You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Gilligan T, Lin DW, Aggarwal R, Chism D, Cost N, Derweesh IH, Emamekhoo H, Feldman DR, Geynisman DM, Hancock SL, et al: Testicular cancer, version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 17:1529–1554. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Winter C and Albers P: Testicular germ cell tumors: Pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 7:43–53. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Caggiano C, Cavallo F, Giannattasio T, Cappelletti G, Rossi P, Grimaldi P, Feldman DR, Jasin M and Barchi M: Testicular germ cell tumors acquire cisplatin resistance by rebalancing the usage of DNA repair pathways. Cancers (Basel). 13(787)2021.PubMed/NCBI View Article : Google Scholar | |
|
Shen H, Shih J, Hollern DP, Wang L, Bowlby R, Tickoo SK, Thorsson V, Mungall AJ, Newton Y, Hegde AM, et al: Integrated molecular characterization of testicular germ cell tumors. Cell Rep. 23:3392–3406. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Batool A, Liu XM, Zhang CL, Hao CF, Chen SR and Liu YX: Recent advances in the regulation of testicular germ cell tumors by microRNAs. Front Biosci (Landmark Ed). 24:765–776. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Batool A, Karimi N, Wu XN, Chen SR and Liu YX: Testicular germ cell tumor: A comprehensive review. Cell Mol Life Sci. 76:1713–1727. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Fukawa T and Kanayama HO: Current knowledge of risk factors for testicular germ cell tumors. Int J Urol. 25:337–344. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Voutsadakis IA: The chemosensitivity of testicular germ cell tumors. Cell Oncol (Dordr). 37:79–94. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Brown A, Kumar S and Tchounwou PB: Cisplatin-based chemotherapy of human cancers. J Cancer Sci Ther. 11(97)2019.PubMed/NCBI | |
|
de Vries G, Rosas-Plaza X, van Vugt MATM, Gietema JA and de Jong S: Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treat Rev. 88(102054)2020.PubMed/NCBI View Article : Google Scholar | |
|
Yang Y, Yang C, Li T, Yu S, Gan T, Hu J, Cui J and Zheng X: The deubiquitinase USP38 promotes NHEJ repair through regulation of HDAC1 activity and regulates cancer cell response to genotoxic insults. Cancer Res. 80:719–731. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Hoeijmakers JH: DNA damage, aging, and cancer. N Engl J Med. 361:1475–1485. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN and Tarsounas M: Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 23:78–94. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Yang D and Wang AH: Structural studies of interactions between anticancer platinum drugs and DNA. Prog Biophys Mol Biol. 66:81–111. 1996.PubMed/NCBI View Article : Google Scholar | |
|
Eastman A: Characterization of the adducts produced in DNA by cis-diamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II). Biochemistry. 22:3927–3933. 1983.PubMed/NCBI View Article : Google Scholar | |
|
Jordan P and Carmo-Fonseca M: Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci. 57:1229–1235. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Országhová Z, Kalavska K, Mego M and Chovanec M: Overcoming chemotherapy resistance in germ cell tumors. Biomedicines. 10(972)2022.PubMed/NCBI View Article : Google Scholar | |
|
Welsh C, Day R, McGurk C, Masters JR, Wood RD and Köberle B: Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int J Cancer. 110:352–361. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Usanova S, Piée-Staffa A, Sied U, Thomale J, Schneider A, Kaina B and Köberle B: Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol Cancer. 9(248)2010.PubMed/NCBI View Article : Google Scholar | |
|
Mego M, Cierna Z, Svetlovska D, Macak D, Machalekova K, Miskovska V, Chovanec M, Usakova V, Obertova J, Babal P and Mardiak J: PARP expression in germ cell tumours. J Clin Pathol. 66:607–612. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Cavallo F, Graziani G, Antinozzi C, Feldman DR, Houldsworth J, Bosl GJ, Chaganti RS, Moynahan ME, Jasin M and Barchi M: Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to cisplatin and poly (adp-ribose) polymerase inhibition. PLoS One. 7(e51563)2012.PubMed/NCBI View Article : Google Scholar | |
|
Gutekunst M, Mueller T, Weilbacher A, Dengler MA, Bedke J, Kruck S, Oren M, Aulitzky WE and van der Kuip H: Cisplatin hypersensitivity of testicular germ cell tumors is determined by high constitutive Noxa levels mediated by Oct-4. Cancer Res. 73:1460–1469. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Koster R, Timmer-Bosscha H, Bischoff R, Gietema JA and de Jong S: Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis. 2(e148)2011.PubMed/NCBI View Article : Google Scholar | |
|
Spierings DCJ, de Vries EGE, Vellenga E and de Jong S: Loss of drug-induced activation of the CD95 apoptotic pathway in a cisplatin-resistant testicular germ cell tumor cell line. Cell Death Differ. 10:808–822. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Gutekunst M, Oren M, Weilbacher A, Dengler MA, Markwardt C, Thomale J, Aulitzky WE and van der Kuip H: p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One. 6(e19198)2011.PubMed/NCBI View Article : Google Scholar | |
|
Morsi RZ, Hage-Sleiman R, Kobeissy H and Dbaibo G: Noxa: Role in cancer pathogenesis and treatment. Curr Cancer Drug Targets. 18:914–928. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Schmidtova S, Kalavska K and Kucerova L: Molecular mechanisms of cisplatin chemoresistance and its circumventing in testicular germ cell tumors. Curr Oncol Rep. 20(88)2018.PubMed/NCBI View Article : Google Scholar | |
|
Woldu SL, Amatruda JF and Bagrodia A: Testicular germ cell tumor genomics. Curr Opin Urol. 27:41–47. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Lobo J, Alzamora MA, Guimarães R, Cantante M, Lopes P, Braga I, Maurício J, Jerónimo C and Henrique R: p53 and MDM2 expression in primary and metastatic testicular germ cell tumors: Association with clinical outcome. Andrology. 8:1233–1242. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Han MH, Park SW, Do HJ, Chung HJ, Song H and Kim JH, Kim NH, Park KH and Kim JH: Growth and differentiation factor 3 is transcriptionally regulated by OCT4 in human embryonic carcinoma cells. Biol Pharm Bull. 39:1802–1808. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Cheng CJ, Wu YC, Shu JA, Ling TY, Kuo HC, Wu JY, Chang EE, Chang SC and Huang YH: Aberrant expression and distribution of the OCT-4 transcription factor in seminomas. J Biomed Sci. 14:797–807. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Mohiuddin IS, Wei SJ and Kang MH: Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis. 1866(165432)2020.PubMed/NCBI View Article : Google Scholar | |
|
Wu YC, Ling TY, Lu SH, Kuo HC, Ho HN, Yeh SD, Shen CN and Huang YH: Chemotherapeutic sensitivity of testicular germ cell tumors under hypoxic conditions is negatively regulated by SENP1-controlled sumoylation of OCT4. Cancer Res. 72:4963–4973. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Li L, Xu M, Li X, Lv C, Zhang X, Yu H, Zhang M, Fu Y, Meng H and Zhou J: Platelet-derived growth factor-B (PDGF-B) induced by hypoxia promotes the survival of pulmonary arterial endothelial cells through the PI3K/Akt/Stat3 pathway. Cell Physiol Biochem. 35:441–451. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Pullamsetti SS, Berghausen EM, Dabral S, Tretyn A, Butrous E, Savai R, Butrous G, Dahal BK, Brandes RP, Ghofrani HA, et al: Role of Src tyrosine kinases in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol. 32:1354–1365. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Noskovičová N, Petřek M, Eickelberg O and Heinzelmann K: Platelet-derived growth factor signaling in the lung. From lung development and disease to clinical studies. Am J Respir Cell Mol Biol. 52:263–284. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Rieg AD, Suleiman S, Anker C, Verjans E, Rossaint R, Uhlig S and Martin C: PDGF-BB regulates the pulmonary vascular tone: Impact of prostaglandins, calcium, MAPK- and PI3K/AKT/mTOR signalling and actin polymerisation in pulmonary veins of guinea pigs. Respir Res. 19(120)2018.PubMed/NCBI View Article : Google Scholar | |
|
Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Zhao L and Vogt PK: Class I PI3K in oncogenic cellular transformation. Oncogene. 27:5486–5496. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC and Abraham RT: The PI3K pathway in human disease. Cell. 170:605–635. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Papa A and Pandolfi PP: The PTEN-PI3K axis in cancer. Biomolecules. 9(153)2019.PubMed/NCBI View Article : Google Scholar | |
|
Di Vizio D, Cito L, Boccia A, Chieffi P, Insabato L, Pettinato G, Motti ML, Schepis F, D'Amico W, Fabiani F, et al: Loss of the tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGCN) to invasive germ cell tumors. Oncogene. 24:1882–1894. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Juliachs M, Muñoz C, Moutinho CA, Vidal A, Condom E, Esteller M, Graupera M, Casanovas O, Germà JR, Villanueva A and Viñals F: The PDGFRβ-AKT pathway contributes to CDDP-acquired resistance in testicular germ cell tumors. Clin Cancer Res. 20:658–667. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ, Bischoff R, Gietema JA and de Jong S: Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest. 120:3594–3605. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Zhang X, Tang N, Hadden TJ and Rishi AK: Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 1813:1978–1986. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Selfe J, Goddard NC, McIntyre A, Taylor KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA, Gilbert DC and Shipley JM: IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance. J Pathol. 244:242–253. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Gilbert D, Rapley E and Shipley J: Testicular germ cell tumours: Predisposition genes and the male germ cell niche. Nat Rev Cancer. 11:278–288. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Selfe J and Shipley JM: IGF signalling in germ cells and testicular germ cell tumours: Roles and therapeutic approaches. Andrology. 7:536–544. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Schneeweiss-Gleixner M, Byrgazov K, Stefanzl G, Berger D, Eisenwort G, Lucini CB, Herndlhofer S, Preuner S, Obrova K, Pusic P, et al: CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1T315I+ clones in TKI-resistant CML. EBioMedicine. 50:111–121. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Rossini E, Bosatta V, Abate A, Fragni M, Salvi V, Basnet RM, Zizioli D, Bosisio D, Piovani G, Valcamonico F, et al: Cisplatin cytotoxicity in human testicular germ cell tumor cell lines is enhanced by the CDK4/6 inhibitor palbociclib. Clin Genitourin Cancer. 19:316–324. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Mayer F, Stoop H, Scheffer GL, Scheper R, Oosterhuis JW, Looijenga LH and Bokemeyer C: Molecular determinants of treatment response in human germ cell tumors. Clin Cancer Res. 9:767–773. 2003.PubMed/NCBI | |
|
Jacobsen C and Honecker F: Cisplatin resistance in germ cell tumours: Models and mechanisms. Andrology. 3:111–121. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Oosterhuis JW and Looijenga LHJ: Human germ cell tumours from a developmental perspective. Nat Rev Cancer. 19:522–537. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Sonnenburg D, Spinella MJ and Albany C: Epigenetic targeting of platinum resistant testicular cancer. Curr Cancer Drug Targets. 16:789–795. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Fazal Z, Singh R, Fang F, Bikorimana E, Baldwin H, Corbet A, Tomlin M, Yerby C, Adra N, Albany C, et al: Hypermethylation and global remodelling of DNA methylation is associated with acquired cisplatin resistance in testicular germ cell tumours. Epigenetics. 16:1071–1084. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Liu ZX, Li LM, Sun HL and Liu SM: Link between m6A modification and cancers. Front Bioeng Biotechnol. 6(89)2018.PubMed/NCBI View Article : Google Scholar | |
|
Miranda-Gonçalves V, Lobo J, Guimarães-Teixeira C, Barros-Silva D, Guimarães R, Cantante M, Braga I, Maurício J, Oing C, Honecker F, et al: The component of the m6A writer complex VIRMA is implicated in aggressive tumor phenotype, DNA damage response and cisplatin resistance in germ cell tumors. J Exp Clin Cancer Res. 40(268)2021.PubMed/NCBI View Article : Google Scholar | |
|
Wei J, Yin Y, Zhou J, Chen H, Peng J, Yang J and Tang Y: METTL3 potentiates resistance to cisplatin through m6A modification of TFAP2C in seminoma. J Cell Mol Med. 24:11366–11380. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Doghish AS, Moustafa HAM, Elballal MS, Sallam AM, El-Dakroury WA, Abdel Mageed SS, Elesawy AE, Abdelmaksoud NM, Shahin RK, Midan HM, et al: The potential role of miRNAs in the pathogenesis of testicular germ cell tumors-A Focus on signaling pathways interplay. Pathol Res Pract. 248(154611)2023.PubMed/NCBI View Article : Google Scholar | |
|
Sawant A, Floyd AM, Dangeti M, Lei W, Sobol RW and Patrick SM: Differential role of base excision repair proteins in mediating cisplatin cytotoxicity. DNA Repair (Amst). 51:46–59. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Cavallo F, Caggiano C, Jasin M and Barchi M: Assessing homologous recombination and interstrand cross-link repair in embryonal carcinoma testicular germ cell tumor cell lines. Methods Mol Biol. 2195:113–123. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Pannunzio NR, Watanabe G and Lieber MR: Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 293:10512–10523. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Scully R, Panday A, Elango R and Willis NA: DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Chang HHY, Pannunzio NR, Adachi N and Lieber MR: Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 18:495–506. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Sugitani N, Sivley RM, Perry KE, Capra JA and Chazin WJ: XPA: A key scaffold for human nucleotide excision repair. DNA Repair (Amst). 44:123–135. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Cierna Z, Miskovska V, Roska J, Jurkovicova D, Pulzova LB, Sestakova Z, Hurbanova L, Machalekova K, Chovanec M, Rejlekova K, et al: Increased levels of XPA might be the basis of cisplatin resistance in germ cell tumours. BMC Cancer. 20(17)2020.PubMed/NCBI View Article : Google Scholar | |
|
Clairmont CS and D'Andrea AD: REV7 directs DNA repair pathway choice. Trends Cell Biol. 31:965–978. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Dash RC and Hadden K: Protein-protein interactions in translesion synthesis. Molecules. 26(5544)2021.PubMed/NCBI View Article : Google Scholar | |
|
Shimada Y, Kato T, Sakurai Y, Watanabe H, Nonaka M, Nanaura N, Ichinoe M and Murakumo Y: Identification of the promoter region regulating the transcription of the REV7 gene. Biochem Biophys Res Commun. 662:8–17. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Sakurai Y, Ichinoe M, Yoshida K, Nakazato Y, Saito S, Satoh M, Nakada N, Sanoyama I, Umezawa A, Numata Y, et al: Inactivation of REV7 enhances chemosensitivity and overcomes acquired chemoresistance in testicular germ cell tumors. Cancer Lett. 489:100–110. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Funke K, Einsfelder U, Hansen A, Arévalo L, Schneider S, Nettersheim D, Stein V and Schorle H: Genome-scale CRISPR screen reveals neddylation to contribute to cisplatin resistance of testicular germ cell tumours. Br J Cancer. 128:2270–2282. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Hinz S, Magheli A, Weikert S, Schulze W, Krause H, Schrader M, Miller K and Kempkensteffen C: Deregulation of EZH2 expression in human spermatogenic disorders and testicular germ cell tumors. World J Urol. 28:631–635. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Yamagishi M and Uchimaru K: Targeting EZH2 in cancer therapy. Curr Opin Oncol. 29:375–381. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Sun S, Zhao S, Yang Q, Wang W, Cai E, Wen Y, Yu L, Wang Z and Cai J: Enhancer of zeste homolog 2 promotes cisplatin resistance by reducing cellular platinum accumulation. Cancer Sci. 109:1853–1864. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Dou D, Ge X, Wang X, Xu X, Zhang Z, Seng J, Cao Z, Gu Y and Han M: EZH2 contributes to cisplatin resistance in breast cancer by epigenetically suppressing miR-381 expression. Onco Targets Ther. 12:9627–9637. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Xu C, Hao K, Hu H, Sheng Z, Yan J, Wang Q and Yu L: Expression of the enhancer of zeste homolog 2 in biopsy specimen predicts chemoresistance and survival in advanced non-small cell lung cancer receiving first-line platinum-based chemotherapy. Lung Cancer. 86:268–273. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Singh R, Fazal Z, Corbet AK, Bikorimana E, Rodriguez JC, Khan EM, Shahid K, Freemantle SJ and Spinella MJ: Epigenetic remodeling through downregulation of polycomb repressive complex 2 mediates chemotherapy resistance in testicular germ cell tumors. Cancers (Basel). 11(796)2019.PubMed/NCBI View Article : Google Scholar | |
|
Samaržija I, Tomljanović M, Novak Kujundžić R and Trošelj KG: EZH2 inhibition and cisplatin as a combination anticancer therapy: An overview of preclinical studies. Cancers (Basel). 14(4761)2022.PubMed/NCBI View Article : Google Scholar | |
|
Singh R, Fazal Z, Bikorimana E, Boyd RI, Yerby C, Tomlin M, Baldwin H, Shokry D, Corbet AK, Shahid K, et al: Reciprocal epigenetic remodeling controls testicular cancer hypersensitivity to hypomethylating agents and chemotherapy. Mol Oncol. 16:683–698. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Timmerman DM, Eleveld TF, Sriram S, Dorssers LCJ, Gillis AJM, Schmidtova S, Kalavska K, van de Werken HJG, Oing C, Honecker F, et al: Chromosome 3p25.3 gain is associated with cisplatin resistance and is an independent predictor of poor outcome in male malignant germ cell tumors. J Clin Oncol. 40:3077–3087. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Yu H: Structural activation of Mad2 in the mitotic spindle checkpoint: The two-state Mad2 model versus the Mad2 template model. J Cell Biol. 173:153–157. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Henriques AC, Silva PMA, Sarmento B and Bousbaa H: The Mad2-binding protein p31comet as a potential target for human cancer therapy. Curr Cancer Drug Targets. 21:401–415. 2021.PubMed/NCBI View Article : Google Scholar | |
|
López-Saavedra A, Ramírez-Otero M, Díaz-Chávez J, Cáceres-Gutiérrez R, Justo-Garrido M, Andonegui MA, Mendoza J, Downie-Ruíz Á, Cortés-González C, Reynoso N, et al: MAD2γ, a novel MAD2 isoform, reduces mitotic arrest and is associated with resistance in testicular germ cell tumors. Cell Cycle. 15:2066–2076. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Kitayama S, Ikeda K, Sato W, Takeshita H, Kawakami S, Inoue S and Horie K: Testis-expressed gene 11 inhibits cisplatin-induced DNA damage and contributes to chemoresistance in testicular germ cell tumor. Sci Rep. 12(18423)2022.PubMed/NCBI View Article : Google Scholar | |
|
McHugh DJ, Gleeson JP and Feldman DR: Testicular cancer in 2023: Current status and recent progress. CA Cancer J Clin. 74:167–186. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Paffenholz P, Pfister D and Heidenreich A: Testis-preserving strategies in testicular germ cell tumors and germ cell neoplasia in situ. Transl Androl Urol. 9 (Suppl 1):S24–S30. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Chang MM, Pan BS, Wang CY and Huang BM: Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells. Cancer Med. 8:3949–3964. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Hu Z, Yu J, Gui G, Chen Y, Huang R, Jiang L, Kwong JSW, Li Y and Zhang L: Cisplatin for testicular germ cell tumors: A rapid review. J Evid Based Med. 9:144–151. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Chovanec M, Hanna N, Cary KC, Einhorn L and Albany C: Management of stage I testicular germ cell tumours. Nat Rev Urol. 13:663–673. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Sadek KM, AbdEllatief HY, Mahmoud SFE, Alexiou A, Papadakis M, Al-Hajeili M, Saad HM and Batiha GE: New insights on testicular cancer prevalence with novel diagnostic biomarkers and therapeutic approaches. Cancer Rep (Hoboken). 7(e2052)2024.PubMed/NCBI View Article : Google Scholar | |
|
Curreri SA, Fung C and Beard CJ: Secondary malignant neoplasms in testicular cancer survivors. Urol Oncol. 33:392–398. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Beitzen-Heineke A, Rolling CC, Seidel C, Erley J, Molwitz I, Muellerleile K, Saering D, Senftinger J, Börschel N, Engel NW, et al: Long-term cardiotoxicity in germ cell cancer survivors after platinum-based chemotherapy: Cardiac MR shows impaired systolic function and tissue alterations. Eur Radiol. 34:4102–4112. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Chovanec M, Abu Zaid M, Hanna N, El-Kouri N, Einhorn LH and Albany C: Long-term toxicity of cisplatin in germ-cell tumor survivors. Ann Oncol. 28:2670–2679. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Porcu P, Bhatia S, Sharma M and Einhorn LH: Results of treatment after relapse from high-dose chemotherapy in germ cell tumors. J Clin Oncol. 18:1181–1186. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Chieffi P, De Martino M and Esposito F: Further insights into testicular germ cell tumor oncogenesis: Potential therapeutic targets. Expert Rev Anticancer Ther. 20:189–195. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Einhorn LH, Williams SD, Chamness A, Brames MJ, Perkins SM and Abonour R: High-dose chemotherapy and stem-cell rescue for metastatic germ-cell tumors. N Engl J Med. 357:340–348. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Lorch A, Bascoul-Mollevi C, Kramar A, Einhorn L, Necchi A, Massard C, De Giorgi U, Fléchon A, Margolin K, Lotz JP, et al: Conventional-dose versus high-dose chemotherapy as first salvage treatment in male patients with metastatic germ cell tumors: Evidence from a large international database. J Clin Oncol. 29:2178–2184. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Nichols CR, Tricot G, Williams SD, van Besien K, Loehrer PJ, Roth BJ, Akard L, Hoffman R, Goulet R, Wolff SN, et al: Dose-intensive chemotherapy in refractory germ cell cancer-a phase I/II trial of high-dose carboplatin and etoposide with autologous bone marrow transplantation. J Clin Oncol. 7:932–939. 1989.PubMed/NCBI View Article : Google Scholar | |
|
Su X, Wang Z, Li L, Zheng M, Zheng C, Gong P, Zhao P, Ma Y, Tao Q and Cai L: Lipid-polymer nanoparticles encapsulating doxorubicin and 2'-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol Pharm. 10:1901–1909. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Ohtani H, Ørskov AD, Helbo AS, Gillberg L, Liu M, Zhou W, Ungerstedt J, Hellström-Lindberg E, Sun W, Liang G, et al: Activation of a subset of evolutionarily young transposable elements and innate immunity are linked to clinical responses to 5-azacytidine. Cancer Res. 80:2441–2450. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Stahl M, Kohrman N, Gore SD, Kim TK, Zeidan AM and Prebet T: Epigenetics in cancer: A hematological perspective. PLoS Genet. 12(e1006193)2016.PubMed/NCBI View Article : Google Scholar | |
|
Lobo J, Guimarães-Teixeira C, Barros-Silva D, Miranda-Gonçalves V, Camilo V, Guimarães R, Cantante M, Braga I, Maurício J, Oing C, et al: Efficacy of HDAC inhibitors belinostat and panobinostat against cisplatin-sensitive and cisplatin-resistant testicular germ cell tumors. Cancers (Basel). 12(2903)2020.PubMed/NCBI View Article : Google Scholar | |
|
Cardoso AR, Lobo J, Miranda-Gonçalves V, Henrique R and Jerónimo C: Epigenetic alterations as therapeutic targets in testicular germ cell tumours: Current and future application of ‘epidrugs’. Epigenetics. 16:353–372. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Lobo J, Cardoso AR, Miranda-Gonçalves V, Looijenga LHJ, Lopez M, Arimondo PB, Henrique R and Jerónimo C: Targeting germ cell tumors with the newly synthesized flavanone-derived compound MLo1302 efficiently reduces tumor cell viability and induces apoptosis and cell cycle arrest. Pharmaceutics. 13(73)2021.PubMed/NCBI View Article : Google Scholar | |
|
Albany C, Hever-Jardine MP, von Herrmann KM, Yim CY, Tam J, Warzecha JM, Shin L, Bock SE, Curran BS, Chaudhry AS, et al: Refractory testicular germ cell tumors are highly sensitive to the second generation DNA methylation inhibitor guadecitabine. Oncotarget. 8:2949–2959. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Oing C, Verem I, Mansour WY, Bokemeyer C, Dyshlovoy S and Honecker F: 5-Azacitidine exerts prolonged pro-apoptotic effects and overcomes cisplatin-resistance in non-seminomatous germ cell tumor cells. Int J Mol Sci. 20(21)2018.PubMed/NCBI View Article : Google Scholar | |
|
Jostes S, Nettersheim D, Fellermeyer M, Schneider S, Hafezi F, Honecker F, Schumacher V, Geyer M, Kristiansen G and Schorle H: The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med. 21:1300–1314. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhou W, Chen H, Hong X, Niu X and Lu Q: Knockdown of DNA methyltransferase-1 inhibits proliferation and derepresses tumor suppressor genes in myeloma cells. Oncol Lett. 8:2130–2134. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Tulsyan S, Aftab M, Sisodiya S, Khan A, Chikara A, Tanwar P and Hussain S: Molecular basis of epigenetic regulation in cancer diagnosis and treatment. Front Genet. 13(885635)2022.PubMed/NCBI View Article : Google Scholar | |
|
Lecomte S, Demay F, Ferrière F and Pakdel F: Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects? Int J Mol Sci. 18(1381)2017.PubMed/NCBI View Article : Google Scholar | |
|
Van Neste L, Bigley J, Toll A, Otto G, Clark J, Delrée P, Van Criekinge W and Epstein JI: A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection. BMC Urol. 12(16)2012.PubMed/NCBI View Article : Google Scholar | |
|
Jin B and Robertson KD: DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol. 754:3–29. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Stresemann C and Lyko F: Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 123:8–13. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C and MacBeth KJ: A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 5(e9001)2010.PubMed/NCBI View Article : Google Scholar | |
|
Wermann H, Stoop H, Gillis AJM, Honecker F, van Gurp RJ, Ammerpohl O, Richter J, Oosterhuis JW, Bokemeyer C and Looijenga LH: Global DNA methylation in fetal human germ cells and germ cell tumours: Association with differentiation and cisplatin resistance. J Pathol. 221:433–442. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Rüter B, Wijermans PW and Lübbert M: DNA methylation as a therapeutic target in hematologic disorders: Recent results in older patients with myelodysplasia and acute myeloid leukemia. Int J Hematol. 80:128–135. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Beyrouthy MJ, Garner KM, Hever MP, Freemantle SJ, Eastman A, Dmitrovsky E and Spinella MJ: High DNA methyltransferase 3B expression mediates 5-aza-deoxycytidine hypersensitivity in testicular germ cell tumors. Cancer Res. 69:9360–9366. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Issa JJ, Roboz G, Rizzieri D, Jabbour E, Stock W, O'Connell C, Yee K, Tibes R, Griffiths EA, Walsh K, et al: Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: A multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 16:1099–1110. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Albany C, Fazal Z, Singh R, Bikorimana E, Adra N, Hanna NH, Einhorn LH, Perkins SM, Sandusky GE, Christensen BC, et al: A phase 1 study of combined guadecitabine and cisplatin in platinum refractory germ cell cancer. Cancer Med. 10:156–163. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Kurz L, Miklyaeva A, Skowron MA, Overbeck N, Poschmann G, Becker T, Eul K, Kurz T, Schönberger S, Calaminus G, et al: ARID1A regulates transcription and the epigenetic landscape via POLE and DMAP1 while ARID1A deficiency or pharmacological inhibition sensitizes germ cell tumor cells to ATR inhibition. Cancers (Basel). 12(905)2020.PubMed/NCBI View Article : Google Scholar | |
|
Steinemann G, Dittmer A, Kuzyniak W, Hoffmann B, Schrader M, Schobert R, Biersack B, Nitzsche B and Höpfner M: Animacroxam, a novel dual-mode compound targeting histone deacetylases and cytoskeletal integrity of testicular germ cell cancer cells. Mol Cancer Ther. 16:2364–2374. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Steinemann G, Dittmer A, Schmidt J, Josuttis D, Fähling M, Biersack B, Beindorff N, Jolante Koziolek E, Schobert R, Brenner W, et al: Antitumor and antiangiogenic activity of the novel chimeric inhibitor animacroxam in testicular germ cell cancer. Mol Oncol. 13:2679–2696. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Nettersheim D, Berger D, Jostes S, Skowron M and Schorle H: Deciphering the molecular effects of romidepsin on germ cell tumours: DHRS2 is involved in cell cycle arrest but not apoptosis or induction of romidepsin effectors. J Cell Mol Med. 23:670–679. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, et al: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 146:904–917. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Burmeister A, Stephan A, Alves Avelar LA, Müller MR, Seiwert A, Höfmann S, Fischer F, Torres-Gomez H, Hoffmann MJ, Niegisch G, et al: Establishment and evaluation of dual HDAC/BET inhibitors as therapeutic options for germ cell tumors and other urological malignancies. Mol Cancer Ther. 21:1674–1688. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Lengert AVH, Pereira LDNB, Cabral ERM, Gomes INF, Jesus LM, Gonçalves MFS, Rocha AOD, Tassinari TA, Silva LSD, Laus AC, et al: Potential new therapeutic approaches for cisplatin-resistant testicular germ cell tumors. Front Biosci (Landmark Ed). 27(245)2022.PubMed/NCBI View Article : Google Scholar | |
|
Huang TT, Nijman SMB, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R and D'Andrea AD: Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol. 8:339–347. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Hasibeder A, Venkataramani V, Thelen P, Radzun HJ and Schweyer S: Phytoestrogens regulate the proliferation and expression of stem cell factors in cell lines of malignant testicular germ cell tumors. Int J Oncol. 43:1385–1394. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Kalavska K, Schmidtova S, Chovanec M and Mego M: Immunotherapy in testicular germ cell tumors. Front Oncol. 10(573977)2020.PubMed/NCBI View Article : Google Scholar | |
|
Vincent AJ, Ren S, Harris LG, Devine DJ, Samant RS, Fodstad O and Shevde LA: Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance: NUPR1 and p21 in chemoresistance. FEBS Lett. 586:3429–3434. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, Li K, Fang Y, Weng D, Weng Y, et al: Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer. 11(399)2011.PubMed/NCBI View Article : Google Scholar | |
|
Wang X, Wang Y, Gou S and Chen F: A trifunctional Pt(II) complex alleviates the NHEJ/HR-related DSBs repairs to evade cisplatin-resistance in NSCLC. Bioorg Chem. 104(104210)2020.PubMed/NCBI View Article : Google Scholar | |
|
Costa A, Forte IM, Pentimalli F, Iannuzzi CA, Alfano L, Capone F, Camerlingo R, Calabrese A, von Arx C, Benot Dominguez R, et al: Pharmacological inhibition of CDK4/6 impairs diffuse pleural mesothelioma 3D spheroid growth and reduces viability of cisplatin-resistant cells. Front Oncol. 14(1418951)2024.PubMed/NCBI View Article : Google Scholar | |
|
Romano FJ, Rossetti S, Conteduca V, Schepisi G, Cavaliere C, Di Franco R, La Mantia E, Castaldo L, Nocerino F, Ametrano G, et al: Role of DNA repair machinery and p53 in the testicular germ cell cancer: A review. Oncotarget. 7:85641–85649. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Spierings DC, de Vries EG, Stel AJ, te Rietstap N, Vellenga E and de Jong S: Low p21Waf1/Cip1 protein level sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis. Oncogene. 23:4862–4872. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Tomida J, Takata KI, Bhetawal S, Person MD, Chao HP, Tang DG and Wood RD: FAM35A associates with REV7 and modulates DNA damage responses of normal and BRCA1-defective cells. EMBO J. 37(e99543)2018.PubMed/NCBI View Article : Google Scholar | |
|
Lind GE, Skotheim RI, Fraga MF, Abeler VM, Esteller M and Lothe RA: Novel epigenetically deregulated genes in testicular cancer include homeobox genes and SCGB3A1 (HIN-1). J Pathol. 210:441–449. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Roška J, Wachsmannová L, Hurbanová L, Šestáková Z, Mueller T, Jurkovičová D and Chovanec M: Differential gene expression in cisplatin-resistant and -sensitive testicular germ cell tumor cell lines. Oncotarget. 11:4735–4753. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Schmidtova S, Dorssers LCJ, Kalavska K, Gillis AJM, Oosterhuis JW, Stoop H, Miklikova S, Kozovska Z, Burikova M, Gercakova K, et al: Napabucasin overcomes cisplatin resistance in ovarian germ cell tumor-derived cell line by inhibiting cancer stemness. Cancer Cell Int. 20(364)2020.PubMed/NCBI View Article : Google Scholar | |
|
Schmidtova S, Kalavska K, Gercakova K, Cierna Z, Miklikova S, Smolkova B, Buocikova V, Miskovska V, Durinikova E, Burikova M, et al: Disulfiram overcomes cisplatin resistance in human embryonal carcinoma cells. Cancers (Basel). 11(1224)2019.PubMed/NCBI View Article : Google Scholar | |
|
Ma H, Cao W and Ding M: MicroRNA-31 weakens cisplatin resistance of medulloblastoma cells via NF-κB and PI3K/AKT pathways. Biofactors. 46:831–838. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Luo H, Yi T, Huang D, Chen X, Li X, Wan Q, Huang H, Huang H, Wei H, Song Y, et al: circ_PTN contributes to -cisplatin resistance in glioblastoma via PI3K/AKT signaling through the miR-542-3p/PIK3R3 pathway. Mol Ther Nucleic Acids. 26:1255–1269. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Fankhauser CD, Curioni-Fontecedro A, Allmann V, Beyer J, Tischler V, Sulser T, Moch H and Bode PK: Frequent PD-L1 expression in testicular germ cell tumors. Br J Cancer. 113:411–413. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Hong W, Xue M, Jiang J, Zhang Y and Gao X: Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 39(149)2020.PubMed/NCBI View Article : Google Scholar | |
|
De S, Holvey-Bates EG, Mahen K, Willard B and Stark GR: The ubiquitin E3 ligase FBXO22 degrades PD-L1 and sensitizes cancer cells to DNA damage. Proc Natl Acad Sci USA. 118(e2112674118)2021.PubMed/NCBI View Article : Google Scholar | |
|
Liu L, Lian J, Zhang H, Tian H, Liang M, Yin M and Sun F: MicroRNA-302a sensitizes testicular embryonal carcinoma cells to cisplatin-induced cell death. J Cell Physiol. 228:2294–2304. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Wei J, Gan Y, Peng D, Jiang X, Kitazawa R, Xiang Y, Dai Y, Tang Y and Yang J: Long non-coding RNA H19 promotes TDRG1 expression and cisplatin resistance by sequestering miRNA-106b-5p in seminoma. Cancer Med. 7:6247–6257. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Huang H, Tian H, Duan Z, Cao Y, Zhang XS and Sun F: microRNA-383 impairs phosphorylation of H2AX by targeting PNUTS and inducing cell cycle arrest in testicular embryonal carcinoma cells. Cell Signal. 26:903–911. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Elesawy AE, Abulsoud AI, Moustafa HAM, Elballal MS, Sallam AM, Elazazy O, El-Dakroury WA, Abdel Mageed SS, Abdelmaksoud NM, Midan HM, et al: miRNAs orchestration of testicular germ cell tumors-particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract. 248(154612)2023.PubMed/NCBI View Article : Google Scholar | |
|
Özata DM, Li X, Lee L, Liu J, Warsito D, Hajeri P, Hultman I, Fotouhi O, Marklund S, Ährlund-Richter L, et al: Loss of miR-514a-3p regulation of PEG3 activates the NF-kappa B pathway in human testicular germ cell tumors. Cell Death Dis. 8(e2759)2017.PubMed/NCBI View Article : Google Scholar | |
|
Roška J, Lobo J, Ivovič D, Wachsmannová L, Mueller T, Henrique R, Jerónimo C, Chovanec M and Jurkovičová D: Integrated microarray-based data analysis of miRNA expression profiles: Identification of novel biomarkers of cisplatin-resistance in testicular germ cell tumours. Int J Mol Sci. 24(2495)2023.PubMed/NCBI View Article : Google Scholar |