|
1
|
America M, Bostaille N, Eubelen M, Martin
M, Stainier DYR and Vanhollebeke B: An integrated model for Gpr124
function in Wnt7a/b signaling among vertebrates. Cell Rep.
39(110902)2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Shu J, Wang C, Tao Y, Wang S, Cheng F,
Zhang Y, Shi K, Xia K, Wang R, Wang J, et al: Thermosensitive
hydrogel-based GPR124 delivery strategy for rebuilding blood-spinal
cord barrier. Bioeng Transl Med. 8(e10561)2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lin WY, Zhou J and Guo ZL: Potential
mechanism and research progress of G protein couple TCGA d receptor
124 in periodontitis. J Hainan Med Coll. 1–12. 2024.
|
|
4
|
Ran QC, Long SR, Ye Y, Xie C, XuXiao ZL,
Liu YS, Pang HX, Sunchuri D, Teng NC and Guo ZL: Mining TCGA
database for prognostic genes in head and neck squamous cell
carcinoma microenvironment. J Dent Sci. 16:661–667. 2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
DISCHARGE Trial Group. Kofoed KF, Bosserdt
M, Maurovich-Horvat P, Rieckmann N, Benedek T, Donnelly P,
Rodriguez-Palomares J, Erglis A, Štěchovský C, et al: Comparative
effectiveness of initial computed tomography and invasive coronary
angiography in women and men with stable chest pain and suspected
coronary artery disease: Multicentre randomised trial. BMJ.
379(e071133)2022.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Xu YM: Structural study of thermostable
mutation-assisted G protein-coupled receptors GLP-1R and GPR124
(unpublished PhD thesis). East China Normal University, 2021.
|
|
7
|
Lagerström MC and Schiöth HB: Structural
diversity of G protein-coupled receptors and significance for drug
discovery. Nat Rev Drug Discov. 7:339–357. 2008.PubMed/NCBI View
Article : Google Scholar
|
|
8
|
Carson-Walter E, Watkins D, Nanda A,
Vogelstein B, Kinzler KW and St Croix B: Cell surface tumor
endothelial markers are conserved in mice and humans. Cancer Res.
61:6649–6655. 2001.PubMed/NCBI
|
|
9
|
O'Hayre M, Degese MS and Gutkind JS: Novel
insights into G protein and G protein-coupled receptor signaling in
cancer. Curr Opin Cell Biol. 27:126–135. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Janetzko J, Kise R, Barsi-Rhyne B, Siepe
DH, Heydenreich FM, Kawakami K, Masureel M, Maeda S, Garcia KC, von
Zastrow M, et al: Membrane phosphoinositides regulate
GPCR-β-arrestin complex assembly and dynamics. Cell.
185:4560–4573.e19. 2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Dejana E and Nyqvist D: News from the
brain: The GPR124 orphan receptor directs brain-specific
angiogenesis. Sci Transl Med. 2(58ps53)2010.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Fredriksson R, Gloriam DEI, Höglund PJ,
Lagerström MC and Schiöth HB: There exist at least 30 human
G-protein-coupled receptors with long Ser/Thr-rich N-termini.
Biochem Biophys Res Commun. 301:725–734. 2003.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Hernández-Vásquez MN, Adame-García SR,
Hamoud N, Chidiac R, Reyes-Cruz G, Gratton JP, Côté JF and
Vázquez-Prado J: Cell adhesion controlled by adhesion G
protein-coupled receptor GPR124/ADGRA2 is mediated by a protein
complex comprising intersectins and Elmo-Dock. J Biol Chem.
292:12178–12191. 2017.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Cullen M, Elzarrad MK, Seaman S, Zudaire
E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, et al:
GPR124, an orphan G protein-coupled receptor, is required for
CNS-specific vascularization and establishment of the blood-brain
barrier. Proc Natl Acad Sci USA. 108:5759–5764. 2011.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Zhou R, Shen L, Yang C, Wang L, Guo H,
Yang P and Song A: Periodontitis may restrain the mandibular bone
healing via disturbing osteogenic and osteoclastic balance.
Inflammation. 41:972–983. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Weinsheimer S, Brettman AD, Pawlikowska L,
Wu DC, Mancuso MR, Kuhnert F, Lawton MT, Sidney S, Zaroff JG,
McCulloch CE, et al: G protein-coupled receptor 124 (GPR124) gene
polymorphisms and risk of brain arteriovenous malformation. Transl
Stroke Res. 3:418–427. 2012.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Yuki K, Vallon M, Ding J, Rada CC, Tang
AT, Vilches-Moure JG, McCormick AK, Henao Echeverri MF, Alwahabi S,
Braunger BM, et al: GPR124 regulates murine brain embryonic
angiogenesis and BBB formation by an intracellular
domain-independent mechanism. Development.
151(dev202794)2024.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Siqueira M, Francis D, Gisbert D, Gomes
FCA and Stipursky J: Radial glia cells control angiogenesis in the
developing cerebral cortex through TGF-β1 signaling. Mol Neurobiol.
55:3660–3675. 2018.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Kuhnert F, Mancuso MR, Shamloo A, Wang HT,
Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC and
Kuo CJ: Essential regulation of CNS angiogenesis by the orphan G
protein-coupled receptor GPR124. Science. 330:985–989.
2010.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Chang J, Mancuso M, Maier C, Liang X, Yuki
K, Yang L, Kwong JW, Wang J, Rao V, Vallon M, et al: Gpr124 is
essential for blood-brain barrier integrity in central nervous
system disease. Nat Med. 23:450–460. 2017.PubMed/NCBI View
Article : Google Scholar
|
|
21
|
Umans RA, Henson HE, Mu F, Parupalli C, Ju
B, Peters JL, Lanham KA, Plavicki JS and Taylor MR: CNS
angiogenesis and barriergenesis occur simultaneously. Dev Biol.
425:101–108. 2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Posokhova E, Shukla A, Seaman S, Volate S,
Hilton MB, Wu B, Morris H, Swing DA, Zhou M, Zudaire E, et al:
GPR124 functions as a WNT7-specific coactivator of canonical
β-catenin signaling. Cell Rep. 10:123–130. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Martin M, Vermeiren S, Bostaille N,
Eubelen M, Spitzer D, Vermeersch M, Profaci CP, Pozuelo E, Toussay
X, Raman-Nair J, et al: Engineered Wnt ligands enable blood-brain
barrier repair in neurological disorders. Science.
375(eabm4459)2022.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Alok A, Lei Z, Jagannathan NS, Kaur S,
Harmston N, Rozen SG, Tucker-Kellogg L and Virshup DM: Wnt proteins
synergize to activate β-catenin signaling. J Cell Sci.
130:1532–1544. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Bostaille N, Gauquier A, Twyffels L and
Vanhollebeke B: Molecular insights into Adgra2/Gpr124 and reck
intracellular trafficking. Biol Open. 5:1874–1881. 2016.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Eubelen M, Bostaille N, Cabochette P,
Gauquier A, Tebabi P, Dumitru AC, Koehler M, Gut P, Alsteens D,
Stainier DYR, et al: A molecular mechanism for Wnt ligand-specific
signaling. Science. 361(eaat1178)2018.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Cho C, Smallwood PM and Nathans J: Reck
and Gpr124 are essential receptor cofactors for
Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and
blood-brain barrier regulation. Neuron. 95:1056–1073.e5.
2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Zhou Y and Nathans J: Gpr124 controls CNS
angiogenesis and blood-brain barrier integrity by promoting
ligand-specific canonical wnt signaling. Dev Cell. 31:248–256.
2014.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Vallon M, Yuki K, Nguyen TD, Chang J, Yuan
J, Siepe D, Miao Y, Essler M, Noda M, Garcia KC and Kuo CJ: A
RECK-WNT7 receptor-ligand interaction enables isoform-specific
regulation of Wnt bioavailability. Cell Rep. 25:339–349.e9.
2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Cho C, Wang Y, Smallwood PM, Williams J
and Nathans J: Molecular determinants in frizzled, reck, and Wnt7a
for ligand-specific signaling in neurovascular development. Elife.
8(e47300)2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Gong DM, Zhang YL, Chen DY, Hong LJ, Han
F, Liu QB, Jiang JJ and Lu YM: Endothelial GPR124 exaggerates the
pathogenesis of atherosclerosis by activating inflammation. Cell
Physiol Biochem. 45:547–557. 2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Li Q, Ouyang X and Lin J: The impact of
periodontitis on vascular endothelial dysfunction. Front Cell
Infect Microbiol. 12(998313)2022.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Chen DY, Sun NH, Lu YP, Hong LJ, Cui TT,
Wang CK, Chen XH, Wang SS, Feng LL, Shi WX, et al: GPR124
facilitates pericyte polarization and migration by regulating the
formation of filopodia during ischemic injury. Theranostics.
9:5937–5955. 2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wang Y, Cho SG, Wu X, Siwko S and Liu M:
G-protein coupled receptor 124 (GPR124) in endothelial cells
regulates vascular endothelial growth factor (VEGF)-induced tumor
angiogenesis. Curr Mol Med. 14:543–554. 2014.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Parab S, Card OA, Chen Q, America M, Buck
LD, Quick RE, Horrigan WF, Levkowitz G, Vanhollebeke B and Matsuoka
RL: Local angiogenic interplay of Vegfc/d and Vegfa controls brain
region-specific emergence of fenestrated capillaries. Elife.
12(e86066)2023.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Fagundes NCF, Almeida APCPSC, Vilhena KFB,
Magno MB, Maia LC and Lima RR: Periodontitis as a risk factor for
stroke: A systematic review and meta-analysis. Vasc Health Risk
Manag. 15:519–532. 2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Orlandi M and Graziani Fand D'Aiuto F:
Periodontal therapy and cardiovascular risk. Periodontol 2000.
83:107–124. 2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Anderson KD, Pan L, Yang XM, Hughes VC,
Walls JR, Dominguez MG, Simmons MV, Burfeind P, Xue Y, Wei Y, et
al: Angiogenic sprouting into neural tissue requires Gpr124, an
orphan G protein-coupled receptor. Proc Natl Acad Sci USA.
108:2807–2812. 2011.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Engelhardt B and Liebner S: Novel insights
into the development and maintenance of the blood-brain barrier.
Cell Tissue Res. 355:687–699. 2014.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Fan J and Watanabe T: Atherosclerosis:
Known and unknown. Pathol Int. 72:151–160. 2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Sorokin V, Vickneson K, Kofidis T, Woo CC,
Lin XY, Foo R and Shanahan CM: Role of vascular smooth muscle cell
plasticity and interactions in vessel wall inflammation. Front
Immunol. 11(599415)2020.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Doran AC, Meller N and McNamara CA: Role
of smooth muscle cells in the initiation and early progression of
atherosclerosis. Arterioscler Thromb Vasc Biol. 28:812–819.
2008.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhang YL: Study on the molecular mechanism
of endothelial G protein-coupled receptor 124 in mediating the
pathological process of atherosclerosis (unpublished PhD thesis).
Zhejiang University, 2017.
|
|
44
|
Orr AW, Hastings NE, Blackman BR and
Wamhoff BR: Complex regulation and function of the inflammatory
smooth muscle cell phenotype in atherosclerosis. J Vasc Res.
47:168–180. 2010.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Kaur H, Carvalho J, Looso M, Singh P,
Chennupati R, Preussner J, Günther S, Albarrán-Juárez J, Tischner
D, Classen S, et al: Author correction: Single-cell profiling
reveals heterogeneity and functional patterning of GPCR expression
in the vascular system. Nat Commun. 10(1448)2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Karagiannis GS, Weile J, Bader GD and
Minta J: Integrative pathway dissection of molecular mechanisms of
moxLDL-induced vascular smooth muscle phenotype transformation. BMC
Cardiovasc Disord. 13(4)2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Huang Y, Xu W and Zhou R: NLRP3
inflammasome activation and cell death. Cell Mol Immunol.
18:2114–2127. 2021.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhu BW, Chen LM and Guo ZL: Review of
NLRP3 inflammasomes in periodontal diseases. Int J Stomatol.
46:450–455. 2019.(In Chinese).
|
|
49
|
Li B and Meng WY: Research progress of
NLRP3 inflammasome in peri-implantitis. J Oral Sci Res.
38:1119–1123. 2022.(In Chinese).
|
|
50
|
Burger F, Baptista D, Roth A, da Silva RF,
Montecucco F, Mach F, Brandt KJ and Miteva K: NLRP3 inflammasome
activation controls vascular smooth muscle cells phenotypic switch
in atherosclerosis. Int J Mol Sci. 23(340)2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Zeng W, Wu D, Sun Y, Suo Y, Yu Q, Zeng M,
Gao Q, Yu B, Jiang X and Wang Y: The selective NLRP3 inhibitor
MCC950 hinders atherosclerosis development by attenuating
inflammation and pyroptosis in macrophages. Sci Rep.
11(19305)2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Xu Y, Fang X, Zhao Z, Wu H, Fan H, Zhang
Y, Meng Q, Rong Q, Fukunaga K, Guo Q and Liu Q: GPR124 induces
NLRP3 inflammasome-mediated pyroptosis in endothelial cells during
ischemic injury. Eur J Pharmacol. 962(176228)2024.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Wu H, Gao T, Cao Y, Diao J, Chang F, Qi J
and Wang C: Protective and therapeutic effects of Trianthema
portulacastrum against atherosclerosis in male albino rats via
G-protein-coupled receptor 124. AMB Express. 9(178)2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Larvin H, Kang J, Aggarwal VR, Pavitt S
and Wu J: Risk of incident cardiovascular disease in people with
periodontal disease: A systematic review and meta-analysis. Clin
Exp Dent Res. 7:109–122. 2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Feng W, Liu B, Liu D, Hasegawa T, Wang W,
Han X, Cui J, Yimin Oda K, Amizuka N and Li M: Long-term
administration of high-fat diet corrects abnormal bone remodeling
in the tibiae of interleukin-6-deficient mice. J Histochem
Cytochem. 64:42–53. 2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
García-Hernández AL, Muñoz-Saavedra ÁE,
González-Alva P, Moreno-Fierros L, Llamosas-Hernández FE,
Cifuentes-Mendiola SE and Rubio-Infante N: Upregulation of proteins
of the NLRP3 inflammasome in patients with periodontitis and
uncontrolled type 2 diabetes. Oral Dis. 25:596–608. 2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Yang L, Tao W, Xie C, Chen Q, Zhao Y,
Zhang L, Xiao X, Wang S and Zheng X: Interleukin-37 ameliorates
periodontitis development by inhibiting NLRP3 inflammasome
activation and modulating M1/M2 macrophage polarization. J
Periodontal Res. 59:128–139. 2024.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wang Z, Feng X, Zhang G, Li H, Zhou F, Xie
Y, Li T, Zhao C, Luo W, Xiong Y and Wu Y: Artesunate ameliorates
ligature-induced periodontitis by attenuating NLRP3
inflammasome-mediated osteoclastogenesis and enhancing osteogenic
differentiation. Int Immunopharmacol. 123(110749)2023.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu
Y, Aung LHH, Li PF, Yu T and Chu XM: NLRP3 inflammasome in
endothelial dysfunction. Cell Death Dis. 11(776)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Gyselaers W, Dreesen P, Staelens AS,
Tomsin K, Bruckers L and Vonck S: First-trimester normotension is a
weak indicator of normal maternal cardiovascular function.
Hypertension. 80:343–351. 2023.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Calderón-Zamora L, Canizalez-Román A,
León-Sicairos N, Aguilera-Mendez A, Huang F, Hong E and Villafaña
S: Changes in expression of orphan receptors GPR99 and GPR107
during the development and establishment of hypertension in
spontaneously hypertensive rats. J Recept Signal Transduct Res.
41:558–565. 2021.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Ngo T, Kufareva I, Coleman JLJ, Graham RM,
Abagyan R and Smith NJ: Identifying ligands at orphan GPCRs:
Current status using structure-based approaches. Br J Pharmacol.
173:2934–2951. 2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Calderón-Zamora L, Ruiz-Hernandez A,
Romero-Nava R, León-Sicairos N, Canizalez-Román A, Hong E, Huang F
and Villafaña S: Possible involvement of orphan receptors GPR88 and
GPR124 in the development of hypertension in spontaneously
hypertensive rat. Clin Exp Hypertens. 39:513–519. 2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Del PR, Pietropaoli D, Munoz-Aguilera E,
D'Aiuto F, Czesnikiewicz-Guzik M, Monaco A, Guzik TJ and Ferri C:
Periodontitis and hypertension: Is the association causal? High
Blood Press Cardiovasc Prev. 27:281–289. 2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Czesnikiewicz-Guzik M, Osmenda G,
Siedlinski M, Nosalski R, Pelka P, Nowakowski D, Wilk G,
Mikolajczyk TP, Schramm-Luc A, Furtak A, et al: Causal association
between periodontitis and hypertension: Evidence from Mendelian
randomization and a randomized controlled trial of non-surgical
periodontal therapy. Eur Heart J. 40:3459–3470. 2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Duan SZ: Research progress in oral
microbiota and cardio-cerebrovascular diseases. Stomatology.
41:577–582. 2021.(In Chinese).
|
|
67
|
Cherry AE, Vicente JJ, Xu C, Morrison RS,
Ong SE, Wordeman L and Stella N: GPR124 regulates microtubule
assembly, mitotic progression, and glioblastoma cell proliferation.
Glia. 67:1558–1570. 2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
St Croix B, Rago C, Velculescu V, Traverso
G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C,
Vogelstein B and Kinzler KW: Genes expressed in human tumor
endothelium. Science. 289:1197–1202. 2000.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Huang Q, Liu L, Xiao D, Huang Z, Wang W,
Zhai K, Fang X, Kim J, Liu J, Liang W, et al: CD44+ lung
cancer stem cell-derived pericyte-like cells cause brain metastases
through GPR124-enhanced trans-endothelial migration. Cancer Cell.
41:1621–1636.e8. 2023.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Dono A, Takayasu T, Yan Y, Bundrant BE,
Arevalo O, Lopez-Garcia CA, Esquenazi Y and Ballester LY:
Differences in genomic alterations between brain metastases and
primary tumors. Neurosurgery. 88:592–602. 2021.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Wang Z, Li Y, Zhou F, Piao Z and Hao J:
β-elemene enhances anticancer bone neoplasms efficacy of paclitaxel
through regulation of GPR124 in bone neoplasms cells. Oncol Lett.
16:2143–2150. 2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Liu D, Zhou B and Liu R: A transcriptional
co-expression network-based approach to identify prognostic
biomarkers in gastric carcinoma. PeerJ. 8(e8504)2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Ma J, Chen P and Wang R: G-protein-coupled
receptor 124 promotes osteogenic differentiation of BMSCs through
the Wnt/β-catenin pathway. In Vitro Cell Dev Biol Anim. 58:529–538.
2022.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Houschyar KS, Tapking C, Borrelli MR, Popp
D, Duscher D, Maan ZN, Chelliah MP, Li J, Harati K, Wallner C, et
al: Wnt pathway in bone repair and regeneration-what do we know so
far. Front Cell Dev Biol. 6(170)2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Luo J, Chen H, Wang G, Lyu J, Liu Y, Lin
S, Zhou M and Jiang X: CGRP-loaded porous microspheres protect
BMSCs for alveolar bone regeneration in the periodontitis
microenvironment. Adv Healthc Mater. 12(e2301366)2023.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Vallon M, Aubele P, Janssen KP and Essler
M: Thrombin-induced shedding of tumour endothelial marker 5 and
exposure of its RGD motif are regulated by cell-surface protein
disulfide-isomerase. Biochem J. 441:937–944. 2012.PubMed/NCBI View Article : Google Scholar
|