|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Zhang Y, Chen B, Xu N, Xu P, Lin W, Liu C
and Huang P: Exosomes promote the transition of androgen-dependent
prostate cancer cells into androgen-independent manner through
up-regulating the heme oxygenase-1. Int J Nanomedicine. 16:315–327.
2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Rebello RJ, Oing C, Knudsen KE, Loeb S,
Johnson DC, Reiter RE, Gillessen S, Van der Kwast T and Bristow RG:
Prostate cancer. Nat Rev Dis Primers. 7(9)2021.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sandhu S, Moore CM, Chiong E, Beltran H,
Bristow RG and Williams SG: Prostate cancer. Lancet. 398:1075–1090.
2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Pegtel DM and Gould SJ: Exosomes. Annu Rev
Biochem. 88:487–514. 2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Beit-Yannai E, Tabak S and Stamer WD:
Physical exosome:Exosome interactions. J Cell Mol Med.
22:2001–2006. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Terrasini N and Lionetti V: Exosomes in
critical illness. Crit Care Med. 45:1054–1060. 2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Soung YH, Ford S, Zhang V and Chung J:
Exosomes in cancer diagnostics. Cancers (Basel).
9(8)2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
No authors listed. Exosomes. Nat
Biotechnol. 38(1150)2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Yang L: Tumor microenvironment and
metabolism. Int J Mol Sci. 18(2729)2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Anderson NM and Simon MC: The tumor
microenvironment. Curr Biol. 30:R921–R925. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Jiang X, Wang J, Deng X, Xiong F, Zhang S,
Gong Z, Li X, Cao K, Deng H, He Y, et al: The role of
microenvironment in tumor angiogenesis. J Exp Clin Cancer Res.
39(204)2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Hu C, Chen M, Jiang R, Guo Y, Wu M and
Zhang X: Exosome-related tumor microenvironment. J Cancer.
9:3084–3092. 2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lau AN and Vander Heiden MG: Metabolism in
the tumor microenvironment. Annu Rev Cancer Biol. 4:17–40.
2020.
|
|
15
|
Ugel S, Canè S, De Sanctis F and Bronte V:
Monocytes in the tumor microenvironment. Annu Rev Pathol.
16:93–122. 2021.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Pan BT and Johnstone RM: Fate of the
transferrin receptor during maturation of sheep reticulocytes in
vitro: Selective externalization of the receptor. Cell. 33:967–978.
1983.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Wróblewska JP, Lach MS, Kulcenty K, Galus
Ł, Suchorska WM, Rösel D, Brábek J and Marszałek A: The analysis of
inflammation-related proteins in a cargo of exosomes derived from
the serum of uveal melanoma patients reveals potential biomarkers
of disease progression. Cancers (Basel). 13(3334)2021.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Javed A, Kong N, Mathesh M, Duan W and
Yang W: Nanoarchitectonics-based electrochemical aptasensors for
highly efficient exosome detection. Sci Technol Adv Mater.
25(2345041)2024.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Kakarla R, Hur J, Kim YJ, Kim J and Chwae
YJ: Apoptotic cell-derived exosomes: Messages from dying cells. Exp
Mol Med. 52:1–6. 2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kiral FR, Kohrs FE, Jin EJ and Hiesinger
PR: Rab GTPases and membrane trafficking in neurodegeneration. Curr
Biol. 28:R471–R486. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Shikanai M, Yuzaki M and Kawauchi T: Rab
family small GTPases-mediated regulation of intracellular logistics
in neural development. Histol Histopathol. 33:765–771.
2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Vitale I, Manic G, Coussens LM, Kroemer G
and Galluzzi L: Macrophages and metabolism in the tumor
microenvironment. Cell Metab. 30:36–50. 2019.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Baroni S, Romero-Cordoba S, Plantamura I,
Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini
A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9
induces cancer-associated fibroblast-like properties in human
breast fibroblasts. Cell Death Dis. 7(e2312)2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhu Y, Dou H, Liu Y, Yu P, Li F, Wang Y
and Xiao M: Breast cancer exosome-derived miR-425-5p Induces
cancer-associated fibroblast-like properties in human mammary
fibroblasts by TGF β 1/ROS signaling pathway. Oxid Med Cell Longev.
2022(5266627)2022.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q,
Shi L, Li H, Yin C, Luo H, Hao C, et al: Cancer-associated
fibroblast-derived exosomal miR-18b promotes breast cancer invasion
and metastasis by regulating TCEAL7. Cell Death Dis.
12(1120)2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Kang J and Guo Y: Human umbilical cord
mesenchymal stem cells derived exosomes promote neurological
function recovery in a rat spinal cord injury model. Neurochem Res.
47:1532–1540. 2022.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Wang G, Yuan J, Cai X, Xu Z, Wang J,
Ocansey DKW, Yan Y, Qian H, Zhang X, Xu W and Mao F:
HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve
inflammatory bowel disease in mice. Clin Transl Med.
10(e113)2020.PubMed/NCBI View
Article : Google Scholar
|
|
28
|
Zhang Z, Chen L, Chen X, Qin Y, Tian C,
Dai X, Meng R, Zhong Y, Liang W, Shen C, et al: Exosomes derived
from human umbilical cord mesenchymal stem cells (HUCMSC-EXO)
regulate autophagy through AMPK-ULK1 signaling pathway to
ameliorate diabetic cardiomyopathy. Biochem Biophys Res Commun.
632:195–203. 2022.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Wang X, Cui Z, Zeng B, Qiong Z and Long Z:
Human mesenchymal stem cell derived exosomes inhibit the survival
of human melanoma cells through modulating miR-138-5p/SOX4 pathway.
Cancer Biomark. 34:533–543. 2022.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Pan Y, Wang X, Li Y, Yan P and Zhang H:
Human umbilical cord blood mesenchymal stem cells-derived exosomal
microRNA-503-3p inhibits progression of human endometrial cancer
cells through downregulating MEST. Cancer Gene Ther. 29:1130–1139.
2022.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Zhang Y, Huo M, Li W, Zhang H, Liu Q,
Jiang J, Fu Y and Huang C: Exosomes in tumor-stroma crosstalk:
Shaping the immune microenvironment in colorectal cancer. FASEB J.
38(e23548)2024.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Chen XJ, Guo CH, Wang ZC, Yang Y, Pan YH,
Liang JY, Sun MG, Fan LS, Liang L and Wang W: Hypoxia-induced ZEB1
promotes cervical cancer immune evasion by strengthening the
CD47-SIRPα axis. Cell Commun Signal. 22(15)2024.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Giovannelli P, Di Donato M, Galasso G,
Monaco A, Licitra F, Perillo B, Migliaccio A and Castoria G:
Communication between cells: Exosomes as a delivery system in
prostate cancer. Cell Commun Signal. 19(110)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Parolini I, Federici C, Raggi C, Lugini L,
Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A,
et al: Microenvironmental pH is a key factor for exosome traffic in
tumor cells. J Biol Chem. 284:34211–3422. 2009.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wang X, Sun C, Huang X, Li J, Fu Z, Li W
and Yin Y: The advancing roles of exosomes in breast cancer. Front
Cell Dev Biol. 9(731062)2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ban JJ, Lee M, Im W and Kim M: Low pH
increases the yield of exosome isolation. Biochem Biophys Res
Commun. 461:76–79. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Saber SH, Ali HEA, Gaballa R, Gaballah M,
Ali HI, Zerfaoui M and Abd Elmageed ZY: Exosomes are the driving
force in preparing the soil for the metastatic seeds: Lessons from
the prostate cancer. Cells. 9(564)2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Li Z, He P, Luo G, Shi X, Yuan G, Zhang B,
Seidl C, Gewies A, Wang Y, Zou Y, et al: Increased tumoral
microenvironmental pH improves cytotoxic effect of pharmacologic
ascorbic acid in castration-resistant prostate cancer cells. Front
Pharmacol. 11(570939)2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Xi L, Peng M, Liu S, Liu Y, Wan X, Hou Y,
Qin Y, Yang L, Chen S, Zeng H, et al: Hypoxia-stimulated ATM
activation regulates autophagy-associated exosome release from
cancer-associated fibroblasts to promote cancer cell invasion. J
Extracell Vesicles. 10(e12146)2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Luo C, Xin H, Zhou Z, Hu Z, Sun R, Yao N,
Sun Q, Borjigin U, Wu X, Fan J, et al: Tumor-derived exosomes
induce immunosuppressive macrophages to foster intrahepatic
cholangiocarcinoma progression. Hepatology. 76:982–999.
2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Shen Y, Guo D, Weng L, Wang S, Ma Z, Yang
Y, Wang P, Wang J and Cai Z: Tumor-derived exosomes educate
dendritic cells to promote tumor metastasis via
HSP72/HSP105-TLR2/TLR4 pathway. OncoImmunology.
6(e1362527)2017.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Deicher A, Andersson R, Tingstedt B,
Lindell G, Bauden M and Ansari D: Targeting dendritic cells in
pancreatic ductal adenocarcinoma. Cancer Cell Int.
18(85)2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Panigrahi GK, Praharaj PP, Peak TC, Long
J, Singh R, Rhim JS, Abd Elmageed ZY and Deep G: Hypoxia-induced
exosome secretion promotes survival of African-American and
Caucasian prostate cancer cells. Sci Rep. 8(3853)2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Llorente A, Skotland T, Sylvänne T,
Kauhanen D, Róg T, Orłowski A, Vattulainen I, Ekroos K and Sandvig
K: Molecular lipidomics of exosomes released by PC-3 prostate
cancer cells. Biochim Biophys Acta. 1831:1302–1309. 2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Bertokova A, Svecova N, Kozics K, Gabelova
A, Vikartovska A, Jane E, Hires M, Bertok T and Tkac J: Exosomes
from prostate cancer cell lines: Isolation optimisation and
characterisation. Biomed Pharmacother. 151(113093)2022.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Spetzler D, Pawlowski TL, Tinder T,
Kimbrough J, Deng T, Kim J, Moran B, Conrad A, Esmay P and Kuslich
C: The molecular evolution of prostate cancer cell line exosomes
with passage number. J Clin Oncol. 28 (15 Suppl)(e21071)2010.
|
|
47
|
Müller JS, Burns DT, Griffin H, Wells GR,
Zendah RA, Munro B, Schneider C and Horvath R: RNA exosome
mutations in pontocerebellar hypoplasia alter ribosome biogenesis
and p53 levels. Life Sci Alliance. 3(e202000678)2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen
H, Kong R, Wang Y, Zhu H, He F, et al: Aspartate β-hydroxylase
promotes pancreatic ductal adenocarcinoma metastasis through
activation of SRC signaling pathway. J Hematol Oncol.
12(144)2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Adekoya TO and Richardson RM: Cytokines
and chemokines as mediators of prostate cancer metastasis. Int J
Mol Sci. 21(4449)2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Dann J, Castronovo FP, McKusick KA,
Griffin PP, Strauss HW and Prout GR Jr: Total bone uptake in
management of metastatic carcinoma of the prostate. J Urol.
137:444–448. 1987.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Chau CH and Figg WD: Molecular and
phenotypic heterogeneity of metastatic prostate cancer. Cancer Biol
Ther. 4:166–167. 2005.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Bilen MA, Pan T, Lee YC, Lin SC, Yu G, Pan
J, Hawke D, Pan BF, Vykoukal J, Gray K, et al: Proteomics profiling
of exosomes from primary mouse osteoblasts under proliferation
versus mineralization conditions and characterization of their
uptake into prostate cancer cells. J Proteome Res. 16:2709–2728.
2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Renzulli JF II, Del Tatto M, Dooner G,
Aliotta J, Goldstein L, Dooner M, Colvin G, Chatterjee D and
Quesenberry P: Microvesicle induction of prostate specific gene
expression in normal human bone marrow cells. J Urol.
184:2165–2171. 2010.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Duan Y, Tan Z, Yang M, Li J, Liu C, Wang
C, Zhang F, Jin Y, Wang Y and Zhu L: PC-3-derived exosomes inhibit
osteoclast differentiation by downregulating miR-214 and blocking
NF-κB signaling pathway. Biomed Res Int.
2019(8650846)2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Karlsson T, Lundholm M, Widmark A and
Persson E: Tumor cell-derived exosomes from the prostate cancer
cell line TRAMP-C1 impair osteoclast formation and differentiation.
PLoS One. 11(e0166284)2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Lee J, Kwon MH, Kim JA and Rhee WJ:
Detection of exosome miRNAs using molecular beacons for diagnosing
prostate cancer. Artif Cells Nanomed Biotechnol. 46 (Suppl
3):S52–S63. 2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Che Y, Shi X, Shi Y, Jiang X, Ai Q, Shi Y,
Gong F and Jiang W: Exosomes derived from miR-143-Overexpressing
MSCs inhibit cell migration and invasion in human prostate cancer
by downregulating TFF3. Mol Ther Nucleic Acids. 18:232–244.
2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Li T, Sun X and Chen L: Exosome
circ_0044516 promotes prostate cancer cell proliferation and
metastasis as a potential biomarker. J Cell Biochem. 121:2118–2126.
2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Petanidis S, Domvri K, Porpodis K,
Anestakis D, Freitag L, Hohenforst-Schmidt W, Tsavlis D and
Zarogoulidis K: Inhibition of kras-derived exosomes downregulates
immunosuppressive BACH2/GATA-3 expression via RIP-3 dependent
necroptosis and miR-146/miR-210 modulation. Biomed Pharmacother.
122(109461)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Ayala-Mar S, Donoso-Quezada J and
González-Valdez J: Clinical implications of exosomal PD-L1 in
cancer immunotherapy. J Immunol Res. 2021(8839978)2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Wang J, Zeng H, Zhang H and Han Y: The
role of exosomal PD-L1 in tumor immunotherapy. Transl Oncol.
14(101047)2021.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Bai W, Tang X, Xiao T, Qiao Y, Tian X, Zhu
B, Chen J, Chen C, Li Y, Lin X, et al: Enhancing antitumor efficacy
of oncolytic virus M1 via albendazole-sustained CD8+ T
cell activation. Mol Ther Oncol. 32(200813)2024.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Liu J, Wu S, Zheng X, Zheng P, Fu Y, Wu C,
Lu B, Ju J and Jiang J: Immune suppressed tumor microenvironment by
exosomes derived from gastric cancer cells via modulating immune
functions. Sci Rep. 10(14749)2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Yang J, Chen J, Liang H and Yu Y:
Nasopharyngeal cancer cell-derived exosomal PD-L1 inhibits CD8+
T-cell activity and promotes immune escape. Cancer Sci.
113:3044–3054. 2022.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kim DH, Kim H, Choi YJ, Kim SY, Lee JE,
Sung KJ, Sung YH, Pack CG, Jung MK, Han B, et al: Exosomal PD-L1
promotes tumor growth through immune escape in non-small cell lung
cancer. Exp Mol Med. 51:1–13. 2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Schmittgen TD: Exosomal miRNA cargo as
mediator of immune escape mechanisms in neuroblastoma. Cancer Res.
79:1293–1294. 2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Yao X, Tu Y, Xu Y, Guo Y, Yao F and Zhang
X: Endoplasmic reticulum stress-induced exosomal miR-27a-3p
promotes immune escape in breast cancer via regulating PD-L1
expression in macrophages. J Cell Mol Med. 24:9560–9573.
2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Palicelli A, Bonacini M, Croci S, Bisagni
A, Zanetti E, De Biase D, Sanguedolce F, Ragazzi M, Zanelli M,
Chaux A, et al: What do we have to know about PD-L1 expression in
prostate cancer? A systematic literature review. Part 7: PD-L1
expression in liquid biopsy. J Pers Med. 11(1312)2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Xu W, Lu M, Xie S, Zhou D, Zhu M and Liang
C: Endoplasmic reticulum stress promotes prostate cancer cells to
release exosome and up-regulate PD-L1 expression via PI3K/Akt
signaling pathway in macrophages. J Cancer. 14:1062–1074.
2023.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Li D, Zhou X, Xu W, Chen Y, Mu C, Zhao X,
Yang T, Wang G, Wei L and Ma B: Prostate cancer cells
synergistically defend against CD8+ T cells by secreting
exosomal PD-L1. Cancer Med. 12:16405–16415. 2023.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Hosseini R, Asef-Kabiri L, Yousefi H,
Sarvnaz H, Salehi M, Akbari ME and Eskandari N: The roles of
tumor-derived exosomes in altered differentiation, maturation and
function of dendritic cells. Mol Cancer. 20(83)2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Felmeden DC, Blann AD and Lip GYH:
Angiogenesis: Basic pathophysiology and implications for disease.
Eur Heart J. 24:586–603. 2003.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Kargozar S, Baino F, Hamzehlou S, Hamblin
MR and Mozafari M: Nanotechnology for angiogenesis: Opportunities
and challenges. Chem Soc Rev. 49:5008–5057. 2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Jin Y, Xing J, Xu K, Liu D and Zhuo Y:
Exosomes in the tumor microenvironment: Promoting cancer
progression. Front Immunol. 13(1025218)2022.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Yu L, Gui S, Liu Y, Qiu X, Zhang G, Zhang
X, Pan J, Fan J, Qi S and Qiu B: Exosomes derived from
microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma
progression by down-regulating AGAP2. Aging (Albany NY).
11:5300–5318. 2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Zhang C, Ji Q, Yang Y, Li Q and Wang Z:
Exosome: Function and role in cancer metastasis and drug
resistance. Technol Cancer Res Treat.
17(1533033818763450)2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Khan S, Jutzy JMS, Valenzuela MMA, Turay
D, Aspe JR, Ashok A, Mirshahidi S, Mercola D, Lilly MB and Wall NR:
Plasma-derived exosomal survivin, a plausible biomarker for early
detection of prostate cancer. PLoS One. 7(e46737)2012.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Bagnato G, Leopizzi M, Urciuoli E and
Peruzzi B: Nuclear functions of the tyrosine kinase Src. Int J Mol
Sci. 21(2675)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Rivera-Torres J and San José E: Src
tyrosine kinase inhibitors: New perspectives on their immune,
antiviral, and senotherapeutic potential. Front Pharmacol.
10(1011)2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
DeRita RM, Zerlanko B, Singh A, Lu H,
Iozzo RV, Benovic JL and Languino RL: c-Src, insulin-like growth
factor I receptor, G-protein-coupled receptor kinases and focal
adhesion kinase are enriched into prostate cancer cell exosomes. J
Cell Biochem. 118:66–73. 2016.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Larssen P, Wik L, Czarnewski P, Eldh M,
Löf L, Ronquist KG, Dubois L, Freyhult E, Gallant CJ, Oelrich J, et
al: Tracing cellular origin of human exosomes using multiplex
proximity extension assays. Mol Cell Proteomics. 16:502–511.
2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Alcayaga-Miranda F, González PL,
Lopez-Verrilli A, Varas-Godoy M, Aguila-Díaz C, Contreras L and
Khoury M: Prostate tumor-induced angiogenesis is blocked by
exosomes derived from menstrual stem cells through the inhibition
of reactive oxygen species. Oncotarget. 7:44462–44477.
2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Maisto R, Oltra M, Vidal-Gil L,
Martínez-Gil N, Sancho-Pellúz J, Filippo CD, Rossi S, D Amico M,
Barcia JM and Romero FJ: ARPE-19-derived VEGF-containing exosomes
promote neovascularization in HUVEC: The role of the melanocortin
receptor 5. Cell Cycle. 18:413–424. 2019.PubMed/NCBI View Article : Google Scholar
|