with fecal cholesterol and coprostanol in
clostridium difficile infection. PLoS One.
11(e0148824)2016.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Lye HS, Rusul G and Liong MT: Removal of
cholesterol by lactobacilli via incorporation and conversion to
coprostanol. J Dairy Sci. 93:1383–1392. 2010.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Tahri K, Grill JP and Schneider F:
Involvement of trihydroxyconjugated bile salts in cholesterol
assimilation by bifidobacteria. Curr Microbiol. 34:79–84.
1997.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Gérard P: Metabolism of cholesterol and
bile acids by the gut microbiota. Pathogens. 3:14–24.
2013.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Nutting CW, Islam S and Daugirdas JT:
Vasorelaxant effects of short chain fatty acid salts in rat caudal
artery. Am J Physiol. 261:H561–H567. 1991.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Macfarlane GT and Macfarlane S:
Fermentation in the human large intestine: Its physiologic
consequences and the potential contribution of prebiotics. J Clin
Gastroenterol. 45 (Suppl):S120–S127. 2011.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Musso G, Gambino R and Cassader M:
Interactions between gut microbiota and host metabolism
predisposing to obesity and diabetes. Annu Rev Med. 62:361–380.
2011.PubMed/NCBI View Article : Google Scholar
|
|
102
|
David LA, Maurice CF, Carmody RN,
Gootenbreg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y,
Fischbach MA, et al: Diet rapidly and reproducibly alters the human
gut microbiome. Nature. 505:559–563. 2014.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Krishnan S, Alden N and Lee K: Pathways
and functions of gut microbiota metabolism impacting host
physiology. Curr Opin Biotechnol. 36:137–145. 2015.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Pluznick J: A novel SCFA receptor, the
microbiota, and blood pressure regulation. Gut Microbes. 5:202–207.
2014.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Yang T, Santisteban MM, Rodriguez V, Li E,
Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, et al:
Gut dysbiosis is linked to hypertension. Hypertension.
65:1331–1340. 2015.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Jama HA, Snelson M, Schutte AE, Muir J and
Marques FZ: Recommendations for the use of dietary fiber to improve
blood pressure control. Hypertension. 81:1450–1459. 2024.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Falony G, Vieira-Silva S and Raes J:
Microbiology meets big data: The case of gut microbiota-derived
Trimethylamine. Annu Rev Microbiol. 69:305–321. 2015.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Koeth RA, Wang Z, Levison BS, Buffa JA,
Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al: Intestinal
microbiota metabolism of L-carnitine, a nutrient in red meat,
promotes atherosclerosis. Nat Med. 19:576–585. 2013.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Zeisel SH and Warrier M: Trimethylamine
N-oxide, the microbiome, and heart and kidney disease. Annu Rev
Nutr. 37:157–181. 2017.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Tang WHW, Wang Z, Levison BS, Koeth RA,
Britt EB, Fu X, Wu Y and Hazen SL: Intestinal microbial metabolism
of phosphatidylcholine and cardiovascular risk. N Engl J Med.
368:1575–1584. 2013.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Chittim CL, del Campo AM and Balskus EP:
Gut bacterial phospholipase Ds support disease-associated
metabolism by generating choline. Nat Microbiol. 4:155–163.
2019.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Allayee H and Hazen SL: Contribution of
gut bacteria to lipid levels: Another metabolic role for microbes?
Circ Res. 117:750–754. 2015.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Ghazalpour A, Cespedes I, Bennett BJ and
Allayee H: Expanding role of gut microbiota in lipid metabolism.
Curr Opin Lipidol. 27:141–147. 2016.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Al-Obaide MAI, Singh R, Datta P,
Rewers-Felkins KA, Salguero MV, Al-Obaidi I, Kottapalli KR and
Vasylyeva TL: Gut microbiota-dependent trimethylamine-N-oxide and
serum biomarkers in patients with T2DM and advanced CKD. J Clin
Med. 6(86)2017.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Zhu W, Gregory JC, Org E, Buffa JA, Gupte
N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al: Gut microbial
metabolite TMAO enhances platelet hyperreactivity and thrombosis
risk. Cell. 165:111–124. 2016.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Ley RE, Turnbaugh PJ, Klein S and Gordon
JI: Microbial ecology: Human gut microbes associated with obesity.
Nature. 444:1022–1023. 2006.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Liu TX, Niu HT and Zhang SY: Intestinal
microbiota metabolism and atherosclerosis. Chin Med J (Engl).
128:2805–2811. 2015.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Wang Z, Roberts AB, Buffa JA, Levison BS,
Zhu W, Oeg E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, et al:
Non-lethal inhibition of gut microbial Trimethylamine production
for the treatment of atherosclerosis. Cell. 163:1585–1595.
2015.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Martin FP, Wang Y, Sprenger N, Yap IKS,
Lundsedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB, et
al: Probiotic modulation of symbiotic gut microbial-host metabolic
interactions in a humanized microbiome mouse model. Mol Syst Biol.
4(157)2008.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Nakamura Y, Masuda O and Takano T:
Decrease of tissue angiotensin I-converting enzyme activity upon
feeding sour milk in spontaneously hypertensive rats. Biosci
Biotechnol Biochem. 60:488–489. 1996.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Nakamura Y, Yamamoto N, Sakai K and Takano
T: Antihypertensive effect of sour milk and peptides isolated from
it that are inhibitors to angiotensin I-converting enzyme. J Dairy
Sci. 78:1253–1257. 1995.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Kim B, Park KY, Ji Y, Park S, Holzapfel W
and Hyun CK: Protective effects of Lactobacillus rhamnosus GG
against dyslipidemia in high-fat diet-induced obese mice. Biochem
Biophys Res Commun. 473:530–536. 2016.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Derrien M and van Hylckama Vlieg JE: Fate,
activity, and impact of ingested bacteria within the human gut
microbiota. Trends Microbiol. 23:354–366. 2015.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Deng M, Zhang S, Wu S, Jiang Q, Teng W,
Luo T, Ouyang Y, Liu J and Gu B: Lactiplantibacillus plantarum N4
ameliorates lipid metabolism and gut microbiota structure in high
fat diet-fed rats. Front Microbiol. 7(1390293)2024.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Ebel B, Lemetais G, Beney L, Cachon R,
Sokol H, Langella P and Gervais P: Impact of probiotics on risk
factors for cardiovascular diseases. A review. Crit Rev Food Sci
Nutr. 54:175–189. 2014.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Khalesi S, Sun J, Buys N and Jayasinghe R:
Effect of probiotics on blood pressure: A systematic review and
meta-analysis of randomized, controlled trials. Hypertension.
64:897–903. 2014.PubMed/NCBI View Article : Google Scholar
|
|
127
|
De Filippis F, Pellegrini N, Vannini L,
Jeffery IB, Storia AL, Laghi L, Serrazanetti D, Cagno RD, Ferrocino
I, Lazzi C, et al: High-level adherence to a Mediterranean diet
beneficially impacts the gut microbiota and associated metabolome.
Gut. 65:1812–1821. 2016.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Willett WC, Sacks F, Trichopoulou A,
Drescher G, Ferro-Luzzi A, Helsing E and Trichopoulos D:
Mediterranean diet pyramid: A cultural model for healthy eating. Am
J Clin Nutr. 61:1402S–1406S. 1995.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Sofi F, Abbate R, Gensini GF and Casini A:
Accruing evidence on benefits of adherence to the Mediterranean
diet on health: An updated systematic review and meta-analysis. Am
J Clin Nutr. 92:1189–1196. 2010.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Lopez-Garcia E, Rodriguez-Artalejo F, Li
TY, Fung TT, Li S, Willett WC, Rimm EB and Hu FB: The
Mediterranean-style dietary pattern and mortality among men and
women with cardiovascular disease. Am J Clin Nutr. 99:172–180.
2014.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Cani PD, Delzenne NM, Amar J and Burcelin
R: Role of gut microflora in the development of obesity and insulin
resistance following high-fat diet feeding. Pathol Biol (Paris).
56:305–309. 2008.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q,
Li J, Liu X, Liu J, Guo Z, et al: Gut-dependent microbial
translocation induces inflammation and cardiovascular events after
ST-elevation myocardial infarction. Microbiome.
6(66)2018.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Qi Y, Aranda JM, Rodriguez V, Raizada MK
and Pepine CJ: Impact of antibiotics on arterial blood pressure in
a patient with resistant hypertension-A case report. Int J Cardiol.
201:157–158. 2015.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Battson ML, Lee DM, Jarrell DK, Hou S,
Ecton KE, Weir TL and Gentile CL: Suppression of gut dysbiosis
reverses Western diet-induced vascular dysfunction. Am J Physiol
Endocrinol Metab. 314:E468–E477. 2018.PubMed/NCBI View Article : Google Scholar
|