|
1
|
Le Berre C, Honap S and Peyrin-Biroulet L:
Ulcerative colitis. Lancet. 402:571–584. 2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang M, Fu R, Xu D, Chen Y, Yue S, Zhang S
and Tang Y: Traditional Chinese Medicine: A promising strategy to
regulate the imbalance of bacterial flora, impaired intestinal
barrier and immune function attributed to ulcerative colitis
through intestinal microecology. J Ethnopharmacol.
318(116879)2024.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Hassan SA, Kapur N, Sheikh F, Fahad A and
Jamal S: Disease clearance in ulcerative colitis: A new therapeutic
target for the future. World J Gastroenterol. 30:1801–1809.
2024.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Le Berre C, Roda G, Nedeljkovic Protic M,
Danese S and Peyrin-Biroulet L: Modern use of 5-aminosalicylic acid
compounds for ulcerative colitis. Expert Opin Biol Ther.
20:363–378. 2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
De Deo D, Dal Buono A, Gabbiadini R,
Spaggiari P, Busacca A, Masoni B, Ferretti S, Bezzio C and Armuzzi
A: Management of proctitis in ulcerative colitis and the place of
biological therapies. Expert Opin Biol Ther. 24:443–453.
2024.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Heimann TM, Swaminathan S, Slater GI and
Kurtz RJ: Perianal fistula after ileoanal pouch in patients with
ulcerative colitis: A review of 475 patients operated on at a major
IBD center. Dis Colon Rectum. 65:76–82. 2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Hou Q, Huang J, Ayansola H, Masatoshi H
and Zhang B: Intestinal stem cells and immune cell relationships:
Potential therapeutic targets for inflammatory bowel diseases.
Front Immunol. 11(623691)2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Quandt J, Arnovitz S, Haghi L, Woehlk J,
Mohsin A, Okoreeh M, Mathur PS, Emmanuel AO, Osman A, Krishnan M,
et al: Wnt-β-catenin activation epigenetically reprograms
Treg cells in inflammatory bowel disease and dysplastic
progression. Nat Immunol. 22:471–484. 2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Swafford D, Shanmugam A, Ranganathan P,
Manoharan I, Hussein MS, Patel N, Sifuentes H, Koni PA, Prasad PD,
Thangaraju M and Manicassamy S: The Wnt-β-catenin-IL-10 signaling
axis in intestinal APCs protects mice from colitis-associated colon
cancer in response to gut microbiota. J Immunol. 205:2265–2275.
2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Chang M, Chang L, Chang HM and Chang F:
Intestinal and extraintestinal cancers associated with inflammatory
bowel disease. Clin Colorectal Cancer. 17:e29–e37. 2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Hirano T, Hirayama D, Wagatsuma K,
Yamakawa T, Yokoyama Y and Nakase H: Immunological mechanisms in
inflammation-associated colon carcinogenesis. Int J Mol Sci.
21(3062)2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Li F, Yan H, Jiang L, Zhao J, Lei X and
Ming J: Cherry polyphenol extract ameliorated dextran sodium
sulfate-induced ulcerative colitis in mice by suppressing
Wnt/β-catenin signaling pathway. Foods. 11(49)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Dong LN, Wang M, Guo J and Wang JP:
Influences of probiotics combined with sulfasalazine on rats with
ulcerative colitis via the Wnt/β-catenin signaling pathway. Eur Rev
Med Pharmacol Sci. 23:6371–6378. 2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Jang J, Jung Y, Chae S, Bae T, Kim SM,
Shim YJ, Chung SI and Yoon Y: XAV939, a Wnt/β-catenin pathway
modulator, has inhibitory effects on LPS-induced inflammatory
response. Immunopharmacol Immunotoxicol. 41:394–402.
2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Yao YY, Bian LG, Yang P, Sui Y, Li R, Chen
YL, Sun L, Ai QL, Zhong LM and Lu D: Gastrodin attenuates
proliferation and inflammatory responses in activated microglia
through Wnt/β-catenin signaling pathway. Brain Res. 1717:190–203.
2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Takahashi T: Roles of nAChR and Wnt
signaling in intestinal stem cell function and inflammation. Int
Immunopharmacol. 81(106260)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Hiramatsu Y, Fukuda A, Ogawa S, Goto N,
Ikuta K, Tsuda M, Matsumoto Y, Kimura Y, Yoshioka T, Takada Y, et
al: Arid1a is essential for intestinal stem cells through Sox9
regulation. Proc Natl Acad Sci USA. 116:1704–1713. 2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Moparthi L and Koch S: Wnt signaling in
intestinal inflammation. Differentiation. 108:24–32.
2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Parikh K, Antanaviciute A, Fawkner-Corbett
D, Jagielowicz M, Aulicino A, Lagerholm C, Davis S, Kinchen J, Chen
HH, Alham NK, et al: Colonic epithelial cell diversity in health
and inflammatory bowel disease. Nature. 567:49–55. 2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Wei P, He Q, Liu T, Zhang J, Shi K, Zhang
J and Liu S: Baitouweng decoction alleviates dextran sulfate
sodium-induced ulcerative colitis by suppressing leucine-related
mTORC1 signaling and reducing oxidative stress. J Ethnopharmacol.
304(116095)2023.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zhang H, Lang W, Li S, Xu C, Wang X, Li Y,
Zhang Z, Wu T and Feng M: Corynoline ameliorates dextran sulfate
sodium-induced colitis in mice by modulating Nrf2/NF-κB pathway.
Immunopharmacol Immunotoxicol. 45:26–34. 2023.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Distler A, Deloch L, Huang J, Dees C, Lin
NY, Palumbo-Zerr K, Beyer C, Weidemann A, Distler O, Schett G and
Distler JH: Inactivation of tankyrases reduces experimental
fibrosis by inhibiting canonical Wnt signalling. Ann Rheum Dis.
72:1575–1580. 2013.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Anders S, Pyl PT and Huber W: HTSeq-a
Python framework to work with high-throughput sequencing data.
Bioinformatics. 31:166–169. 2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Lachmann A, Clarke DJB, Torre D, Xie Z and
Ma'ayan A: Interoperable RNA-Seq analysis in the cloud. Biochim
Biophys Acta Gene Regul Mech. 1863(194521)2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: a Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140.
2010.PubMed/NCBI View Article : Google Scholar
|
|
26
|
McDermaid A, Monier B, Zhao J, Liu B and
Ma Q: Interpretation of differential gene expression results of
RNA-seq data: Review and integration. Brief Bioinform.
20:2044–2054. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Mi JX, Zhang YN, Lai Z, Li W, Zhou L and
Zhong F: Principal component analysis based on nuclear norm
minimization. Neural Netw. 118:1–16. 2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Yoo YE, Lee S, Kim W, Kim H, Chung C, Ha
S, Park J, Chung Y, Kang H and Kim E: Early chronic memantine
treatment-induced transcriptomic changes in wild-type and
Shank2-mutant mice. Front Mol Neurosci. 14(712576)2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Liang B, Jiang Y, Song S, Jing W, Yang H,
Zhao L, Chen Y, Tang Q, Li X, Zhang L, et al: ASPP2 suppresses
tumour growth and stemness characteristics in HCC by inhibiting
Warburg effect via WNT/β-catenin/HK2 axis. J Cell Mol Med.
27:659–671. 2023.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ming Z, Vining B, Bagheri-Fam S and Harley
V: SOX9 in organogenesis: Shared and unique transcriptional
functions. Cell Mol Life Sci. 79(522)2022.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kitamura S, Miyazaki Y, Shinomura Y, Kondo
S, Kanayama S and Matsuzawa Y: Peroxisome proliferator-activated
receptor gamma induces growth arrest and differentiation markers of
human colon cancer cells. Jpn J Cancer Res. 90:75–80.
1999.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Centonze M, Berenschot EJW, Serrati S,
Susarrey-Arce A and Krol S: The fast track for intestinal tumor
cell differentiation and in vitro intestinal models by inorganic
topographic surfaces. Pharmaceutics. 14(218)2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Yang C and Merlin D: Unveiling colitis: A
journey through the dextran sodium sulfate-induced model. Inflamm
Bowel Dis. 30:844–853. 2024.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Zhong Y, Wang K, Zhang Y, Yin Q, Li S,
Wang J, Zhang X, Han H and Yao K: Ocular Wnt/β-catenin pathway
inhibitor XAV939-loaded liposomes for treating alkali-burned
corneal wound and neovascularization. Front Bioeng Biotechnol.
9(753879)2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Liu J, Kang R and Tang D:
Lipopolysaccharide delivery systems in innate immunity. Trends
Immunol. 45:274–287. 2024.PubMed/NCBI View Article : Google Scholar
|
|
37
|
So T and Ishii N: The TNF-TNFR family of
co-signal molecules. Adv Exp Med Biol. 1189:53–84. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Shi J, Ma C, Hao X, Luo H and Li M:
Reserve of Wnt/β-catenin signaling alleviates mycoplasma pneumoniae
P1-C-induced Inflammation in airway epithelial cells and lungs of
mice. Mol Immunol. 153:60–74. 2023.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Chen T, Zhou R, Chen Y, Fu W, Wei X, Ma G,
Hu W and Lu C: Curcumin ameliorates IL-1β-induced apoptosis by
activating autophagy and inhibiting the NF-κB signaling pathway in
rat primary articular chondrocytes. Cell Biol Int. 45:976–988.
2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Zhou J, Wu H, Hou J, Wang J, Wang J, Li M,
Yao X, Gao J and Zhang Q: Daurisoline alleviated experimental
colitis in vivo and in vitro: Involvement of NF-κB and
Wnt/β-catenin pathway. Int Immunopharmacol.
108(108714)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Ma B and Hottiger MO: Crosstalk between
Wnt/β-catenin and NF-κB signaling pathway during inflammation.
Front Immunol. 7(378)2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Caioni G, Viscido A, d'Angelo M, Panella
G, Castelli V, Merola C, Frieri G, Latella G, Cimini A and
Benedetti E: Inflammatory bowel disease: New insights into the
interplay between environmental factors and PPARγ. Int J Mol Sci.
22(985)2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Wang N, Kong R, Han W, Bao W, Shi Y, Ye L
and Lu J: Honokiol alleviates ulcerative colitis by targeting
PPAR-γ-TLR4-NF-κB signaling and suppressing gasdermin-D-mediated
pyroptosis in vivo and in vitro. Int Immunopharmacol.
111(109058)2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Fang J, Wang H, Xue Z, Cheng Y and Zhang
X: PPARγ: The central mucus barrier coordinator in ulcerative
colitis. Inflamm Bowel Dis. 27:732–741. 2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Venkataraman B, Ojha S, Belur PD, Bhongade
B, Raj V, Collin PD, Adrian TE and Subramanya SB: Phytochemical
drug candidates for the modulation of peroxisome
proliferator-activated receptor γ in inflammatory bowel diseases.
Phytother Res. 34:1530–1549. 2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Selim MA, Mosaad SM and El-Sayed NM:
Lycopene protects against Bisphenol A induced toxicity on the
submandibular salivary glands via the upregulation of PPAR-γ and
modulation of Wnt/β-catenin signaling. Int Immunopharmacol.
112(109293)2022.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Jeon KI, Phipps RP, Sime PJ and Huxlin KR:
Antifibrotic actions of peroxisome proliferator-activated receptor
γ ligands in corneal fibroblasts are mediated by
β-catenin-regulated pathways. Am J Pathol. 187:1660–1669.
2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Oda M, Hatano Y and Sato T: Intestinal
epithelial organoids: Regeneration and maintenance of the
intestinal epithelium. Curr Opin Genet Dev.
76(101977)2022.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Dunleavy KA, Raffals LE and Camilleri M:
Intestinal barrier dysfunction in inflammatory bowel disease:
Underpinning pathogenesis and therapeutics. Dig Dis Sci.
68:4306–4320. 2023.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rath T, Atreya R and Neurath MF: A
spotlight on intestinal permeability and inflammatory bowel
diseases. Expert Rev Gastroenterol Hepatol. 17:893–902.
2023.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Li G, Zhang B, Hao J, Chu X, Wiestler M,
Cornberg M, Xu CJ, Liu X and Li Y: Identification of novel
population-specific cell subsets in chinese ulcerative colitis
patients using single-cell RNA sequencing. Cell Mol Gastroenterol
Hepatol. 12:99–117. 2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Liang SJ, Li XG and Wang XQ: Notch
signaling in mammalian intestinal stem cells: Determining cell fate
and maintaining homeostasis. Curr Stem Cell Res Ther. 14:583–590.
2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zipper L, Jassmann D, Burgmer S, Görlich B
and Reiff T: Ecdysone steroid hormone remote controls intestinal
stem cell fate decisions via the PPARγ-homolog Eip75B in
Drosophila. Elife. 9(e55795)2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Kong L, Pokatayev V, Lefkovith A, Carter
GT, Creasey EA, Krishna C, Subramanian S, Kochar B, Ashenberg O,
Lau H, et al: The landscape of immune dysregulation in Crohn's
disease revealed through single-cell transcriptomic profiling in
the ileum and colon. Immunity. 56:444–458.e5. 2023.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Smillie CS, Biton M, Ordovas-Montanes J,
Sullivan KM, Burgin G, Graham DB, Herbst RH, Rogel N, Slyper M,
Waldman J, et al: Intra- and inter-cellular rewiring of the human
colon during ulcerative colitis. Cell. 178:714–730.e22.
2019.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Zhou S and Shu Y: Transcriptional
regulation of solute carrier (SLC). Drug transporters. Drug Metab
Dispos. 50:1238–1250. 2022.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Chen L, Jiao T, Liu W, Luo Y, Wang J, Guo
X, Tong X, Lin Z, Sun C, Wang K, et al: Hepatic cytochrome P450 8B1
and cholic acid potentiate intestinal epithelial injury in colitis
by suppressing intestinal stem cell renewal. Cell Stem Cell.
29:1366–1381.e9. 2022.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kapur N, Alam MA, Hassan SA, Patel PH,
Wempe LA, Bhogoju S, Goretsky T, Kim JH, Herzog J, Ge Y, et al:
Enhanced mucosal mitochondrial function corrects dysbiosis and
OXPHOS metabolism in IBD. bioRxiv [Preprint]: 2024.03.14.584471,
2024.
|
|
59
|
Yin X, Farin HF, van Es JH, Clevers H,
Langer R and Karp JM: Niche-independent high-purity cultures of
Lgr5+ intestinal stem cells and their progeny. Nat Methods.
11:106–112. 2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Hageman JH, Heinz MC, Kretzschmar K, van
der Vaart J, Clevers H and Snippert HJG: Intestinal regeneration:
Regulation by the microenvironment. Dev Cell. 54:435–446.
2020.PubMed/NCBI View Article : Google Scholar
|