You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Dominici F, Greenstone M and Sunstein CR: Science and regulation. Particulate matter matters. Science. 344:257–259. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y and Hayes RB: Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ Health Perspect. 124:484–490. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J and Dong S: Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep. 7(9392)2017.PubMed/NCBI View Article : Google Scholar | |
|
Long JF, Waldman WJ, Kristovich R, Williams M, Knight D and Dutta PK: Comparison of ultrastructural cytotoxic effects of carbon and carbon/iron particulates on human monocyte-derived macrophages. Environ Health Perspect. 113:170–174. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Samek L, Furman L, Mikrut M, Regiel-Futyra A, Macyk W, Stochel G and van Eldik R: Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project. Chemosphere. 187:430–439. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Mesquita SR, van Drooge BL, Reche C, Guimarães L, Grimalt JO, Barata C and Piña B: Toxic assessment of urban atmospheric particle-bound PAHs: Relevance of composition and particle size in Barcelona (Spain). Environ Pollut. 184:555–562. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Wang L, Luo D, Liu X, Zhu J, Wang F, Li B and Li L: Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere. 264(128436)2021.PubMed/NCBI View Article : Google Scholar | |
|
Hoffman JIE, Kaplan S and Liberthson RR: Prevalence of congenital heart disease. Am Heart J. 147:425–439. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Olson EN: Gene regulatory networks in the evolution and development of the heart. Science. 313:1922–1927. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Li M, Li J, Wei C, Lu Q, Tang X, Erickson SW, MacLeod SL and Hobbs CA: A three-way interaction among maternal and fetal variants contributing to congenital heart defects. Ann Hum Genet. 80:20–31. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Hu CY, Huang K, Fang Y, Yang XJ, Ding K, Jiang W, Hua XG, Huang DY, Jiang ZX and Zhang XJ: Maternal air pollution exposure and congenital heart defects in offspring: A systematic review and meta-analysis. Chemosphere. 253(126668)2020.PubMed/NCBI View Article : Google Scholar | |
|
Huang CC, Chen BY, Pan SC, Ho YL and Guo YL: Prenatal exposure to PM2.5 and congenital heart diseases in Taiwan. Sci Total Environ. 655:880–886. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Li D, Xu W, Qiu Y, Pan F, Lou H, Li J, Jin Y, Wu T, Pan L, An J, et al: Maternal air pollution exposure and neonatal congenital heart disease: A multi-city cross-sectional study in eastern China. Int J Hyg Environ Health. 240(113898)2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Q, Sun S, Sui X, Ding L, Yang M, Li C, Zhang C, Zhang X, Hao J, Xu Y, et al: Associations between weekly air pollution exposure and congenital heart disease. Sci Total Environ. 757(143821)2021.PubMed/NCBI View Article : Google Scholar | |
|
Jiang Q, Zhang C, Chen S, Shi L, Li DC, Lv N, Cui L, Chen Y and Zheng Y: Particulate matter 2.5 induced developmental cardiotoxicity in chicken embryo and hatchling. Front Pharmacol. 11(841)2020.PubMed/NCBI View Article : Google Scholar | |
|
Wang H, Peng X, Cao F, Wang Y, Shi H, Lin S, Zhong W and Sun J: Cardiotoxicity and mechanism of particulate matter 2.5 (PM2.5) exposure in offspring rats during pregnancy. Med Sci Monit. 23:3890–3896. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhang H, Yao Y, Chen Y, Yue C, Chen J, Tong J, Jiang Y and Chen T: Crosstalk between AhR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Toxicology. 355-356:31–38. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Lage K, Greenway SC, Rosenfeld JA, Wakimoto H, Gorham JM, Segrè AV, Roberts AE, Smoot LB, Pu WT, Pereira AC, et al: Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA. 109:14035–14040. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, et al: Developmental toxicity of fine particulate matter: Multifaceted exploration from epidemiological and laboratory perspectives. Toxics. 12(274)2024.PubMed/NCBI View Article : Google Scholar | |
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y and Wang X: The pathophysiological and molecular mechanisms of atmospheric PM2.5 affecting cardiovascular health: A review. Ecotoxicol Environ Saf. 249(114444)2023.PubMed/NCBI View Article : Google Scholar | |
|
Liang C, Ding R, Sun Q, Liu S, Sun Z and Duan J: An overview of adverse outcome pathway links between PM2.5 exposure and cardiac developmental toxicity. Environ Health. 2:105–113. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Agay-Shay K, Friger M, Linn S, Peled A, Amitai Y and Peretz C: Air pollution and congenital heart defects. Environ Res. 124:28–34. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Girguis MS, Strickland MJ, Hu X, Liu Y, Bartell SM and Vieira VM: Maternal exposure to traffic-related air pollution and birth defects in Massachusetts. Environ Res. 146:1–9. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Lavigne E, Lima I, Hatzopoulou M, Van Ryswyk K, Decou ML, Luo W, van Donkelaar A, Martin RV, Chen H, Stieb DM, et al: Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects. Environ Int. 130(104953)2019.PubMed/NCBI View Article : Google Scholar | |
|
Schembari A, Nieuwenhuijsen MJ, Salvador J, de Nazelle A, Cirach M, Dadvand P, Beelen R, Hoek G, Basagaña X and Vrijheid M: Traffic-related air pollution and congenital anomalies in Barcelona. Environ Health Perspect. 122:317–323. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Zhang B, Liang S, Zhao J, Qian Z, Bassig BA, Yang R, Zhang Y, Hu K, Xu S, Zheng T and Yang S: Maternal exposure to air pollutant PM2.5 and PM10 during pregnancy and risk of congenital heart defects. J Expo Sci Environ Epidemiol. 26:422–427. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA and Webb CL: American Heart Association Council on Cardiovascular Disease in the Young. Noninherited risk factors and congenital cardiovascular defects: Current knowledge: A scientific statement from the American heart association council on cardiovascular disease in the Young: Endorsed by the American academy of pediatrics. Circulation. 115:2995–3014. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Lassi ZS, Imam AM, Dean SV and Bhutta ZA: Preconception care: Caffeine, smoking, alcohol, drugs and other environmental chemical/radiation exposure. Reprod Health. 11 (Suppl 3)(S6)2014.PubMed/NCBI View Article : Google Scholar | |
|
Chang YC, Lin YT, Jung CR, Chen KW and Hwang BF: Maternal exposure to fine particulate matter and congenital heart defects during preconception and pregnancy period: A cohort-based case-control study in the Taiwan maternal and child health database. Environ Res. 231(116154)2023.PubMed/NCBI View Article : Google Scholar | |
|
Wu X, Pan B, Liu L, Zhao W, Zhu J, Huang X and Tian J: In utero exposure to PM2.5 during gestation caused adult cardiac hypertrophy through histone acetylation modification. J Cell Biochem. 120:4375–4384. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Watt AJ, Battle MA, Li J and Duncan SA: GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 101:12573–12578. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Jiang SY, Xu M and Zhang YY: Role of GATA-4 in cardiac development and remodeling. Sheng Li Ke Xue Jin Zhan. 39:302–306. 2008.PubMed/NCBI(In Chinese). | |
|
Akazawa H and Komuro I: Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res. 92:1079–1088. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Morimoto T, Hasegawa K, Wada H, Kakita T, Kaburagi S, Yanazume T and Sasayama S: Calcineurin-GATA4 pathway is involved in beta-adrenergic agonist-responsive endothelin-1 transcription in cardiac myocytes. J Biol Chem. 276:34983–34989. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H and Tian L: Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. Environ Pollut. 247:874–882. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Sancini G, Farina F, Battaglia C, Cifola I, Mangano E, Mantecca P, Camatini M and Palestini P: Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One. 9(e109685)2014.PubMed/NCBI View Article : Google Scholar | |
|
Qin G, Xia J, Zhang Y, Guo L, Chen R and Sang N: Ambient fine particulate matter exposure induces reversible cardiac dysfunction and fibrosis in juvenile and older female mice. Part Fibre Toxicol. 15(27)2018.PubMed/NCBI View Article : Google Scholar | |
|
Qi Z, Song Y, Ding Q, Liao X, Li R, Liu G, Tsang S and Cai Z: Water soluble and insoluble components of PM2.5 and their functional cardiotoxicities on neonatal rat cardiomyocytes in vitro. Ecotoxicol Environ Saf. 168:378–387. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Shaffer F and Ginsberg JP: An overview of heart rate variability metrics and norms. Front Public Health. 5(258)2017.PubMed/NCBI View Article : Google Scholar | |
|
Wagner JG, Kamal AS, Morishita M, Dvonch JT, Harkema JR and Rohr AC: PM2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions. Part Fibre Toxicol. 11(25)2014.PubMed/NCBI View Article : Google Scholar | |
|
Chen R, Qiao L, Li H, Zhao Y, Zhang Y, Xu W, Wang C, Wang H, Zhao Z, Xu X, et al: Fine particulate matter constituents, nitric oxide synthase DNA methylation and exhaled nitric oxide. Environ Sci Technol. 49:11859–11865. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Tanwar V, Adelstein JM, Grimmer JA, Youtz DJ, Sugar BP and Wold LE: PM2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice. Environ Pollut. 230:116–124. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Grant AO: Cardiac ion channels. Circ Arrhythm Electrophysiol. 2:185–194. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Park KH, Choi YJ, Min WK, Lee SH, Kim J, Jeong SH, Lee JH, Choi BM and Kim S: Particulate matter induces arrhythmia-like cardiotoxicity in zebrafish embryos by altering the expression levels of cardiac development- and ion channel-related genes. Ecotoxicol Environ Saf. 263(115201)2023.PubMed/NCBI View Article : Google Scholar | |
|
Gualtieri M, Longhin E, Mattioli M, Mantecca P, Tinaglia V, Mangano E, Proverbio MC, Bestetti G, Camatini M and Battaglia C: Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett. 209:136–145. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Kouassi KS, Billet S, Garçon G, Verdin A, Diouf A, Cazier F, Djaman J, Courcot D and Shirali P: Oxidative damage induced in A549 cells by physically and chemically characterized air particulate matter (PM2.5) collected in Abidjan, Côte d'Ivoire. J Appl Toxicol. 30:310–320. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Briedé JJ, De Kok TMCM, Hogervorst JGF, Moonen EJC, Op Den Camp CLB and Kleinjanst JCS: Development and application of an electron spin resonance spectrometry method for the determination of oxygen free radical formation by particulate matter. Environ Sci Technol. 39:8420–8426. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Gehling W, Khachatryan L and Dellinger B: Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. Environ Sci Technol. 48:4266–4272. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M and Gualtieri M: Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol. 10(63)2013.PubMed/NCBI View Article : Google Scholar | |
|
Huang Q, Zhang J, Peng S, Tian M, Chen J and Shen H: Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): A proteomic study. J Appl Toxicol. 34:675–687. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Kannan S, Misra DP, Dvonch JT and Krishnakumar A: Exposures to airborne particulate matter and adverse perinatal outcomes: A biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect. 114:1636–1642. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Feng S, Gao D, Liao F, Zhou F and Wang X: The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 128:67–74. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Li SY, Sigmon VK, Babcock SA and Ren J: Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci. 80:1051–1056. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Moazzen H, Lu X, Ma NL, Velenosi TJ, Urquhart BL, Wisse LJ, Gittenberger-de Groot AC and Feng Q: N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes. Cardiovasc Diabetol. 13(46)2014.PubMed/NCBI View Article : Google Scholar | |
|
Ren F, Ji C, Huang Y, Aniagu S, Jiang Y and Chen T: AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci Total Environ. 719(135097)2020.PubMed/NCBI View Article : Google Scholar | |
|
Wang L, He X, Szklarz GD, Bi Y, Rojanasakul Y and Ma Q: The aryl hydrocarbon receptor interacts with nuclear factor erythroid 2-related factor 2 to mediate induction of NAD(P)H:quinoneoxidoreductase 1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys. 537:31–38. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Rousseau ME, Sant KE, Borden LR, Franks DG, Hahn ME and Timme-Laragy AR: Regulation of Ahr signaling by Nrf2 during development: Effects of Nrf2a deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio). Aquat Toxicol. 167:157–171. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Dalton TP, Puga A and Shertzer HG: Induction of cellular oxidative stress by aryl hydrocarbon receptor activation. Chem Biol Interact. 141:77–95. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Elbekai RH and El-Kadi AOS: The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+, and Cr6+. Free Radic Biol Med. 39:1499–1511. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Mohammadi-Bardbori A, Omidi M and Arabnezhad MR: Impact of CH223191-induced mitochondrial dysfunction on its Aryl hydrocarbon receptor agonistic and antagonistic activities. Chem Res Toxicol. 32:691–697. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Kopf PG and Walker MK: 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P4501A1. Toxicol Appl Pharmacol. 245:91–99. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Zangar RC, Davydov DR and Verma S: Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol. 199:316–331. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Zhou B, Wang X, Li F, Wang Y, Yang L, Zhen X and Tan W: Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes. Mol Med Rep. 16:174–180. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Pei Y, Jiang R, Zou Y, Wang Y, Zhang S, Wang G, Zhao J and Song W: Effects of fine particulate matter (PM2.5) on systemic oxidative stress and cardiac function in ApoE(-/-) mice. Int J Environ Res Public Health. 13(484)2016.PubMed/NCBI View Article : Google Scholar | |
|
Yang JL, Lu JY, Zhang MS, Qin G and Li CP: Involvement of heme oxygenase in PM2.5-toxicity in human umbilical vein endothelial cells. Zhonghua Xin Xue Guan Bing Za Zhi. 41:955–961. 2013.PubMed/NCBI(In Chinese). | |
|
Medzhitov R: Origin and physiological roles of inflammation. Nature. 454:428–435. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Zhao J, Gao Z, Tian Z, Xie Y, Xin F, Jiang R, Kan H and Song W: The biological effects of individual-level PM(2.5) exposure on systemic immunity and inflammatory response in traffic policemen. Occup Environ Med. 70:426–431. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Bekki K, Ito T, Yoshida Y, He C, Arashidani K, He M, Sun G, Zeng Y, Sone H, Kunugita N and Ichinose T: PM2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. Environ Toxicol Pharmacol. 45:362–369. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Shi Q, Zhao L, Xu C, Zhang L and Zhao H: High molecular weight hyaluronan suppresses macrophage M1 polarization and enhances IL-10 production in PM2.5-induced lung inflammation. Molecules. 24(1766)2019.PubMed/NCBI View Article : Google Scholar | |
|
Chen W, Liu Y, Chen J, Song Y, You M and Yang G: Long-term co-exposure DBP and BaP causes imbalance in liver macrophages polarization via activation of notch signaling regulated by miR-34a-5p in rats. Chem Biol Interact. 359(109919)2022.PubMed/NCBI View Article : Google Scholar | |
|
You M, Song Y, Chen J, Liu Y, Chen W, Cen Y, Zhao X, Tao Z and Yang G: Combined exposure to benzo(a)pyrene and dibutyl phthalate aggravates pro-inflammatory macrophage polarization in spleen via pyroptosis involving cathepsin B. Sci Total Environ. 881(163460)2023.PubMed/NCBI View Article : Google Scholar | |
|
Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martinez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, et al: A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 183:94–109.e23. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Ueland T, Gullestad L, Nymo SH, Yndestad A, Aukrust P and Askevold ET: Inflammatory cytokines as biomarkers in heart failure. Clin Chim Acta. 443:71–77. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M and Sciarretta S: An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res. 113:378–388. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Li R, Zhao Y, Shi J, Zhao C, Xie P, Huang W, Yong T and Cai Z: Effects of PM2.5 exposure in utero on heart injury, histone acetylation and GATA4 expression in offspring mice. Chemosphere. 256(127133)2020.PubMed/NCBI View Article : Google Scholar | |
|
Ma XN, Li RQ, Xie JL, Li SH, Li JW and Yan XX: PM2.5-induced inflammation and myocardial cell injury in rats. Eur Rev Med Pharmacol Sci. 25:6670–6677. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Fröde-Saleh TS and Calixto JB: Synergistic antiinflammatory effect of NF-kappaB inhibitors and steroidal or non steroidal antiinflammatory drugs in the pleural inflammation induced by carrageenan in mice. Inflamm Res. 49:330–337. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Ryu YS, Kang KA, Piao MJ, Ahn MJ, Yi JM, Hyun YM, Kim SH, Ko MK, Park CO and Hyun JW: Particulate matter induces inflammatory cytokine production via activation of NFκB by TLR5-NOX4-ROS signaling in human skin keratinocyte and mouse skin. Redox Biol. 21(101080)2019.PubMed/NCBI View Article : Google Scholar | |
|
Li H, Shi Y, Wang X, Li P, Zhang S, Wu T, Yan Y, Zhan Y, Ren Y, Rong X, et al: Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy. Chem Biol Interact. 310(108754)2019.PubMed/NCBI View Article : Google Scholar | |
|
Jiao Y, Wang S, Jiang L, Sun X, Li J, Liu X, Yao X, Zhang C, Wang N, Deng H and Yang G: 2-Undecanone protects against fine particles-induced heart inflammation via modulating Nrf2/HO-1 and NF-κB pathways. Environ Toxicol. 37:1642–1652. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Ji X, Ku T and Sang N: Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO2, NO2, and PM2.5. Environ Toxicol. 31:1996–2005. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Chen M, Qin X, Qiu L, Chen S, Zhou H, Xu Y, Hu Z, Zhang Y, Cao Q and Ying Z: Concentrated ambient PM2.5-induced inflammation and endothelial dysfunction in a murine model of neural IKK2 deficiency. Environ Health Perspect. 126(027003)2018.PubMed/NCBI View Article : Google Scholar | |
|
Hu B, Tong B, Xiang Y, Li SR, Tan ZX, Xiang HX, Fu L, Wang H, Zhao H and Xu DX: Acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells. Ecotoxicol Environ Saf. 189(109977)2020.PubMed/NCBI View Article : Google Scholar | |
|
Duan S, Wang N, Huang L, Zhao Y, Shao H, Jin Y, Zhang R, Li C, Wu W, Wang J and Feng F: NLRP3 inflammasome activation is associated with PM2.5-induced cardiac functional and pathological injury in mice. Environ Toxicol. 34:1246–1254. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Bevan GH, Al-Kindi SG, Brook RD, Münzel T and Rajagopalan S: Ambient air pollution and atherosclerosis: Insights into dose, time, and mechanisms. Arterioscler Thromb Vasc Biol. 41:628–637. 2021.PubMed/NCBI View Article : Google Scholar | |
|
West AP: Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology. 391:54–63. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Breda CNS, Davanzo GG, Basso PJ, Saraiva Câmara NO and Moraes-Vieira PMM: Mitochondria as central hub of the immune system. Redox Biol. 26(101255)2019.PubMed/NCBI View Article : Google Scholar | |
|
Wang G, Zhao J, Jiang R and Song W: Rat lung response to ozone and fine particulate matter (PM2.5) exposures. Environ Toxicol. 30:343–356. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Niu J, Liberda EN, Qu S, Guo X, Li X, Zhang J, Meng J, Yan B, Li N, Zhong M, et al: The role of metal components in the cardiovascular effects of PM2.5. PLoS One. 8(e83782)2013.PubMed/NCBI View Article : Google Scholar | |
|
Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A and Eizirik DL: Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes. 54:452–461. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P and Schwartz J: Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology. 21:819–828. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Hotamisligil GS: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 140:900–917. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Bettigole SE and Glimcher LH: Endoplasmic reticulum stress in immunity. Annu Rev Immunol. 33:107–138. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Song S, Tan J, Miao Y, Li M and Zhang Q: Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol. 232:2977–2984. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Ding Q, Qi Y and Tsang SY: Mitochondrial biogenesis, mitochondrial dynamics, and mitophagy in the maturation of cardiomyocytes. Cells. 10(2463)2021.PubMed/NCBI View Article : Google Scholar | |
|
Hou L, Zhu ZZ, Zhang X, Nordio F, Bonzini M, Schwartz J, Hoxha M, Dioni L, Marinelli B, Pegoraro V, et al: Airborne particulate matter and mitochondrial damage: A cross-sectional study. Environ Health. 9(48)2010.PubMed/NCBI View Article : Google Scholar | |
|
Xia T, Kovochich M and Nel AE: Impairment of mitochondrial function by particulate matter (PM) and their toxic components: Implications for PM-induced cardiovascular and lung disease. Front Biosci. 12:1238–1246. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM and Kelly DP: Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 106:847–856. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Meng Z and Liu Y: Cell morphological ultrastructural changes in various organs from mice exposed by inhalation to sulfur dioxide. Inhal Toxicol. 19:543–551. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Marchini T, Magnani N, D'Annunzio V, Tasat D, Gelpi RJ, Alvarez S and Evelson P: Impaired cardiac mitochondrial function and contractile reserve following an acute exposure to environmental particulate matter. Biochim Biophys Acta. 1830:2545–2552. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Wang G, Zhen L, Lü P, Jiang R and Song W: Effects of ozone and fine particulate matter (PM2.5) on rat cardiac autonomic nervous system and systemic inflammation. Wei Sheng Yan Jiu. 42:554–560. 2013.PubMed/NCBI(In Chinese). | |
|
Wang Q and Zhang L, Yuan X, Ou Y, Zhu X, Cheng Z, Zhang P, Wu X, Meng Y and Zhang L: The relationship between the Bcl-2/Bax proteins and the mitochondria-mediated apoptosis pathway in the differentiation of adipose-derived stromal cells into neurons. PLoS One. 11(e0163327)2016.PubMed/NCBI View Article : Google Scholar | |
|
Zorzano A, Liesa M, Sebastian D, Segales J and Palacin M: Mitochondrial fusion proteins: Dual regulators of morphology and metabolism. Semin Cell Dev Biol. 21:566–574. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Yang XD, Shi Q, Sun J, Lv Y, Ma Y, Chen C, Xiao K, Zhou W and Dong XP: Aberrant alterations of mitochondrial factors Drp1 and Opa1 in the brains of scrapie experiment rodents. J Mol Neurosci. 61:368–378. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Westermann B: Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 11:872–884. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Ikeda Y, Sciarretta S, Nagarajan N, Rubattu S, Volpe M, Frati G and Sadoshima J: New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxid Med Cell Longev. 2014(210934)2014.PubMed/NCBI View Article : Google Scholar | |
|
Soberanes S, Urich D, Baker CM, Burgess Z, Chiarella SE, Bell EL, Ghio AJ, De Vizcaya-Ruiz A, Liu J, Ridge KM, et al: Mitochondrial complex III-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution. J Biol Chem. 284:2176–2186. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Castilho RF, Meinicke AR, Almeida AM, Hermes-Lima M and Vercesi AE: Oxidative damage of mitochondria induced by Fe(II)citrate is potentiated by Ca2+ and includes lipid peroxidation and alterations in membrane proteins. Arch Biochem Biophys. 308:158–163. 1994.PubMed/NCBI View Article : Google Scholar | |
|
Packer MA, Porteous CM and Murphy MP: Superoxide production by mitochondria in the presence of nitric oxide forms peroxynitrite. Biochem Mol Biol Int. 40:527–534. 1996.PubMed/NCBI View Article : Google Scholar | |
|
Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE and Bess AS: Mitochondria as a target of environmental toxicants. Toxicol Sci. 134:1–17. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Rodriguez-Enriquez S, He L and Lemasters JJ: Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol. 36:2463–2472. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Urrutia PJ, Mena NP and Núñez MT: The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 5(38)2014.PubMed/NCBI View Article : Google Scholar | |
|
Liang H and Ward WF: PGC-1alpha: A key regulator of energy metabolism. Adv Physiol Educ. 30:145–151. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Prakash C and Kumar V: Arsenic-induced mitochondrial oxidative damage is mediated by decreased PGC-1α expression and its downstream targets in rat brain. Chem Biol Interact. 256:228–235. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Chen J, Zhang M, Aniagu S, Jiang Y and Chen T: PM2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage. Environ Toxicol Pharmacol. 106(104393)2024.PubMed/NCBI View Article : Google Scholar | |
|
Chen J, Zhang M, Zou H, Aniagu S, Jiang Y and Chen T: PM2.5 induces mitochondrial dysfunction via AHR-mediated cyp1a1 overexpression during zebrafish heart development. Toxicology. 487(153466)2023.PubMed/NCBI View Article : Google Scholar | |
|
Cavalli G and Heard E: Advances in epigenetics link genetics to the environment and disease. Nature. 571:489–499. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Marcho C, Oluwayiose OA and Pilsner JR: The preconception environment and sperm epigenetics. Andrology. 8:924–942. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Sun T, Wu R and Ming L: The role of m6A RNA methylation in cancer. Biomed Pharmacother. 112(108613)2019.PubMed/NCBI View Article : Google Scholar | |
|
Liu Q and Gregory RI: RNAmod: An integrated system for the annotation of mRNA modifications. Nucleic Acids Res. 47:W548–W555. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 16:191–198. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Liu L, Li H, Hu D, Wang Y, Shao W, Zhong J, Yang S, Liu J and Zhang J: Insights into N6-methyladenosine and programmed cell death in cancer. Mol Cancer. 21(32)2022.PubMed/NCBI View Article : Google Scholar | |
|
Tang F, Chen L, Gao H, Xiao D and Li X: m6A: An emerging role in programmed cell death. Front Cell Dev Biol. 10(817112)2022.PubMed/NCBI View Article : Google Scholar | |
|
Yang Y, Shen S, Cai Y, Zeng K, Liu K, Li S, Zeng L, Chen L, Tang J, Hu Z, et al: Dynamic patterns of N6-methyladenosine profiles of messenger RNA correlated with the cardiomyocyte regenerability during the early heart development in mice. Oxid Med Cell Longev. 2021(5537804)2021.PubMed/NCBI View Article : Google Scholar | |
|
Shen S, Liu K, Li S, Rampes S, Yang Y, Huang Y, Tang J, Xia Z, Ma D and Zhang L: N6-methyladenosine modulates long non-coding RNA in the developing mouse heart. Cell Death Discov. 8(329)2022.PubMed/NCBI View Article : Google Scholar | |
|
Guo X, Lin Y, Lin Y, Zhong Y, Yu H, Huang Y, Yang J, Cai Y, Liu F, Li Y, et al: PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ Pollut. 303(119115)2022.PubMed/NCBI View Article : Google Scholar | |
|
He X, Zhang L, Liu S, Wang J, Liu Y, Xiong A, Jiang M, Luo L, Ying X and Li G: Methyltransferase-like 3 leads to lung injury by up-regulation of interleukin 24 through N6-methyladenosine-dependent mRNA stability and translation efficiency in mice exposed to fine particulate matter 2.5. Environ Pollut. 308(119607)2022.PubMed/NCBI View Article : Google Scholar | |
|
Ji C, Tao Y, Li X, Wang J, Chen J, Aniagu S, Jiang Y and Chen T: AHR-mediated m6A RNA methylation contributes to PM2.5-induced cardiac malformations in zebrafish larvae. J Hazard Mater. 457(131749)2023.PubMed/NCBI View Article : Google Scholar | |
|
Ning J, Du H, Zhang Y, Liu Q, Jiang T, Pang Y, Tian X, Yan L, Niu Y and Zhang R: N6-Methyladenosine modification of CDH1 mRNA promotes PM2.5-induced pulmonary fibrosis via mediating epithelial mesenchymal transition. Toxicol Sci. 185:143–157. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, et al: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 15:707–719. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Zhao T, Sun D, Zhao M, Lai Y, Liu Y and Zhang Z: N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation. Environ Pollut. 259(113908)2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhuang C, Zhuang C, Luo X, Huang X, Yao L, Li J, Li Y, Xiong T, Ye J, Zhang F and Gui Y: N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J Cell Mol Med. 23:2163–2173. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Cao J, Qin G, Shi R, Bai F, Yang G, Zhang M and Lv J: Overproduction of reactive oxygen species and activation of MAPKs are involved in apoptosis induced by PM2.5 in rat cardiac H9c2 cells. J Appl Toxicol. 36:609–617. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Dong W, Matsumura F and Kullman SW: TCDD induced pericardial edema and relative COX-2 expression in medaka (Oryzias Latipes) embryos. Toxicol Sci. 118:213–223. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J and Sun Z: PM2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Sci Total Environ. 650:908–921. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH and Bradfield CA: The Ah receptor: Adaptive metabolism, ligand diversity, and the xenokine model. Chem Res Toxicol. 33:860–879. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Hahn ME, Karchner SI and Merson RR: Diversity as opportunity: Insights from 600 million years of AHR evolution. Curr Opin Toxicol. 2:58–71. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Jeuken A, Keser BJG, Khan E, Brouwer A, Koeman J and Denison MS: Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits. J Agric Food Chem. 51:5478–5487. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Aluru N, Kuo E, Helfrich LW, Karchner SI, Linney EA, Pais JE and Franks DG: Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio). Toxicol Appl Pharmacol. 284:142–151. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Jiang Y, Li J, Ren F, Ji C, Aniagu S and Chen T: PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environ Pollut. 255(113331)2019.PubMed/NCBI View Article : Google Scholar | |
|
Soberanes S, Gonzalez A, Urich D, Chiarella SE, Radigan KA, Osornio-Vargas A, Joseph J, Kalyanaraman B, Ridge KM, Chandel NS, et al: Particulate matter air pollution induces hypermethylation of the p16 promoter via a mitochondrial ROS-JNK-DNMT1 pathway. Sci Rep. 2(275)2012.PubMed/NCBI View Article : Google Scholar | |
|
Al-Saleh I, Shinwari N, Mashhour A, Mohamed Gel D and Rabah A: Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health. 214:79–101. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Maccani JZJ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT and Marsit CJ: Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect. 123:723–729. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Mohanty AF, Farin FM, Bammler TK, MacDonald JW, Afsharinejad Z, Burbacher TM, Siscovick DS, Williams MA and Enquobahrie DA: Infant sex-specific placental cadmium and DNA methylation associations. Environ Res. 138:74–81. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Li W, Liu H, Yu M, Zhang X, Zhang Y, Liu H, Wilson JX and Huang G: Folic acid alters methylation profile of JAK-STAT and long-term depression signaling pathways in Alzheimer's disease models. Mol Neurobiol. 53:6548–6556. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Maghbooli Z, Hossein-Nezhad A, Adabi E, Asadollah-Pour E, Sadeghi M, Mohammad-Nabi S, Zakeri Rad L, Malek Hosseini AA, Radmehr M, Faghihi F, et al: Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One. 13(e0199772)2018.PubMed/NCBI View Article : Google Scholar | |
|
Goodson JM, Weldy CS, MacDonald JW, Liu Y, Bammler TK, Chien WM and Chin MT: In utero exposure to diesel exhaust particulates is associated with an altered cardiac transcriptional response to transverse aortic constriction and altered DNA methylation. FASEB J. 31:4935–4945. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Wauters A, Dreyfuss C, Pochet S, Hendrick P, Berkenboom G, van de Borne P and Argacha JF: Acute exposure to diesel exhaust impairs nitric oxide-mediated endothelial vasomotor function by increasing endothelial oxidative stress. Hypertension. 62:352–358. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A and Sowers LC: Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32:4100–4108. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, et al: Genome-wide analysis of DNA methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the normative aging study. Environ Health Perspect. 124:983–990. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Wei S, Segura S, Vendrell J, Aviles FX, Lanoue E, Day R, Feng Y and Fricker LD: Identification and characterization of three members of the human metallocarboxypeptidase gene family. J Biol Chem. 277:14954–14964. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Bellavia A, Urch B, Speck M, Brook RD, Scott JA, Albetti B, Behbod B, North M, Valeri L, Bertazzi PA, et al: DNA hypomethylation, ambient particulate matter, and increased blood pressure: Findings from controlled human exposure experiments. J Am Heart Assoc. 2(e000212)2013.PubMed/NCBI View Article : Google Scholar | |
|
Shahbazian MD and Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 76:75–100. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Chervona Y, Hall MN, Arita A, Wu F, Sun H, Tseng HC, Ali E, Uddin MN, Liu X, Zoroddu MA, et al: Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol Biomarkers Prev. 21:2252–2260. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Z, Chen L, Xing X, Li D, Gao C, He Z, Li J, Zhu X, Xiao X, Wang S, et al: Specific histone modifications were associated with the PAH-induced DNA damage response in coke oven workers. Toxicol Res (Camb). 5:1193–1201. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Wang Z, Zhao YT and Zhao TC: Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood). 246:213–225. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Sun H, Yang X, Zhu J, Lv T, Chen Y, Chen G, Zhong L, Li Y, Huang X, Huang G and Tian J: Inhibition of p300-HAT results in a reduced histone acetylation and down-regulation of gene expression in cardiac myocytes. Life Sci. 87:707–714. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Hu DX, Liu XB, Song WC and Wang JA: Roles of SIRT3 in heart failure: From bench to bedside. J Zhejiang Univ Sci B. 17:821–830. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Li Y, Ma Y, Song L, Yu L, Zhang L, Zhang Y, Xing Y, Yin Y and Ma H: SIRT3 deficiency exacerbates p53/Parkin-mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int J Mol Med. 41:3517–3526. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J and Cai L: Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014(641979)2014.PubMed/NCBI View Article : Google Scholar | |
|
Chen H, Giri NC, Zhang R, Yamane K, Zhang Y, Maroney M and Costa M: Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem. 285:7374–7383. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Prins D and Michalak M: Endoplasmic reticulum proteins in cardiac development and dysfunction. Can J Physiol Pharmacol. 87:419–425. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Zhu Y, Guan H, Zhu X, Cai J, Jiao X, Shan J, Li Y, Wu Q and Zhang Z: Astilbin antagonizes developmental cardiotoxicity after cadmium exposure in chicken embryos by inhibiting endoplasmic reticulum stress and maintaining calcium homeostasis. Ecotoxicol Environ Saf. 270(115847)2024.PubMed/NCBI View Article : Google Scholar | |
|
Minamino T and Kitakaze M: ER stress in cardiovascular disease. J Mol Cell Cardiol. 48:1105–1110. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Li R, Zhang M, Wang Y, Yung KKL, Su R, Li Z, Zhao L, Dong C and Cai Z: Effects of sub-chronic exposure to atmospheric PM2.5 on fibrosis, inflammation, endoplasmic reticulum stress and apoptosis in the livers of rats. Toxicol Res (Camb). 7:271–282. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y and Tang M: PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells. Sci Total Environ. 710(136397)2020.PubMed/NCBI View Article : Google Scholar | |
|
Chen T, Jin H, Wang H, Yao Y, Aniagu S, Tong J and Jiang Y: Aryl hydrocarbon receptor mediates the cardiac developmental toxicity of EOM from PM2.5 in P19 embryonic carcinoma cells. Chemosphere. 216:372–378. 2019.PubMed/NCBI View Article : Google Scholar | |
|
de la Harpe A, Beukes N and Frost CL: CBD activation of TRPV1 induces oxidative signaling and subsequent ER stress in breast cancer cell lines. Biotechnol Appl Biochem. 69:420–430. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Malhotra JD and Kaufman RJ: Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid Redox Signal. 9:2277–2293. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Ozgur R, Uzilday B, Sekmen AH and Turkan I: The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis. Ann Bot. 116:541–553. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, Salom C, Jover A, Mora V, Roldan I, et al: Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J Clin Med. 8(1385)2019.PubMed/NCBI View Article : Google Scholar | |
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, et al: The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med. 10(1088575)2023.PubMed/NCBI View Article : Google Scholar | |
|
Lavandero S, Chiong M, Rothermel BA and Hill JA: Autophagy in cardiovascular biology. J Clin Invest. 125:55–64. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B and Amatruda JF: Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy. 10:572–587. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y, Fang J, Leonard SS and Rao KM: Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med. 36:1434–1443. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Høyer-Hansen M and Jäättelä M: Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 14:1576–1582. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R and Pinton P: Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium. 43:184–195. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Zheng Q, Chen Y, Chen D, Zhao H, Feng Y, Meng Q, Zhao Y and Zhang H: Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell. 185:4082–4098.e22. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Sun M, Jiang Z, Gu P, Guo B, Li J, Cheng S, Ba Q and Wang H: Cadmium promotes colorectal cancer metastasis through EGFR/Akt/mTOR signaling cascade and dynamics. Sci Total Environ. 899(165699)2023.PubMed/NCBI View Article : Google Scholar | |
|
Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS and Xu L: A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ. 18:60–71. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Plácido AI, Pereira CM, Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Oliveira CR and Moreira PI: The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer's disease. Biochim Biophys Acta. 1842:1444–1453. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Su R, Jin X, Lyu L, Tian J, Amin S and Li Z: The potential immunotoxicity of fine particulate matter based on SD rat spleen. Environ Sci Pollut Res Int. 26:23958–23966. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Rubiolo JA, López-Alonso H, Martinez P, Millán A, Cagide E, Vieytes MR, Vega FV and Botana LM: Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3. Cell Signal. 26:419–432. 2014.PubMed/NCBI | |
|
Carloni S, Favrais G, Saliba E, Albertini MC, Chalon S, Longini M, Gressens P, Buonocore G and Balduini W: Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J Pineal Res. 61:370–380. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C, Lei R, Xia T, Gao H, Yang L, et al: Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol. 271:206–215. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Dagher Z, Garçon G, Billet S, Gosset P, Ledoux F, Courcot D, Aboukais A and Shirali P: Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicology. 225:12–24. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Yang X, Zhao T, Feng L, Shi Y, Jiang J, Liang S, Sun B, Xu Q, Duan J and Sun Z: PM2.5-induced ADRB2 hypermethylation contributed to cardiac dysfunction through cardiomyocytes apoptosis via PI3K/Akt pathway. Environ Int. 127:601–614. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Yang X, Feng L, Zhang Y, Hu H, Shi Y, Liang S, Zhao T, Fu Y, Duan J and Sun Z: Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicol Environ Saf. 161:198–207. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Su CH, Chen SP, Chen LY, Yang JJ, Lee YC, Lee SS, Chen HH, Ng YY and Kuan YH: 3-Bromofluoranthene-induced cardiotoxicity of zebrafish and apoptosis in the vascular endothelial cells via intrinsic and extrinsic caspase-dependent pathways. Ecotoxicol Environ Saf. 228(112962)2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
|
Gombedza FC, Shin S, Kanaras YL and Bandyopadhyay BC: Abrogation of store-operated Ca2+ entry protects against crystal-induced ER stress in human proximal tubular cells. Cell Death Discov. 5(124)2019.PubMed/NCBI View Article : Google Scholar | |
|
Dlamini Z, Tshidino SC and Hull R: Abnormalities in alternative splicing of apoptotic genes and cardiovascular diseases. Int J Mol Sci. 16:27171–27190. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Yan L, Zhou Y, Yu S, Ji G, Wang L, Liu W and Gu A: 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish. Exp Cell Res. 319:2954–2963. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Zhao X, Ren X, Zhu R, Luo Z and Ren B: Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat Toxicol. 180:56–70. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Zhao X, Wang S, Wu Y, You H and Lv L: Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol. 136-137:49–59. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Zhu L, Dong X, Xie H, Wang J, Wang J, Su J and Yu C: DNA damage and effects on glutathione-S-transferase activity induced by atrazine exposure in zebrafish (Danio rerio). Environ Toxicol. 26:480–488. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Liu H, Cheng Y, Yang J, Wang W, Fang S, Zhang W, Han B, Zhou Z, Yao H, Chao J and Liao H: BBC3 in macrophages promoted pulmonary fibrosis development through inducing autophagy during silicosis. Cell Death Dis. 8(e2657)2017.PubMed/NCBI View Article : Google Scholar | |
|
Huang DC and Strasser A: BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 103:839–842. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Kedinger V, Alpy F, Tomasetto C, Thisse C, Thisse B and Rio MC: Spatial and temporal distribution of the traf4 genes during zebrafish development. Gene Expr Patterns. 5:545–552. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Sax JK and El-Deiry WS: Identification and characterization of the cytoplasmic protein TRAF4 as a p53-regulated proapoptotic gene. J Biol Chem. 278:36435–36444. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Ruan X, Zhang R, Li R, Zhu H, Wang Z, Wang C, Cheng Z and Peng H: The research progress in physiological and pathological functions of TRAF4. Front Oncol. 12(842072)2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhang J, Cui S, Shen L, Gao Y, Liu W, Zhang C and Zhuang S: Promotion of bladder cancer cell metastasis by 2-mercaptobenzothiazole via its activation of Aryl hydrocarbon receptor transcription: Molecular dynamics simulations, cell-based assays, and machine learning-driven prediction. Environ Sci Technol. 56:13254–13263. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Yue C, Ji C, Zhang H, Zhang LW, Tong J, Jiang Y and Chen T: Protective effects of folic acid on PM2.5-induced cardiac developmental toxicity in zebrafish embryos by targeting AhR and Wnt/β-catenin signal pathways. Environ Toxicol. 32:2316–2322. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Bello SM, Heideman W and Peterson RE: 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits regression of the common cardinal vein in developing zebrafish. Toxicol Sci. 78:258–266. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Fu H, Wang L, Wang J, Bennett BD, Li JL, Zhao B and Hu G: Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells. Sci Total Environ. 651:1038–1046. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Lund AK, Goens MB, Nuñez BA and Walker MK: Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice. Toxicol Appl Pharmacol. 212:127–135. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Evans BR, Karchner SI, Franks DG and Hahn ME: Duplicate aryl hydrocarbon receptor repressor genes (ahrr1 and ahrr2) in the zebrafish Danio rerio: Structure, function, evolution, and AHR-dependent regulation in vivo. Arch Biochem Biophys. 441:151–167. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Jenny MJ, Karchner SI, Franks DG, Woodin BR, Stegeman JJ and Hahn ME: Distinct roles of two zebrafish AHR repressors (AHRRa and AHRRb) in embryonic development and regulating the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci. 110:426–441. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Jayasundara N, Van Tiem Garner L, Meyer JN, Erwin KN and Di Giulio RT: AHR2-mediated transcriptomic responses underlying the synergistic cardiac developmental toxicity of PAHs. Toxicol Sci. 143:469–481. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Ko CI, Fan Y, de Gannes M, Wang Q, Xia Y and Puga A: Repression of the Aryl hydrocarbon receptor is required to maintain mitotic progression and prevent loss of pluripotency of embryonic stem cells. Stem Cells. 34:2825–2839. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Jiang Y, Wang D, Zhang G, Wang G, Tong J and Chen T: Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene. Environ Toxicol. 31:1372–1380. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Wang Q, Chen J, Ko CI, Fan Y, Carreira V, Chen Y, Xia Y, Medvedovic M and Puga A: Disruption of aryl hydrocarbon receptor homeostatic levels during embryonic stem cell differentiation alters expression of homeobox transcription factors that control cardiomyogenesis. Environ Health Perspect. 121:1334–1343. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Carreira VS, Fan Y, Kurita H, Wang Q, Ko CI, Naticchioni M, Jiang M, Koch S, Zhang X, Biesiada J, et al: Disruption of Ah receptor signaling during mouse development leads to abnormal cardiac structure and function in the adult. PLoS One. 10(e0142440)2015.PubMed/NCBI View Article : Google Scholar | |
|
Wang Q, Kurita H, Carreira V, Ko CI, Fan Y, Zhang X, Biesiada J, Medvedovic M and Puga A: Ah receptor activation by dioxin disrupts activin, BMP, and WNT signals during the early differentiation of mouse embryonic stem cells and inhibits cardiomyocyte functions. Toxicol Sci. 149:346–357. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J and Rao MS: Differences between human and mouse embryonic stem cells. Dev Biol. 269:360–380. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Dere E, Lee AW, Burgoon LD and Zacharewski TR: Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells. BMC Genomics. 12(193)2011.PubMed/NCBI View Article : Google Scholar | |
|
Suzuki T and Nohara K: Regulatory factors involved in species-specific modulation of arylhydrocarbon receptor (AhR)-dependent gene expression in humans and mice. J Biochem. 142:443–452. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Jiang Y, Zhao X, Chen J, Aniagu S and Chen T: PM2.5 induces cardiac malformations via PI3K/akt2/mTORC1 signaling pathway in zebrafish larvae. Environ Pollut. 323(121306)2023.PubMed/NCBI View Article : Google Scholar | |
|
Ozhan G and Weidinger G: Wnt/β-catenin signaling in heart regeneration. Cell Regen. 4(3)2015.PubMed/NCBI View Article : Google Scholar | |
|
Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT and Murry CE: Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA. 104:9685–9690. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Schneider AJ, Branam AM and Peterson RE: Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci. 15:17852–17885. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Wincent E, Stegeman JJ and Jönsson ME: Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions. Toxicol Appl Pharmacol. 284:163–179. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, Clevers H and Jay P: SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 166:37–47. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Liu Z, Li T, Liu Y, Jia Z, Li Y, Zhang C, Chen P, Ma K, Affara N and Zhou C: WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1. Biochim Biophys Acta. 1793:300–311. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Lin X and Xu X: Distinct functions of Wnt/beta-catenin signaling in KV development and cardiac asymmetry. Development. 136:207–217. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Chiu CS, Tsai CH, Hsieh MS, Tsai SC, Jan YJ, Lin WY, Lai DW, Wu SM, Hsing HY, Arbiser JL and Sheu ML: Exploiting Honokiol-induced ER stress CHOP activation inhibits the growth and metastasis of melanoma by suppressing the MITF and β-catenin pathways. Cancer Lett. 442:113–125. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Valavanidis A, Fiotakis K and Vlachogianni T: Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 26:339–362. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Fu Y, Niu Y, Pan B, Liu Y, Zhang B, Li X, Yang A, Nie J, Wang R and Yang J: OGG1 methylation mediated the effects of cell cycle and oxidative DNA damage related to PAHs exposure in Chinese coke oven workers. Chemosphere. 224:48–57. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Z, Xing X, Jiang S, Qiu C, Mo Z, Chen S, Chen L, Wang Q, Xiao Y, Dong G, et al: Global H3K79 di-methylation mediates DNA damage response to PAH exposure in Chinese coke oven workers. Environ Pollut. 268(115956)2021.PubMed/NCBI View Article : Google Scholar | |
|
Zhao L, Zhang L, Chen M, Dong C, Li R and Cai Z: Effects of ambient atmospheric PM2.5, 1-nitropyrene and 9-nitroanthracene on DNA damage and oxidative stress in hearts of rats. Cardiovasc Toxicol. 19:178–190. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Wang W, Li Y, Liu X, Jin M, Du H, Liu Y, Huang P, Zhou X, Yuan L and Sun Z: Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line. Int J Nanomedicine. 8:3533–3541. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Gutiérrez-Castillo ME, Roubicek DA, Cebrián-García ME, De Vizcaya-Ruíz A, Sordo-Cedeño M and Ostrosky-Wegman P: Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ Mol Mutagen. 47:199–211. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Risom L, Møller P and Loft S: Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 592:119–137. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Zhang P, Yi LH, Meng GY, Zhang HY, Sun HH and Cui LQ: Apelin-13 attenuates cisplatin-induced cardiotoxicity through inhibition of ROS-mediated DNA damage and regulation of MAPKs and AKT pathways. Free Radic Res. 51:449–459. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM, et al: Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential-a workshop report and consensus statement. Inhal Toxicol. 20:75–99. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erkul CA, McFaline JL, et al: DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest. 118:2516–2525. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Zhang X, Jiang Y and Yang J: p53-independent signaling pathway in DNA damage-induced cell apoptosis. Zhejiang Da Xue Xue Bao Yi Xue Ban. 42:217–223. 2013.PubMed/NCBI(In Chinese). | |
|
De Zio D, Cianfanelli V and Cecconi F: New insights into the link between DNA damage and apoptosis. Antioxid Redox Signal. 19:559–571. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Lorda-Diez CI, Solis-Mancilla ME, Sanchez-Fernandez C, Garcia-Porrero JA, Hurle JM and Montero JA: Cell senescence, apoptosis and DNA damage cooperate in the remodeling processes accounting for heart morphogenesis. J Anat. 234:815–829. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Huang Y, Tao Y, Cai C, Chen J, Ji C, Aniagu S, Jiang Y and Chen T: Using immunofluorescence to Detect PM2.5-induced DNA damage in zebrafish embryo hearts. J Vis Exp, 2021. | |
|
Cartwright EJ, Oceandy D, Austin C and Neyses L: Ca2+ signalling in cardiovascular disease: The role of the plasma membrane calcium pumps. Sci China Life Sci. 54:691–698. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Cai C, Huang J, Lin Y, Miao W, Chen P, Chen X, Wang J and Chen M: Particulate matter 2.5 induced arrhythmogenesis mediated by TRPC3 in human induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol. 93:1009–1020. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y, Wu T and Tang M: Ambient particulate matter triggers dysfunction of subcellular structures and endothelial cell apoptosis through disruption of redox equilibrium and calcium homeostasis. J Hazard Mater. 394(122439)2020.PubMed/NCBI View Article : Google Scholar | |
|
Dong L, Sun W, Li F, Shi M, Meng X, Wang C, Meng M, Tang W, Liu H, Wang L and Song L: The harmful effects of acute PM2.5 exposure to the heart and a novel preventive and therapeutic function of CEOs. Sci Rep. 9(3495)2019.PubMed/NCBI View Article : Google Scholar | |
|
Xu R, Cao JW, Xu TC, Liu TJ, Zhu MR and Guo MY: Selenium deficiency induced inflammation and apoptosis via NF-κB and MAPKs pathways in muscle of common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 138(108847)2023.PubMed/NCBI View Article : Google Scholar | |
|
Nowak WN, Deng J, Ruan XZ and Xu Q: Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol. 37:e41–e52. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Rajakumar S, Bhanupriya N, Ravi C and Nachiappan V: Endoplasmic reticulum stress and calcium imbalance are involved in cadmium-induced lipid aberrancy in Saccharomyces cerevisiae. Cell Stress Chaperones. 21:895–906. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP and Mickley LJ: Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-chem. Environ Res. 195(110754)2021.PubMed/NCBI View Article : Google Scholar | |
|
Maciejczyk P, Chen LC and Thurston G: The role of fossil fuel combustion metals in PM air pollution health associations. Atmosphere. 12(1086)2021. | |
|
Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, et al: Pollution and health: A progress update. Lancet Planet Health. 6:e535–e547. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Landrigan PJ, Britt M, Fisher S, Holmes A, Kumar M, Mu J, Rizzo I, Sather A, Yousuf A and Kumar P: Assessing the human health benefits of climate mitigation, pollution prevention, and biodiversity preservation. Ann Glob Health. 90(1)2024.PubMed/NCBI View Article : Google Scholar | |
|
Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, Baldé AB, Bertollini R, Bose-O'Reilly S, Boufford JI, et al: The lancet commission on pollution and health. Lancet. 391:462–512. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Yang BY, Qu Y, Guo Y, Markevych I, Heinrich J, Bloom MS, Bai Z, Knibbs LC, Li S, Chen G, et al: Maternal exposure to ambient air pollution and congenital heart defects in China. Environ Int. 153(106548)2021.PubMed/NCBI View Article : Google Scholar |