Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2025 Volume 29 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 29 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts

  • Authors:
    • Rushil Kolipaka
    • Induja Magesh
    • S. Karthik
    • M. R. Ashok Bharathy
    • I. Saranya
    • D. Preetha
    • N. Selvamurugan
  • View Affiliations / Copyright

    Affiliations: Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
    Copyright: © Kolipaka et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 20
    |
    Published online on: November 19, 2024
       https://doi.org/10.3892/etm.2024.12770
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Transforming growth factor beta 1 (TGF‑β1), a multifunctional cytokine, induces the expression of bone remodeling gene matrix metalloproteinase‑13 (MMP‑13). CREB‑binding protein (CBP), a co‑activator and runt‑related transcription factor 2 (Runx2), a bone transcription factor, play critical roles in regulating bone‑remodeling genes. Recent advances in non‑coding RNAs have revealed the significance of microRNAs (miRNAs) and their target genes in bone physiology. The present study hypothesized that TGF‑β1 stimulated MMP‑13 expression by downregulating CBP‑targeting miRNAs and activating CBP‑mediated Runx2 acetylation in human osteoblastic cells. TGF‑β1‑downregulated miRNAs that potentially target CBP were identified. Among these miRNAs, TGF‑β1 significantly downregulated miR‑4327 in these cells. TGF‑β1 stimulated CBP, acetylated Runx2 and MMP‑13 protein expression levels in human osteoblastic cells and this effect was decreased by overexpressing miR‑4327 in these cells. In human osteoblastic cells, miR‑4327 was found to directly bind to the 3'‑untranslated region of CBP using a dual‑luciferase gene reporter assay. Thus, the present study indicated that the TGF‑β1/miR‑4327/CBP/Runx2 plays a key role in MMP‑13 expression, suggesting the clinical relevance of this axis for treating bone‑related disorders.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, D'AgostiSno A, Tognon M, Rotondo JC and Martini F: Genetics and epigenetics of bone remodeling and metabolic bone diseases. Int J Mol Sci. 23(1500)2022.PubMed/NCBI View Article : Google Scholar

2 

Wang H, Zheng X, Zhang Y, Huang J, Zhou W, Li X, Tian H, Wang B, Xing D, Fu W, et al: The endocrine role of bone: Novel functions of bone-derived cytokines. Biochem Pharmacol. 183(114308)2021.PubMed/NCBI View Article : Google Scholar

3 

Arias CF, Herrero MA, Echeverri LF, Oleaga GE and López JM: Bone remodeling: A tissue-level process emerging from cell-level molecular algorithms. PLoS One. 13(e0204171)2018.PubMed/NCBI View Article : Google Scholar

4 

Bolamperti S, Villa I and Rubinacci A: Bone remodeling: An operational process ensuring survival and bone mechanical competence. Bone Res. 10(48)2022.PubMed/NCBI View Article : Google Scholar

5 

Ornitz DM and Marie PJ: Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 29:1463–1486. 2015.PubMed/NCBI View Article : Google Scholar

6 

Bordukalo-Nikšić T, Kufner V and Vukičević S: The role of BMPs in the regulation of osteoclasts resorption and bone remodeling: From experimental models to clinical applications. Front Immunol. 13(869422)2022.PubMed/NCBI View Article : Google Scholar

7 

Crane JL, Xian L and Cao X: Role of TGF-β signaling in coupling bone remodeling. Methods Mol Biol. 1344:287–300. 2016.PubMed/NCBI View Article : Google Scholar

8 

Trivedi T, Pagnotti GM, Guise TA and Mohammad KS: The role of TGF-β in bone metastases. Biomolecules. 11(1643)2021.PubMed/NCBI View Article : Google Scholar

9 

Zhao L and Hantash BM: TGF-β1 regulates differentiation of bone marrow mesenchymal stem cells. Vitam Horm. 87:127–141. 2011.PubMed/NCBI View Article : Google Scholar

10 

Li J, Ge L, Zhao Y, Zhai Y, Rao N, Yuan X, Yang J, Li J and Yu S: TGF-β2 and TGF-β1 differentially regulate the odontogenic and osteogenic differentiation of mesenchymal stem cells. Arch Oral Biol. 135(105357)2022.PubMed/NCBI View Article : Google Scholar

11 

Yang W, Li HY, Wu YF, Mi RJ, Liu WZ, Shen X, Lu YX, Jiang YH, Ma MJ and Shen HY: ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss. Mol Ther Nucleic Acids. 26:135–147. 2021.PubMed/NCBI View Article : Google Scholar

12 

Gomathi K, Rohini M, Vairamani M and Selvamurugan N: Identification and characterization of TGF-β1-responsive Runx2 acetylation sites for matrix Metalloproteinase-13 expression in osteoblastic cells. Biochimie. 201:1–6. 2022.PubMed/NCBI View Article : Google Scholar

13 

Krishnan RH, Sadu L, Akshaya RL, Gomathi K, Saranya I, Das UR, Satishkumar S and Selvamurugan N: Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. Int J Biol Macromol. 225:1152–1163. 2023.PubMed/NCBI View Article : Google Scholar

14 

Arumugam B, Vishal M, Shreya S, Malavika D, Rajpriya V, He Z, Partridge NC and Selvamurugan N: Parathyroid hormone-stimulation of Runx2 during osteoblast differentiation via the regulation of lnc-SUPT3H-1:16 (RUNX2-AS1:32) and miR-6797-5p. Biochimie. 158:43–52. 2019.PubMed/NCBI View Article : Google Scholar

15 

Gomathi K, Rohini M, Partridge NC and Selvamurugan N: Regulation of transforming growth factor-β1-stimulation of Runx2 acetylation for matrix metalloproteinase 13 expression in osteoblastic cells. Biol Chem. 403:305–315. 2022.PubMed/NCBI View Article : Google Scholar

16 

Ma C, Gao J, Liang J, Dai W, Wang Z, Xia M, Chen T, Huang S, Na J, Xu L, et al: HDAC6 inactivates Runx2 promoter to block osteogenesis of bone marrow stromal cells in age-related bone loss of mice. Stem Cell Res Ther. 12(484)2021.PubMed/NCBI View Article : Google Scholar

17 

Arumugam B, Vairamani M, Partridge NC and Selvamurugan N: Characterization of Runx2 phosphorylation sites required for TGF-β1-mediated stimulation of matrix metalloproteinase-13 expression in osteoblastic cells. J Cell Physiol. 233:1082–1094. 2018.PubMed/NCBI View Article : Google Scholar

18 

Yi SJ, Lee H, Lee J, Lee K, Kim J, Kim Y, Park JI and Kim K: Bone remodeling: Histone modifications as fate determinants of bone cell differentiation. Int J Mol Sci. 20(3147)2019.PubMed/NCBI View Article : Google Scholar

19 

Sánchez-Molina S, Oliva JL, García-Vargas S, Valls E, Rojas JM and Martínez-Balbás MA: The histone acetyltransferases CBP/p300 are degraded in NIH 3T3 cells by activation of Ras signalling pathway. Biochem J. 398:215–224. 2006.PubMed/NCBI View Article : Google Scholar

20 

Takahashi S, Tsuda M, Takahashi Y and Asahara H: Transcriptional co-activator CBP/p300 regulates chondrocyte-specific gene expression via association with Sox9. Arthritis Res Ther. 5 (Suppl 3)(S78)2003.PubMed/NCBI View Article : Google Scholar

21 

Zhang L, Zhu K, Xu J, Chen X, Sheng C, Zhang D, Yang Y, Sun L, Zhao H, Wang X, et al: Acetyltransferases CBP/p300 control transcriptional switch of β-catenin and stat1 promoting osteoblast differentiation. J Bone Miner Res. 38:1885–1899. 2023.PubMed/NCBI View Article : Google Scholar

22 

Martire S, Nguyen J, Sundaresan A and Banaszynski LA: Differential contribution of p300 and CBP to regulatory element acetylation in mESCs. BMC Mol Cell Biol. 21(55)2020.PubMed/NCBI View Article : Google Scholar

23 

Gou P and Zhang W: Protein lysine acetyltransferase CBP/p300: A promising target for small molecules in cancer treatment. Biomed Pharmacother. 171(116130)2024.PubMed/NCBI View Article : Google Scholar

24 

Luchian I, Goriuc A, Sandu D and Covasa M: The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci. 23(1806)2022.PubMed/NCBI View Article : Google Scholar

25 

Arai Y, Choi B, Kim BJ, Park S, Park H, Moon JJ and Lee SH: Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop. Acta Biomater. 125:219–230. 2021.PubMed/NCBI View Article : Google Scholar

26 

Arai Y and Lee SH: MMP13-overexpressing mesenchymal stem cells enhance bone tissue formation in the presence of collagen hydrogel. Tissue Eng Regen Med. 20:461–471. 2023.PubMed/NCBI View Article : Google Scholar

27 

Hu Q and Ecker M: Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int J Mol Sci. 22(1742)2021.PubMed/NCBI View Article : Google Scholar

28 

Wang M, Sampson ER, Jin H, Li J, Ke QH, Im HJ and Chen D: MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther. 15(R5)2013.PubMed/NCBI View Article : Google Scholar

29 

Krishnan RH, Sadu L, Das UR, Satishkumar S, Pranav Adithya S, Saranya I, Akshaya RL and Selvamurugan N: Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation. Differentiation. 124:43–51. 2022.PubMed/NCBI View Article : Google Scholar

30 

Saranya I, Akshaya RL, Gomathi K, Mohanapriya R, He Z, Partridge NC and Selvamurugan N: Circ_ST6GAL1-mediated competing endogenous RNA network regulates TGF-β1-stimulated matrix Metalloproteinase-13 expression via Runx2 acetylation in osteoblasts. Noncoding RNA Res. 9:153–164. 2023.PubMed/NCBI View Article : Google Scholar

31 

Lee M and Partridge NC: Parathyroid hormone activation of matrix metalloproteinase-13 transcription requires the histone acetyltransferase activity of p300 and PCAF and p300-dependent acetylation of PCAF. J Biol Chem. 285:38014–38022. 2010.PubMed/NCBI View Article : Google Scholar

32 

Kolipaka R, Magesh I, Bharathy MRA, Karthik S, Saranya I and Selvamurugan N: A potential function for MicroRNA-124 in normal and pathological bone conditions. Noncoding RNA Res. 9:687–694. 2024.PubMed/NCBI View Article : Google Scholar

33 

Li D, Yang C, Yin C, Zhao F, Chen Z, Tian Y, Dang K, Jiang S, Zhang W, Zhang G and Qian A: LncRNA, important player in bone development and disease. Endocr Metab Immune Disord Drug Targets. 20:50–66. 2020.PubMed/NCBI View Article : Google Scholar

34 

Ping J, Li L, Dong Y, Wu X, Huang X, Sun B, Zeng B, Xu F and Liang W: The role of long non-coding RNAs and circular RNAs in bone regeneration: Modulating miRNAs function. J Tissue Eng Regen Med. 16:227–243. 2022.PubMed/NCBI View Article : Google Scholar

35 

Patil S, Dang K, Zhao X, Gao Y and Qian A: Role of LncRNAs and CircRNAs in bone metabolism and osteoporosis. Front Genet. 11(584118)2020.PubMed/NCBI View Article : Google Scholar

36 

Puppo M, Valluru MK and Clézardin P: MicroRNAs and their roles in breast cancer bone metastasis. Curr Osteoporos Rep. 19:256–263. 2021.PubMed/NCBI View Article : Google Scholar

37 

Zhang Y, Cao X, Li P, Fan Y, Zhang L, Ma X, Sun R, Liu Y and Li W: microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats. Life Sci. 272(119204)2021.PubMed/NCBI View Article : Google Scholar

38 

Qiu M, Zhai S, Fu Q and Liu D: Bone marrow mesenchymal stem cells-derived exosomal MicroRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Hum Gene Ther. 32:717–729. 2021.PubMed/NCBI View Article : Google Scholar

39 

Long D, Lee R, Williams P, Chan CY, Ambros V and Ding Y: Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 14:287–294. 2007.PubMed/NCBI View Article : Google Scholar

40 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009.PubMed/NCBI View Article : Google Scholar

41 

Rohini M, Arumugam B, Vairamani M and Selvamurugan N: Stimulation of ATF3 interaction with Smad4 via TGF-β1 for matrix metalloproteinase 13 gene activation in human breast cancer cells. Int J Biol Macromol. 134:954–961. 2019.PubMed/NCBI View Article : Google Scholar

42 

Malavika D, Shreya S, Raj Priya V, Rohini M, He Z, Partridge NC and Selvamurugan N: miR-873-3p targets HDAC4 to stimulate matrix metalloproteinase-13 expression upon parathyroid hormone exposure in rat osteoblasts. J Cell Physiol. 235:7996–8009. 2020.PubMed/NCBI View Article : Google Scholar

43 

Rohini M, Gokulnath M, Miranda PJ and Selvamurugan N: miR-590-3p inhibits proliferation and promotes apoptosis by targeting activating transcription factor 3 in human breast cancer cells. Biochimie. 154:10–18. 2018.PubMed/NCBI View Article : Google Scholar

44 

Komori T: Whole aspect of Runx2 functions in skeletal development. Int J Mol Sci. 23(5776)2022.PubMed/NCBI View Article : Google Scholar

45 

Franceschi RT and Xiao G: Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J Cell Biochem. 88:446–454. 2003.PubMed/NCBI View Article : Google Scholar

46 

Choi YH, Kim YJ, Jeong HM, Jin YH, Yeo CY and Lee KY: Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 281:3656–3666. 2014.PubMed/NCBI View Article : Google Scholar

47 

Kim HJ, Kim WJ and Ryoo HM: Post-translational regulations of transcriptional activity of RUNX2. Mol Cells. 43:160–167. 2020.PubMed/NCBI View Article : Google Scholar

48 

Selvamurugan N, Shimizu E, Lee M, Liu T, Li H and Partridge NC: Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation. FEBS Lett. 583:1141–1146. 2009.PubMed/NCBI View Article : Google Scholar

49 

Wang X, Manner PA, Horner A, Shum L, Tuan RS and Nuckolls GH: Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage. 12:963–973. 2004.PubMed/NCBI View Article : Google Scholar

50 

Takahashi A, de Andrés MC, Hashimoto K, Itoi E, Otero M, Goldring MB and Oreffo ROC: DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Sci Rep. 7(7771)2017.PubMed/NCBI View Article : Google Scholar

51 

Behonick DJ, Xing Z, Lieu S, Buckley JM, Lotz JC, Marcucio RS, Werb Z, Miclau T and Colnot C: Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PLoS One. 2(e1150)2007.PubMed/NCBI View Article : Google Scholar

52 

Chen Q, Yang B, Liu X, Zhang XD, Zhang L and Liu T: Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 12:4935–4948. 2022.PubMed/NCBI View Article : Google Scholar

53 

He ZX, Wei BF, Zhang X, Gong YP, Ma LY and Zhao W: Current development of CBP/p300 inhibitors in the last decade. Eur J Med Chem. 209(112861)2021.PubMed/NCBI View Article : Google Scholar

54 

Gomathi K, Akshaya N, Srinaath N, Rohini M and Selvamurugan N: Histone acetyl transferases and their epigenetic impact on bone remodeling. Int J Biol Macromol. 170:326–335. 2021.PubMed/NCBI View Article : Google Scholar

55 

Waddell AR, Huang H and Liao D: CBP/p300: Critical co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers. Cancers (Basel). 13(2872)2021.PubMed/NCBI View Article : Google Scholar

56 

Lakshmanan MD and Shaheer K: Endocrine disrupting chemicals may deregulate DNA repair through estrogen receptor mediated seizing of CBP/p300 acetylase. J Endocrinol Invest. 43:1189–1196. 2020.PubMed/NCBI View Article : Google Scholar

57 

Szymczak-Pajor I, Drzewoski J, Świderska E, Strycharz J, Gabryanczyk A, Kasznicki J, Bogdańska M and Śliwińska A: Metformin induces apoptosis in human pancreatic cancer (PC) cells accompanied by changes in the levels of histone acetyltransferases [Particularly, p300/CBP-associated factor (PCAF) protein levels]. Pharmaceuticals (Basel). 16(115)2023.PubMed/NCBI View Article : Google Scholar

58 

Gao Y, Patil S and Qian A: The role of MicroRNAs in bone metabolism and disease. Int J Mol Sci. 21(6081)2020.PubMed/NCBI View Article : Google Scholar

59 

Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott CE and Knaus P: miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int J Biochem Cell Biol. 45:696–705. 2013.PubMed/NCBI View Article : Google Scholar

60 

Bai Y, Liu Y, Jin S, Su K, Zhang H and Ma S: Expression of microRNA-27a in a rat model of osteonecrosis of the femoral head and its association with TGF-β/Smad7 signalling in osteoblasts. Int J Mol Med. 43:850–860. 2019.PubMed/NCBI View Article : Google Scholar

61 

Vimalraj S, Partridge NC and Selvamurugan N: A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol. 229:1236–1244. 2014.PubMed/NCBI View Article : Google Scholar

62 

Yin N, Zhu L, Ding L, Yuan J, Du L, Pan M, Xue F and Xiao H: MiR-135-5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells. Cell Mol Biol Lett. 24(51)2019.PubMed/NCBI View Article : Google Scholar

63 

Gan L and Denecke B: Profiling pre-MicroRNA and mature MicroRNA expressions using a single microarray and avoiding separate sample preparation. Microarrays (Basel). 2:24–33. 2013.PubMed/NCBI View Article : Google Scholar

64 

O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9(402)2018.PubMed/NCBI View Article : Google Scholar

65 

Akshaya RL, Rohini M, He Z, Partridge NC and Selvamurugan N: MiR-4638-3p regulates transforming growth factor-β1-induced activating transcription factor-3 and cell proliferation, invasion, and apoptosis in human breast cancer cells. Int J Biol Macromol. 222:1974–1982. 2022.PubMed/NCBI View Article : Google Scholar

66 

Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ and Schmittgen TD: Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA. 14:35–42. 2008.PubMed/NCBI View Article : Google Scholar

67 

Varedi K SM, Ventura AC, Merajver SD and Lin XN: Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation. PLoS One. 5(e14029)2010.PubMed/NCBI View Article : Google Scholar

68 

Zhang YJ, Gendron TF, Xu YF, Ko LW, Yen SH and Petrucelli L: Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments. Mol Neurodegener. 5(33)2010.PubMed/NCBI View Article : Google Scholar

69 

Drazic A, Myklebust LM, Ree R and Arnesen T: The world of protein acetylation. Biochim Biophys Acta. 1864:1372–1401. 2016.PubMed/NCBI View Article : Google Scholar

70 

Wang CY, Yang SF, Wang Z, Tan JM, Xing SM, Chen DC, Xu SM and Yuan W: PCAF acetylates Runx2 and promotes osteoblast differentiation. J Bone Miner Metab. 31:381–389. 2013.PubMed/NCBI View Article : Google Scholar

71 

Westendorf JJ: Transcriptional co-repressors of Runx2. J Cell Biochem. 98:54–64. 2006.PubMed/NCBI View Article : Google Scholar

72 

Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R and Westendorf JJ: Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res. 23:361–372. 2008.PubMed/NCBI View Article : Google Scholar

73 

Jin Y, Chen Z, Liu X and Zhou X: Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol. 936:117–127. 2013.PubMed/NCBI View Article : Google Scholar

74 

Ryoo HM, Kang HY, Lee SK, Lee KE and Kim JW: RUNX2 mutations in cleidocranial dysplasia patients. Oral Dis. 16:55–60. 2010.PubMed/NCBI View Article : Google Scholar

75 

Lou Y, Javed A, Hussain S, Colby J, Frederick D, Pratap J, Xie R, Gaur T, van Wijnen AJ, Jones SN, et al: A Runx2 threshold for the cleidocranial dysplasia phenotype. Hum Mol Genet. 18:556–568. 2009.PubMed/NCBI View Article : Google Scholar

76 

Xu W, Chen Q, Liu C, Chen J, Xiong F and Wu B: A novel, complex RUNX2 gene mutation causes cleidocranial dysplasia. BMC Med Genet. 18(13)2017.PubMed/NCBI View Article : Google Scholar

77 

Aiken A and Khokha R: Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice. Biochim Biophys Acta. 1803:121–132. 2010.PubMed/NCBI View Article : Google Scholar

78 

Burrage PS, Mix KS and Brinckerhoff CE: Matrix metalloproteinases: Role in arthritis. Front Biosci. 11:529–543. 2006.PubMed/NCBI View Article : Google Scholar

79 

Young DA, Barter MJ and Wilkinson DJ: Recent advances in understanding the regulation of metalloproteinases. F1000Res. 8(F1000 Faculty Rev-195)2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kolipaka R, Magesh I, Karthik S, Ashok Bharathy M, Saranya I, Preetha D and Selvamurugan N: MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts. Exp Ther Med 29: 20, 2025.
APA
Kolipaka, R., Magesh, I., Karthik, S., Ashok Bharathy, M., Saranya, I., Preetha, D., & Selvamurugan, N. (2025). MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts. Experimental and Therapeutic Medicine, 29, 20. https://doi.org/10.3892/etm.2024.12770
MLA
Kolipaka, R., Magesh, I., Karthik, S., Ashok Bharathy, M., Saranya, I., Preetha, D., Selvamurugan, N."MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts". Experimental and Therapeutic Medicine 29.1 (2025): 20.
Chicago
Kolipaka, R., Magesh, I., Karthik, S., Ashok Bharathy, M., Saranya, I., Preetha, D., Selvamurugan, N."MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts". Experimental and Therapeutic Medicine 29, no. 1 (2025): 20. https://doi.org/10.3892/etm.2024.12770
Copy and paste a formatted citation
x
Spandidos Publications style
Kolipaka R, Magesh I, Karthik S, Ashok Bharathy M, Saranya I, Preetha D and Selvamurugan N: MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts. Exp Ther Med 29: 20, 2025.
APA
Kolipaka, R., Magesh, I., Karthik, S., Ashok Bharathy, M., Saranya, I., Preetha, D., & Selvamurugan, N. (2025). MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts. Experimental and Therapeutic Medicine, 29, 20. https://doi.org/10.3892/etm.2024.12770
MLA
Kolipaka, R., Magesh, I., Karthik, S., Ashok Bharathy, M., Saranya, I., Preetha, D., Selvamurugan, N."MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts". Experimental and Therapeutic Medicine 29.1 (2025): 20.
Chicago
Kolipaka, R., Magesh, I., Karthik, S., Ashok Bharathy, M., Saranya, I., Preetha, D., Selvamurugan, N."MicroRNA‑4327 regulates TGF‑β1 stimulation of matrix metalloproteinase‑13 expression via CREB‑binding protein‑mediated Runx2 acetylation in human osteoblasts". Experimental and Therapeutic Medicine 29, no. 1 (2025): 20. https://doi.org/10.3892/etm.2024.12770
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team