1
|
Jiang Y, Li Y, Liu XW and Xu J: A novel
tectonic keratoplasty with femtosecond laser intrastromal lenticule
for corneal ulcer and perforation. Chin Med J (Engl).
129:1817–1821. 2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Wu F, Jin X, Xu Y and Yang Y: Treatment of
corneal perforation with lenticules from small incision lenticule
extraction surgery: A preliminary study of 6 patients. Cornea.
34:658–663. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Ferrari G and Rama P: The keratoconus
enigma: A review with emphasis on pathogenesis. Ocul Surf.
18:363–373. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Wollensak G, Spoerl E and Seiler T:
Riboflavin/ultraviolet-a-induced collagen crosslinking for the
treatment of keratoconus. Am J Ophthalmol. 135:620–627.
2003.PubMed/NCBI View Article : Google Scholar
|
5
|
Chen T, Wu CF and Yin YP: Corneal collagen
crosslinking for advanced keratoconus. Practical Blind Prevention
Techniques. 11:89–82. 2016.
|
6
|
Wollensak G, Spörl E, Reber F, Pillunat L
and Funk R: Corneal endothelial cytotoxicity of riboflavin/UVA
treatment in vitro. Ophthalmic Res. 35:324–328. 2003.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhao J, Shang J, Zhao Y, Fu D, Zhang X,
Zeng L, Xu H and Zhou X: Epikeratophakia using small-incision
lenticule extraction lenticule addition combined with corneal
crosslinking for keratoconus. J Cataract Refract Surg.
45:1191–1194. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang KN, Fu MJ, Zhao JJ, Wang YC, Wang JH,
Zhang HR and Wang R: Corneal surface mirror (stromal lens)
implantation combined with corneal collagen cross-linking for the
treatment of keratoconus: A case report. J Clin Ophthalmol.
30:552–553. 2022.
|
9
|
Sun X, Shen D, Cai J, Zhang CN and Wei W:
A case of keratoconus treated by femtosecond laser assisted
implantation of corneal allogenic matrix lens combined with corneal
collagen crosslinking. Chin J Optometry Ophthalmol Visual Sci.
24:472–474. 2022.
|
10
|
Li M, Yang D, Zhao F, Han T, Li M, Zhou X
and Ni K: Thirty-month results after the treatment of post-LASIK
ectasia with allogenic lenticule addition and corneal
cross-linking: A case report. BMC Ophthalmol.
18(294)2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Ganesh S and Brar S: Femtosecond
intrastromal lenticular implantation combined with accelerated
collagen Cross-Linking for the treatment of Keratoconus-initial
clinical result in 6 eyes. Cornea. 34:1331–1339. 2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Nubile M, Alio Del Barrio JL, Cerino L,
Salgari N, El Zarif M, Totta M, Lanzini M and Mastropasqua L: Ex
vivo lenticule customization for stromal lenticule addition
keratoplasty. Invest Ophthalmol Vis Sci. 65(9)2024.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu YC, Teo EPW, Ang HP, Seah XY, Lwin NC,
Yam GHF and Mehta JS: Biological corneal inlay for presbyopia
derived from small incision lenticule extraction (SMILE). Sci Rep.
8(1831)2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Lim CH, Riau AK, Lwin NC, Chaurasia SS,
Tan DT and Mehta JS: LASIK following small incision lenticule
extraction (SMILE) lenticule re-implantation: A feasibility study
of a novel method for treatment of presbyopia. PLoS One.
8(e83046)2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Jacob S, Kumar DA, Agarwal A, Agarwal A,
Aravind R and Saijimol AI: Preliminary evidence of successful near
vision enhancement with a new technique: PrEsbyopic allogenic
refractive lenticule (PEARL) corneal inlay using a SMILE lenticule.
J Refract Surg. 33:224–229. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Yuen LH, Chan WK, Koh J, Mehta JS and Tan
DT: SingLasik Research Group. A 10-year prospective audit of LASIK
outcomes for myopia in 37,932 eyes at a single institution in Asia.
Ophthalmology. 117:1236–1244.e1. 2010.PubMed/NCBI View Article : Google Scholar
|
17
|
Luft N, Schumann RG, Dirisamer M, Kook D,
Siedlecki J, Wertheimer C, Priglinger SG and Mayer WJ: Wound
healing, inflammation, and corneal ultrastructure after smile and
femtosecond Laser-Assisted LASIK: A human ex vivo study. J Refract
Surg. 34:393–399. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Sugar A: Ultrafast (femtosecond) laser
refractive surgery. Curr Opin Ophthalmol. 13:246–249.
2002.PubMed/NCBI View Article : Google Scholar
|
19
|
Kunert KS, Blum M, Duncker GI, Sietmann R
and Heichel J: Surface quality of human corneal lenticules after
femtosecond laser surgery for myopia comparing different laser
parameters. Graefes Arch Clin Exp Ophthalmol. 249:1417–1424.
2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhao Y, Li M, Sun L, Zhao J, Chen Y and
Zhou X: Lenticule quality after continuous curvilinear
lenticulerrhexis in SMILE evaluated with scanning electron
microscopy. J Refract Surg. 31:732–735. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Van Mellaert CE and Missotten L: On the
safety of 193-nanometer excimer laser refractive corneal surgery.
Refract Corneal Surg. 8:235–239. 1992.PubMed/NCBI
|
22
|
Yin Y, Hu T, Xiang A, Fu Y, Zhao Y, Wu X,
Wu X and Wen D: A microscopic study of the corneal stromal
lenticules extracted during femtosecond laser-assisted small
incision lenticule extraction. Exp Ther Med. 22(681)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Sumioka T, Miyamoto T, Takatsuki R, Okada
Y, Yamanaka O and Saika S: Histological analysis of a cornea
following experimental femtosecond laser ablation. Cornea. 33
(Suppl 11):S19–S24. 2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Zhao J, Miao H, Han T, Shen Y, Zhao Y, Sun
L and Zhou X: A pilot study of SMILE for hyperopia: Corneal
morphology and surface characteristics of concave lenticules in
human donor eyes. J Refract Surg. 32:713–716. 2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Vossmerbaeumer U and Jonas JB: Structure
of intracorneal femtosecond laser pulse effects in conical incision
profiles. Graefes Arch Clin Exp Ophthalmol. 246:1017–1020.
2008.PubMed/NCBI View Article : Google Scholar
|
26
|
Schaub F, Gerber F, Adler W, Enders P,
Schrittenlocher S, Heindl LM, Cursiefen C and Bachmann BO: Corneal
densitometry as a predictive diagnostic tool for visual acuity
results after descemet membrane endothelial keratoplasty. Am J
Ophthalmol. 198:124–129. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Patel SV, McLaren JW, Hodge DO and Bourne
WM: The effect of corneal light scatter on vision after penetrating
keratoplasty. Am J Ophthalmol. 146:913–919. 2008.PubMed/NCBI View Article : Google Scholar
|
28
|
Agca A, Ozgurhan EB, Yildirim Y, Cankaya
KI, Guleryuz NB, Alkin Z, Ozkaya A, Demirok A and Yilmaz OF:
Corneal backscatter analysis by in vivo confocal microscopy: Fellow
eye comparison of small incision lenticule extraction and
femtosecond laser-assisted LASIK. J Ophthalmol.
2014(265012)2014.PubMed/NCBI View Article : Google Scholar
|
29
|
Lazaridis A, Droutsas K, Sekundo W, Petrak
M and Schulze S: Corneal clarity and visual outcomes after
small-incision lenticule extraction and comparison to femtosecond
Laser-assisted in situ keratomileusis. J Ophthalmol.
2017(5646390)2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Han T, Zhao J, Shen Y, Chen Y, Tian M and
Zhou X: A Three-year observation of corneal backscatter after small
incision lenticule extraction (SMILE). J Refract Surg. 33:377–382.
2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Wei R, Li M, Yang W, Shen Y, Zhao Y, Fu D,
Shang J, Zhang J, Choi J and Zhou X: Corneal densitometry after
small incision lenticule extraction (SMILE) and femtosecond
Laser-assisted LASIK (FS-LASIK): 5-year prospective comparative
study. Front Med (Lausanne). 7(521078)2020.PubMed/NCBI View Article : Google Scholar
|