|
1
|
Pinho J, Costa AS, Araújo JM, Amorim JM
and Ferreira C: Intracerebral hemorrhage outcome: A comprehensive
update. J Neurol Sci. 398:54–66. 2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hemphill JC III, Greenberg SM, Anderson
CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN,
Macdonald RL, Mitchell PH, et al: Guidelines for the management of
spontaneous intracerebral hemorrhage: A guideline for healthcare
professionals from the American heart association/American stroke
association. Stroke. 46:2032–2060. 2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Chen D, Zhao Z, Zhang S, Chen S, Wu X, Shi
J, Liu N, Pan C, Tang Y, Meng C, et al: Evolving therapeutic
landscape of intracerebral hemorrhage: Emerging cutting-edge
advancements in surgical robots, regenerative medicine, and
neurorehabilitation techniques. Transl Stroke Res: Apr 1, 2024
(Epub ahead of print).
|
|
4
|
Yang G, Fan X, Mazhar M, Yang S, Xu H,
Dechsupa N and Wang L: Mesenchymal stem cell application and its
therapeutic mechanisms in intracerebral hemorrhage. Front Cell
Neurosci. 16(898497)2022.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Wang F, Jiang M, Chi Y, Huang G and Jin M:
Exosomes from circRNA-Ptpn4 can modify ADSC treatment and repair
nerve damage caused by cerebral infarction by shifting microglial
M1/M2 polarization. Mol Cell Biochem. 479:2081–2092.
2024.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Cirillo C, Brihmat N, Castel-Lacanal E, Le
Friec A, Barbieux-Guillot M, Raposo N, Pariente J, Viguier A,
Simonetta-Moreau M, Albucher JF, et al: Post-stroke remodeling
processes in animal models and humans. J Cereb Blood Flow Metab.
40:3–22. 2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Pikula A, Howard BV and Seshadri S: Stroke
and diabetes. In: Cowie CC, Casagrande SS, Menke A, Cissell MA,
Eberhardt MS, Meigs JB, Gregg EW, Knowler WC, Barrett-Connor E,
Becker DJ, et al (eds). Bethesda (MD): National Institute of
Diabetes and Digestive and Kidney Diseases (US), 2018.
|
|
8
|
Denhardt DT and Guo X: Osteopontin: A
protein with diverse functions. FASEB J. 7:1475–1482.
1993.PubMed/NCBI
|
|
9
|
Briones-Orta MA, Avendaño-Vázquez SE,
Aparicio-Bautista DI, Coombes JD, Weber GF and Syn W: Osteopontin
splice variants and polymorphisms in cancer progression and
prognosis. Biochim Biophys Acta Rev Cancer. 1868:93–108.A.
2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Han X, Wang W, He J, Jiang L and Li X:
Osteopontin as a biomarker for osteosarcoma therapy and prognosis.
Oncol Lett. 17:2592–2598. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Bandopadhyay M, Bulbule A, Butti R,
Chakraborty G, Ghorpade P, Ghosh P, Gorain M, Kale S, Kumar D,
Kumar S, et al: Osteopontin as a therapeutic target for cancer.
Expert Opin Ther Targets. 18:883–895. 2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Holm E, Gleberzon JS, Liao Y, Sørensen ES,
Beier F, Hunter GK and Goldberg HA: Osteopontin mediates
mineralization and not osteogenic cell development in vitro.
Biochem J. 464:355–364. 2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Icer MA and Gezmen-Karadag M: The multiple
functions and mechanisms of osteopontin. Clin Biochem. 59:17–24.
2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Uede T: Osteopontin, intrinsic tissue
regulator of intractable inflammatory diseases. Pathol Int.
61:265–680. 2011.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Weber GF: The cancer biomarker
osteopontin: Combination with other markers. Cancer Genomics
Proteomics. 8:263–288. 2011.PubMed/NCBI
|
|
16
|
Uaesoontrachoon K, Wasgewatte Wijesinghe
DK, Mackie EJ and Pagel CN: Osteopontin deficiency delays
inflammatory infiltration and the onset of muscle regeneration in a
mouse model of muscle injury. Dis Model Mech. 6:197–205.
2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Wei R, Wong JPC and Kwok HF: Osteopontin-a
promising biomarker for cancer therapy. J Cancer. 8:2173–2183.
2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Morimoto J, Kon S, Matsui Y and Uede T:
Osteopontin; as a target molecule for the treatment of inflammatory
diseases. Curr Drug Targets. 11:494–505. 2010.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Young MF, Kerr JM, Termine JD, Wewer UM,
Wang MG, McBride OW and Fisher LW: cDNA cloning, mRNA distribution
and heterogeneity, chromosomal location, and RFLP analysis of human
osteopontin (OPN). Genomics. 7:491–502. 1990.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Cao H, Cao B, Heazlewood CK, Domingues M,
Sun X, Debele E, McGregor NE, Sims NA, Heazlewood SY and Nilsson
SK: Osteopontin is An important regulative component of the fetal
bone marrow hematopoietic stem cell niche. Cells.
8(985)2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Lund SA, Wilson CL, Raines EW, Tang J,
Giachelli CM and Scatena M: Osteopontin mediates macrophage
chemotaxis via α4 and α9 integrins and survival via the α4
integrin. J Cell Biochem. 114:1194–1202. 2013.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Standal T, Borset M and Sundan A: Role of
osteopontin in adhesion, migration, cell survival and bone
remodeling. Exp Oncol. 26:179–184. 2004.PubMed/NCBI
|
|
23
|
Boggio E, Dianzani C, Gigliotti CL, Soluri
MF, Clemente N, Cappellano G, Toth E, Raineri D, Ferrara B, Comi C,
et al: Thrombin cleavage of osteopontin modulates its activities in
human cells in vitro and mouse experimental autoimmune
encephalomyelitis in vivo. J Immunol Res.
2016(9345495)2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Clemente N, Raineri D, Cappellano G,
Boggio E, Favero F, Soluri MF, Dianzani C, Comi C, Dianzani U and
Chiocchetti A: Osteopontin bridging innate and adaptive immunity in
autoimmune diseases. J Immunol Res. 2016(7675437)2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Goncalves DaSilva A, Liaw L and Yong VW:
Cleavage of osteopontin by matrix metalloproteinase-12 modulates
experimental autoimmune encephalomyelitis disease in C57BL/6 mice.
Am J Pathol. 177:1448–1458. 2010.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Gimba ER and Tilli TM: Human osteopontin
splicing isoforms: Known roles, potential clinical applications and
activated signaling pathways. Cancer Lett. 331:11–17.
2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Leung LL, Myles T and Morser J: Thrombin
cleavage of osteopontin and the host anti-tumor immune response.
Cancers (Basel). 15(3480)2023.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Poggio P, Grau JB, Field BC, Sainger R,
Seefried WF, Rizzolio F and Ferrari G: Osteopontin controls
endothelial cell migration in vitro and in excised human valvular
tissue from patients with calcific aortic stenosis and controls. J
Cell Physiol. 226:2139–2149. 2011.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Kadoglou NPE, Khattab E, Velidakis N and
Gkougkoudi E: The role of osteopontin in atherosclerosis and its
clinical manifestations (atherosclerotic cardiovascular diseases)-a
narrative review. Biomedicines. 11(3178)2023.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Zhao Y, Huang Z, Gao L, Ma H and Chang R:
Osteopontin/SPP1: A potential mediator between immune cells and
vascular calcification. Front Immunol. 15(1395596)2024.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Barizzone N, Marchini M, Cappiello F,
Chiocchetti A, Orilieri E, Ferrante D, Corrado L, Mellone S, Scorza
R, Dianzani U and D'Alfonso S: Association of osteopontin
regulatory polymorphisms with systemic sclerosis. Hum Immunol.
72:930–934. 2011.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Carecchio M and Comi C: The role of
osteopontin in neurodegenerative diseases. J Alzheimers Dis.
25:179–185. 2011.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Comi C, Cappellano G, Chiocchetti A,
Orilieri E, Buttini S, Ghezzi L, Galimberti D, Guerini F, Barizzone
N, Perla F, et al: The impact of osteopontin gene variations on
multiple sclerosis development and progression. Clin Dev Immunol.
2012(212893)2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Davaanyam D, Kim ID and Lee JK: Intranasal
delivery of RGD-containing osteopontin heptamer peptide confers
neuroprotection in the ischemic brain and augments microglia M2
polarization. Int J Mol Sci. 22(9999)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Topkoru BC, Altay O, Duris K, Krafft PR,
Yan J and Zhang JH: Nasal administration of recombinant osteopontin
attenuates early brain injury after subarachnoid hemorrhage.
Stroke. 44:3189–3194. 2013.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Wu J, Zhang Y, Yang P, Enkhjargal B,
Manaenko A, Tang J, Pearce WJ, Hartman R, Obenaus A, Chen G and
Zhang JH: Recombinant osteopontin stabilizes smooth muscle cell
phenotype via integrin receptor/integrin-linked kinase/rac-1
pathway after subarachnoid hemorrhage in rats. Stroke.
47:1319–1327. 2016.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Joy MT and Carmichael ST: Encouraging an
excitable brain state: Mechanisms of brain repair in stroke. Nat
Rev Neurosci. 22:38–53. 2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Starkey J, Horstick EJ and Ackerman SD:
Glial regulation of critical period plasticity. Front Cell
Neurosci. 17(1247335)2023.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Carmichael ST, Kathirvelu B, Schweppe CA
and Nie EH: Molecular, cellular and functional events in axonal
sprouting after stroke. Exp Neurol. 287:384–394. 2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Joy MT, Ben Assayag E, Shabashov-Stone D,
Liraz-Zaltsman S, Mazzitelli J, Arenas M, Abduljawad N, Kliper E,
Korczyn AD, Thareja NS, et al: CCR5 is a therapeutic target for
recovery after stroke and traumatic brain injury. Cell.
176:1143–1157.e13. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Dityatev A and Schachner M: Extracellular
matrix molecules and synaptic plasticity. Nat Rev Neurosci.
4:456–468. 2003.PubMed/NCBI View
Article : Google Scholar
|
|
42
|
Bei F, Lee HHC, Liu X, Gunner G, Jin H, Ma
L, Wang C, Hou L, Hensch TK, Frank E, et al: Restoration of visual
function by enhancing conduction in regenerated axons. Cell.
164:219–232. 2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Liu Y, Wang X, Li W, Zhang Q, Li Y, Zhang
Z, Zhu J, Chen B, Williams PR, Zhang Y, et al: A sensitized IGF1
treatment restores corticospinal axon-dependent functions. Neuron.
95:817–833.e4. 2017.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Liao H, Zou Z, Liu W, Guo X, Xie J, Li L,
Li X, Gan X, Huang X, Liu J, et al: Osteopontin-integrin signaling
positively regulates neuroplasticity through enhancing neural
autophagy in the peri-infarct area after ischemic stroke. Am J
Transl Res. 14:7726–7743. 2022.PubMed/NCBI
|
|
45
|
Jia J, Yang L, Chen Y, Zheng L, Chen Y, Xu
Y and Zhang M: The role of microglial phagocytosis in ischemic
stroke. Front Immunol. 12(790201)2022.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Devanney NA, Stewart AN and Gensel JC:
Microglia and macrophage metabolism in CNS injury and disease: The
role of immunometabolism in neurodegeneration and neurotrauma. Exp
Neurol. 329(113310)2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Walker DG and Lue LF: Immune phenotypes of
microglia in human neurodegenerative disease: Challenges to
detecting microglial polarization in human brains. Alzheimers Res
Ther. 7(56)2015.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Ladwig A, Walter HL, Hucklenbroich J,
Willuweit A, Langen KJ, Fink GR, Rueger MA and Schroeter M:
Osteopontin augments M2 microglia response and separates M1- and
M2-polarized microglial activation in permanent focal cerebral
ischemia. Mediators Inflamm. 2017(7189421)2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Li G, Oparil S, Kelpke SS, Chen YF and
Thompson JA: Fibroblast growth factor receptor-1 signaling induces
osteopontin expression and vascular smooth muscle cell-dependent
adventitial fibroblast migration in vitro. Circulation.
106:854–859. 2002.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Kong L, Li Y, Deng Z, Chen X, Xia Y, Shen
B, Ning R, Zhang L and Yin Z: Tibial cortex transverse transport
regulates Orai1/STIM1-mediated NO release and improve the migration
and proliferation of vessels via increasing osteopontin expression.
J Orthop Translat. 45:107–119. 2024.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Myers DL, Harmon KJ, Lindner V and Liaw L:
Alterations of arterial physiology in osteopontin-null mice.
Arterioscler Thromb Vasc Biol. 23:1021–1028. 2003.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Ye S, Sun Y, Bie A, Zhou Y, Liu J and Liu
Q: Influence of osteopontin short hairpin RNA on the proliferation
and activity of rat vascular smooth muscle cells. J Huazhong Univ
Sci Technolog Med Sci. 29:144–149. 2009.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Dai J, Peng L, Fan K, Wang H, Wei R, Ji G,
Cai J, Lu B, Li B, Zhang D, et al: Osteopontin induces angiogenesis
through activation of PI3K/AKT and ERK1/2 in endothelial cells.
Oncogene. 28:3412–3422. 2009.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Edsfeldt A, Swart M, Singh P, Dib L, Sun
J, Cole JE, Park I, Al-Sharify D, Persson A, Nitulescu M, et al:
Interferon regulatory factor-5-dependent CD11c+ macrophages
contribute to the formation of rupture-prone atherosclerotic
plaques. Eur Heart J. 43:1864–1877. 2022.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Evrard S, Delanaye P, Kamel S, Cristol JP
and Cavalier E: SFBC/SN joined working group on vascular
calcifications. Vascular calcification: From pathophysiology to
biomarkers. Clin Chim Acta. 438:401–414. 2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Huang K, Chen S, Yu LJ, Wu ZM, Chen QJ,
Wang XQ, Li FF, Liu JM, Wang YX, Mao LS, et al: Serum secreted
phosphoprotein 1 level is associated with plaque vulnerability in
patients with coronary artery disease. Front Immunol.
15(1285813)2024.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wolak T, Sion-Vardi N, Novack V, Greenberg
G, Szendro G, Tarnovscki T, Nov O, Shelef I, Paran E and Rudich A:
N-terminal rather than full-length osteopontin or its C-terminal
fragment is associated with carotid-plaque inflammation in
hypertensive patients. Am J Hypertens. 26:326–333. 2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Ozaki S, Kurata M, Kumon Y, Matsumoto S,
Tagawa M, Watanabe H, Ohue S, Higaki J and Ohnishi T: Plasma
thrombin-cleaved osteopontin as a potential biomarker of acute
atherothrombotic ischemic stroke. Hypertens Res. 40:61–66.
2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kadoglou NPE, Gerasimidis T, Golemati S,
Kapelouzou A, Karayannacos PE and Liapis CD: The relationship
between serum levels of vascular calcification inhibitors and
carotid plaque vulnerability. J Vasc Surg. 47:55–62.
2008.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Caesar C, Lyle AN, Joseph G, Weiss D,
Alameddine FMF, Lassègue B, Griendling KK and Taylor WR: Cyclic
strain and hypertension increase osteopontin expression in the
Aorta. Cell Mol Bioeng. 10:144–152. 2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Cheng J, Wu H, Xie C, He Y, Mou R, Zhang
H, Yang Y and Xu Q: Single-cell mapping of large and small arteries
during hypertensive aging. J Gerontol A Biol Sci Med Sci.
79(glad188)2024.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Huynh DTN, Jin Y, Van Nguyen D, Myung CS
and Heo KS: Ginsenoside Rh1 inhibits angiotensin ii-induced
vascular smooth muscle cell migration and Proliferation through
Suppression of the ROS-mediated ERK1/2/p90RSK/KLF4 signaling
pathway. Antioxidants (Basel). 11(643)2022.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Yu W, Xiao L, Que Y, Li S, Chen L, Hu P,
Xiong R, Seta F, Chen H and Tong X: Smooth muscle NADPH oxidase 4
promotes angiotensin II-induced aortic aneurysm and atherosclerosis
by regulating osteopontin. Biochim Biophys Acta Mol Basis Dis.
1866(165912)2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Dziedzic T: Systemic inflammation as a
therapeutic target in acute ischemic stroke. Expert Rev Neurother.
15:523–531. 2015.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Yan YP, Lang BT, Vemuganti R and Dempsey
RJ: Osteopontin is a mediator of the lateral migration of
neuroblasts from the subventricular zone after focal cerebral
ischemia. Neurochem Int. 55:826–832. 2009.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Kalluri HS and Dempsey RJ: Osteopontin
increases the proliferation of neural progenitor cells. Int J Dev
Neurosci. 30:359–362. 2012.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Rogall R, Rabenstein M, Vay S, Bach A,
Pikhovych A, Baermann J, Hoehn M, Couillard-Despres S, Fink GR,
Schroeter M and Rueger MA: Bioluminescence imaging visualizes
osteopontin-induced neurogenesis and neuroblast migration in the
mouse brain after stroke. Stem Cell Res Ther. 9(182)2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Rabenstein M, Hucklenbroich J, Willuweit
A, Ladwig A, Fink GR, Schroeter M, Langen KJ and Rueger MA:
Osteopontin mediates survival, proliferation and migration of
neural stem cells through the chemokine receptor CXCR4. Stem Cell
Res Ther. 6(99)2015.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Ellison JA, Velier JJ, Spera P, Jonak ZL,
Wang X, Barone FC and Feuerstein GZ: Osteopontin and its integrin
receptor alpha(v)beta3 are upregulated during formation of the
glial scar after focal stroke. Stroke. 29:1698–1707.
1998.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Lee H, Jin YC, Kim SW, Kim ID, Lee HK and
Lee JK: Proangiogenic functions of an RGD-SLAY-containing
osteopontin icosamer peptide in HUVECs and in the postischemic
brain. Exp Mol Med. 50(e430)2018.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Doyle KP, Yang T, Lessov NS, Ciesielski
TM, Stevens SL, Simon RP, King JS and Stenzel-Poore MP: Nasal
administration of osteopontin peptide mimetics confers
neuroprotection in stroke. J Cereb Blood Flow Metab. 28:1235–1248.
2008.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Jin YC, Lee H, Kim SW, Kim ID, Lee HK, Lee
Y, Han PL and Lee JK: Intranasal delivery of RGD motif-containing
osteopontin icosamer confers neuroprotection in the postischemic
brain via αvβ3 integrin binding. Mol Neurobiol. 53:5652–5663.
2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Chung AG, Frye JB, Zbesko JC,
Constantopoulos E, Hayes M, Figueroa AG, Becktel DA, Antony Day W,
Konhilas JP, McKay BS, et al: Liquefaction of the brain following
stroke shares a similar molecular and morphological profile with
atherosclerosis and mediates secondary neurodegeneration in an
osteopontin-dependent mechanism. eNeuro.
5(ENEURO.0076-18.2018)2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Masuda T, Isobe Y, Aihara N, Furuyama F,
Misumi S, Kim TS, Nishino H and Hida H: Increase in neurogenesis
and neuroblast migration after a small intracerebral hemorrhage in
rats. Neurosci Lett. 425:114–119. 2007.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Cappellano G, Vecchio D, Magistrelli L,
Clemente N, Raineri D, Barbero Mazzucca C, Virgilio E and Dianzani
U: The Yin-Yang of osteopontin in nervous system diseases: Damage
versus repair. Neural Regen Res. 16:1131–1137. 2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Spinelli FR, Garufi C, Truglia S, Pacucci
VA, Morello F, Miranda F, Perricone C, Ceccarelli F, Valesini G and
Conti F: The role of osteopontin as a candidate biomarker of renal
involvement in systemic lupus erythematosus. Clin Exp Rheumatol.
37:899–905. 2019.PubMed/NCBI
|
|
77
|
Tsai CH, Liu SC, Wang YH, Su CM, Huang CC,
Hsu CJ and Tang CH: Osteopontin inhibition of miR-129-3p enhances
IL-17 expression and monocyte migration in rheumatoid arthritis.
Biochim Biophys Acta Gen Subj. 1861:15–22. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Zhou Y, Yao Y, Sheng L, Zhang J, Zhang JH
and Shao A: Osteopontin as a candidate of therapeutic application
for the acute brain injury. J Cell Mol Med. 24:8918–8929.
2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Chen H, Guan B, Chen X, Chen X, Li C, Qiu
J, Yang D, Liu KJ, Qi S and Shen J: Baicalin attenuates blood-brain
barrier disruption and hemorrhagic transformation and improves
neurological outcome in ischemic stroke rats with delayed t-PA
treatment: Involvement of ONOO--MMP-9 pathway. Transl
Stroke Res. 9:515–529. 2018.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Wu B, Ma Q, Suzuki H, Chen C, Liu W, Tang
J and Zhang J: Recombinant osteopontin attenuates brain injury
after intracerebral hemorrhage in mice. Neurocrit Care. 14:109–117.
2011.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Gong L, Manaenko A, Fan R, Huang L,
Enkhjargal B, McBride D, Ding Y, Tang J, Xiao X and Zhang JH:
Osteopontin attenuates inflammation via JAK2/STAT1 pathway in
hyperglycemic rats after intracerebral hemorrhage.
Neuropharmacology. 138:160–169. 2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Sun C, Rahman MSU, Enkhjargal B, Peng J,
Zhou K, Xie Z, Wu L, Zhang T, Zhu Q, Tang J, et al: Osteopontin
modulates microglial activation states and attenuates inflammatory
responses after subarachnoid hemorrhage in rats. Exp Neurol.
371(114585)2024.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zheng J, Wu H, Wang X, Zhang G, Lu J, Xu
W, Xu S, Fang Y, Zhang A, Shao A, et al: Temporal dynamics of
microglia-astrocyte interaction in neuroprotective glial scar
formation after intracerebral hemorrhage. J Pharm Anal. 13:862–879.
2023.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zhang Y, Wang JR, Zhang EN and Zhao ZJ:
Analysis of the effect of changes in serum osteopontin levels on
patients with acute cerebral infarction. Pak J Med Sci. 40:718–722.
2024.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Zhu Z, He Y, Shi M, Guo D, Zhang K, Ren L,
Peng Y, Yang P, Chen J, Zang Y, et al: Plasma osteopontin levels
and adverse clinical outcomes after ischemic stroke.
Atherosclerosis. 332:33–40. 2021.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Li HJ, Han NN, Nan Y, Zhang K, Li G and
Chen H: Plasma osteopontin acts as a prognostic marker in acute
intracerebral hemorrhage patients. Clin Chim Acta. 500:208–212.
2020.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Abate MG, Moretto L, Licari I, Esposito T,
Capuano L, Olivieri C, Benech A, Brucoli M, Avanzi GC, Cammarota G,
et al: Osteopontin in the cerebrospinal fluid of patients with
severe aneurysmal subarachnoid hemorrhage. Cells.
8(695)2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Carbone F, Rigamonti F, Burger F, Roth A,
Bertolotto M, Spinella G, Pane B, Palombo D, Pende A, Bonaventura
A, et al: Serum levels of osteopontin predict major adverse
cardiovascular events in patients with severe carotid artery
stenosis. Int J Cardiol. 255:195–199. 2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Chaitanya V, Devi NH, Suchitra MM, Rao
PVLNS, Lakshmi BV and Kumar VS: Osteopontin, cardiovascular risk
factors and carotid intima-media thickness in chronic kidney
disease. Indian J Nephrol. 28:358–364. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Kurata M, Okura T, Watanabe S, Fukuoka T
and Higaki J: Osteopontin and carotid atherosclerosis in patients
with essential hypertension. Clin Sci (Lond). 111:319–324.
2006.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Elbarbary MR, Ahmed LA, El-Adl DA, Ezzat
AA and Nassib SA: Study of osteopontin as a marker of arteriovenous
shunt stenosis in hemodialysis patients. Curr Vasc Pharmacol.
22:50–57. 2024.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Kadoglou NPE, Gerasimidis T, Kapelouzou A,
Moumtzouoglou A, Avgerinos ED, Kakisis JD, Karayannacos PE and
Liapis CD: Beneficial changes of serum calcification markers and
contralateral carotid plaques echogenicity after combined carotid
artery stenting plus intensive lipid-lowering therapy in patients
with bilateral carotid stenosis. Eur J Vasc Endovasc Surg.
39:258–265. 2010.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Kadoglou NPE, Sailer N, Moumtzouoglou A,
Kapelouzou A, Gerasimidis T and Liapis CD: Aggressive
lipid-lowering is more effective than moderate lipid-lowering
treatment in carotid plaque stabilization. J Vasc Surg. 51:114–121.
2010.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Kang N, Ng CS, Hu J, Qiu ZB, Underwood MJ,
Jeremy JY and Wan S: Role of osteopontin in the development of
neointimal hyperplasia in vein grafts. Eur J Cardiothorac Surg.
41:1384–1389. 2012.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Wang X, Louden C, Ohlstein EH, Stadel JM,
Gu JL and Yue TL: Osteopontin expression in platelet-derived growth
factor-stimulated vascular smooth muscle cells and carotid artery
after balloon angioplasty. Arterioscler Thromb Vasc Biol.
16:1365–1372. 1996.PubMed/NCBI View Article : Google Scholar
|