Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2025 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role and research progress of histone modification in cardiovascular diseases (Review)

  • Authors:
    • Qing Qi
    • Lin Li
    • Hao Liang
    • Yidi Zeng
  • View Affiliations / Copyright

    Affiliations: School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
    Copyright: © Qi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 132
    |
    Published online on: May 13, 2025
       https://doi.org/10.3892/etm.2025.12882
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As society evolves and lifestyles change, there has been a notable rise in the incidence of cardiovascular diseases due to a parallel rise in associated risk factors. In recent years, considerable research has been conducted on the impact of histone modifications in relation to these conditions. Processes such as acetylation, methylation and phosphorylation of histones, mediated by specific enzymes, are essential in the regulation of gene expression, which in turn influences cellular functions and the progression of diseases. Research shows that alterations in specific histone modifications are closely linked to the onset and advancement of cardiovascular conditions. For instance, significant variations in histone deacetylases and H3K27 methylation have been observed in cases of heart failure and myocardial ischemia‑reperfusion injury. In the present review, it was aimed to summarize recent findings in this area, providing a foundation for further exploration of the mechanisms by which histone modifications contribute to cardiovascular diseases.
View Figures

Figure 1

Figure 2

View References

1 

Feinberg AP: The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 378:1323–1334. 2018.PubMed/NCBI View Article : Google Scholar

2 

Zhou BR and Bai Y: Chromatin structures condensed by linker histones. Essays Biochem. 63:75–87. 2019.PubMed/NCBI View Article : Google Scholar

3 

Ke L: Single molecule study of DNA and nucleosome complexes. Journal 2022.

4 

Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49(e324)2017.PubMed/NCBI View Article : Google Scholar

5 

Wang K, Li Y, Qiang T, Chen J and Wang X: Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res. 170(105743)2021.PubMed/NCBI View Article : Google Scholar

6 

Gupta I, Varshney NK and Khan S: Emergence of members of TRAF and DUB of ubiquitin proteasome system in the regulation of hypertrophic cardiomyopathy. Front Genet. 9(336)2018.PubMed/NCBI View Article : Google Scholar

7 

He B, Zhao YC, Gao LC, Ying XY, Xu LW, Su YY, Ji QQ, Lin N and Pu J: Ubiquitin-specific protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy. Hypertension. 67:1237–1248. 2016.PubMed/NCBI View Article : Google Scholar

8 

Yan K, Ponnusamy M, Xin Y, Wang Q, Li P and Wang K: The role of K63-linked polyubiquitination in cardiac hypertrophy. J Cell Mol Med. 22:4558–4567. 2018.PubMed/NCBI View Article : Google Scholar

9 

Kim U and Lee DS: Epigenetic regulations in mammalian cells: Roles and profiling techniques. Mol Cells. 46:86–98. 2023.PubMed/NCBI View Article : Google Scholar

10 

Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011.PubMed/NCBI View Article : Google Scholar

11 

Cheng X and Wang K, Zhao Y and Wang K: Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov. 9(275)2023.PubMed/NCBI View Article : Google Scholar

12 

Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et al: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 146:1016–1028. 2011.PubMed/NCBI View Article : Google Scholar

13 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019.PubMed/NCBI View Article : Google Scholar

14 

Soler-Botija C, Gálvez-Montón C and Bayés-Genís A: Epigenetic biomarkers in cardiovascular diseases. Front Genet. 10(950)2019.PubMed/NCBI View Article : Google Scholar

15 

Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther. 8(32)2023.PubMed/NCBI View Article : Google Scholar

16 

Vlad ML, Manea SA, Iazar AG, Raicu M, Muresian H, Simionescu M and Manea A: Histone acetyltransferase-dependent pathways mediate upregulation of nadph oxidase 5 in human macrophages under inflammatory conditions: A potential mechanism of reactive oxygen species overproduction in atherosclerosis. Oxid Med Cell Longev. 2019(3201062)2019.PubMed/NCBI View Article : Google Scholar

17 

Chan SH, Hung CH, Shih JY, Chu PM, Cheng YH, Lin HC, Hsieh PL and Tsai KL: Exercise intervention attenuates hyperhomocysteinemia-induced aortic endothelial oxidative injury by regulating SIRT1 through mitigating NADPH oxidase/LOX-1 signaling. Redox Biol. 14:116–125. 2018.PubMed/NCBI View Article : Google Scholar

18 

Lijuan L: Discovery of microbially derived KLF2 small molecule up-regulation Study on the effect of anti-atherosclerosis. Journal 2023.

19 

Marks PA and Breslow R: Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 25:84–90. 2007.PubMed/NCBI View Article : Google Scholar

20 

Xu Y, Xu S, Liu P, Koroleva M, Zhang S, Si S and Jin ZG: Suberanilohydroxamic acid as a pharmacological kruppel-like factor 2 activator that represses vascular inflammation and atherosclerosis. J Am Heart Assoc. 6(e007134)2017.PubMed/NCBI View Article : Google Scholar

21 

SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, et al: KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 199:1305–1315. 2004.PubMed/NCBI View Article : Google Scholar

22 

Liu M, Kluger MS, D'Alessio A, García-Cardeña G and Pober JS: Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am J Pathol. 172:1088–1099. 2008.PubMed/NCBI View Article : Google Scholar

23 

Bu DX, Griffin G and Lichtman AH: Mechanisms for the anti-inflammatory effects of statins. Curr Opin Lipidol. 22:165–170. 2011.PubMed/NCBI View Article : Google Scholar

24 

Ridker PM and Lüscher TF: Anti-inflammatory therapies for cardiovascular disease. Eur Heart J. 35:1782–1791. 2014.PubMed/NCBI View Article : Google Scholar

25 

Sen-Banerjee S, Mir S, Lin Z, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A and Jain MK: Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation. 112:720–726. 2005.PubMed/NCBI View Article : Google Scholar

26 

Wang J, Xu X, Li P, Zhang B and Zhang J: HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis. 323:1–12. 2021.PubMed/NCBI View Article : Google Scholar

27 

Jackson AO, Zhang J, Jiang Z and Yin K: Endothelial-to-mesenchymal transition: A novel therapeutic target for cardiovascular diseases. Trends Cardiovasc Med. 27:383–393. 2017.PubMed/NCBI View Article : Google Scholar

28 

Chen L, Shang C, Wang B, Wang G, Jin Z, Yao F, Yue Z, Bai L, Wang R, Zhao S, et al: HDAC3 inhibitor suppresses endothelial-to-mesenchymal transition via modulating inflammatory response in atherosclerosis. Biochem Pharmacol. 192(114716)2021.PubMed/NCBI View Article : Google Scholar

29 

Cai L, Ma X, Huang Y, Zou Y and Chen X: Aberrant histone methylation and the effect of SUV39H1 siRNA on gastric carcinoma. Oncol Rep. 31:2593–2600. 2014.PubMed/NCBI View Article : Google Scholar

30 

Cherrier T, Suzanne S, Redel L, Calao M, Marban C, Samah B, Mukerjee R, Schwartz C, Gras G, Sawaya BE, et al: p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene. 28:3380–3389. 2009.PubMed/NCBI View Article : Google Scholar

31 

Zhang J, Chen J, Yang J, Xu C, Hu Q, Wu H, Cai W, Guo Q, Gao W, He C, et al: SUV39H1 downregulation inhibits neointimal hyperplasia after vascular injury. Atherosclerosis. 288:76–84. 2019.PubMed/NCBI View Article : Google Scholar

32 

Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Luescher TF, Paneni F and Costantino S: Epigenetic remodeling in obesity-related vascular disease. Antioxid Redox Signal. 34:1165–1199. 2021.PubMed/NCBI View Article : Google Scholar

33 

Costantino S, Paneni F and Cosentino F: Ageing, metabolism and cardiovascular disease. J Physiol. 594:2061–2073. 2016.PubMed/NCBI View Article : Google Scholar

34 

Costantino S, Paneni F, Virdis A, Hussain S, Mohammed SA, Capretti G, Akhmedov A, Dalgaard K, Chiandotto S, Pospisilik JA, et al: Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J. 40:383–391. 2019.PubMed/NCBI View Article : Google Scholar

35 

Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N, Jerald MK and Kotamraju S: Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim Biophys Acta. 1864:1115–1128. 2018.PubMed/NCBI View Article : Google Scholar

36 

Greissel A, Culmes M, Napieralski R, Wagner E, Gebhard H, Schmitt M, Zimmermann A, Eckstein HH, Zernecke A and Pelisek J: Alternation of histone and DNA methylation in human atherosclerotic carotid plaques. Thromb Haemost. 114:390–402. 2015.PubMed/NCBI View Article : Google Scholar

37 

Greissel A, Culmes M, Burgkart R, Zimmermann A, Eckstein HH, Zernecke A and Pelisek J: Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc Pathol. 25:79–86. 2016.PubMed/NCBI View Article : Google Scholar

38 

Huang Z, Song S, Zhang X, Zeng L, Sun A and Ge J: Metabolic substrates, histone modifications, and heart failure. Biochim Biophys Acta. 1866(194898)2023.PubMed/NCBI View Article : Google Scholar

39 

Jing Y, Li X, Liu Z and Li XD: Roles of negatively charged histone lysine acylations in regulating nucleosome structure and dynamics. Front Mol Biosci. 9(899013)2022.PubMed/NCBI View Article : Google Scholar

40 

Papait R and Condorelli G: Epigenetics in heart failure. Ann N Y Acad Sci. 1188:159–164. 2010.PubMed/NCBI View Article : Google Scholar

41 

Chelladurai P, Boucherat O, Stenmark K, Kracht M, Seeger W, Bauer UM, Bonnet S and Pullamsetti SS: Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br J Pharmacol. 178:54–71. 2021.PubMed/NCBI View Article : Google Scholar

42 

Yan M, Chen C, Gong W, Yin Z, Zhou L, Chaugai S and Wang DW: miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res. 105:340–352. 2015.PubMed/NCBI View Article : Google Scholar

43 

Xiao-mei L, Chang P, Shu-qi W, Huan-ting Z and Xiao-chun T: Role of histone deacetylase 2-mediated histone acetylation imbalance in myocardial remodeling induced by pressure overload. Chinese Journal of Pathophysiology. 38:584–591. 2022.

44 

Yuhang C, Rui H, Yujun S and Li S: Myocardial-specific Hdac3 deletion induces by ventricular remodeling in mice. J Army Med Univ. 40:1205–1212. 2018.(In Chinese).

45 

Wang B, Zhang LD, Zhao QF, Zhu MJ and Wang XL: Research progress of histone acetylation in prevention and treatment of heart failure and new ideas based on traditional Chinese medicine. China J Chinese Materia Medica. 48:2010–2019. 2023.PubMed/NCBI View Article : Google Scholar

46 

Mengqing D: Mechanism of peptidase inhibitory protein PI16 inhibiting angiotensin-ⅱinduced cardiac hypertrophy and cardiac fibrosis by down-regulating HDAC1. Journal 2019.

47 

Jia-pei X and Yu-hua L: Role and mechanism of histone deacetylase 3 in cardiac fibrosis in mice. Hainan Medical Journal. 32:2998–3002. 2021.

48 

Min Z, Hui T and Zewen C: The role of HDAC 8 in isoprenaline-induced myocardial fibrosis of rat. Acta Univ Med Anhui. 50:950–953. 2015.(In Chinese).

49 

Han Y, Nie J, Wang DW and Ni L: Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med. 9(931475)2022.PubMed/NCBI View Article : Google Scholar

50 

Zhang HN, Dai Y, Zhang CH, Omondi AM, Ghosh A, Khanra I, Chakraborty M, Yu XB and Liang J: Sirtuins family as a target in endothelial cell dysfunction: Implications for vascular ageing. Biogerontology. 21:495–516. 2020.PubMed/NCBI View Article : Google Scholar

51 

Wu B, You S, Qian H, Wu S, Lu S, Zhang Y, Sun Y and Zhang N: The role of SIRT2 in vascular-related and heart-related diseases: A review. J Cell Mol Med. 25:6470–6478. 2021.PubMed/NCBI View Article : Google Scholar

52 

Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, et al: Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca(2+)-ATPase in heart failure. Circ Res. 124:e63–e80. 2019.PubMed/NCBI View Article : Google Scholar

53 

Li J, Chen T, Xiao M, Li N, Wang S, Su H, Guo X, Liu H, Yan F, Yang Y, et al: Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 7:86648–86659. 2016.PubMed/NCBI View Article : Google Scholar

54 

Mehra MR, Park MH, Landzberg MJ, Lala A and Waxman AB: Right heart failure: Toward a common language. J Heart Lung Transplant. 33:123–126. 2014.PubMed/NCBI View Article : Google Scholar

55 

Tomson T, Battino D and Perucca E: The remarkable story of valproic acid. Lancet Neurol. 15(141)2016.PubMed/NCBI View Article : Google Scholar

56 

Benza RL, Adamson PB, Bhatt DL, Frick F, Olsson G, Bergh N and Dahlöf B: CS1, a controlled-release formulation of valproic acid, for the treatment of patients with pulmonary arterial hypertension: Rationale and design of a Phase 2 clinical trial. Pulm Circ. 14(e12323)2024.PubMed/NCBI View Article : Google Scholar

57 

Pang M, Li Y, Gu W, Sun Z, Wang Z and Li L: Recent advances in epigenetics of macrovascular complications in diabetes mellitus. Heart Lung Circ. 30:186–196. 2020.PubMed/NCBI View Article : Google Scholar

58 

Zang R, Tan Q, Zeng F, Wang D, Yu S and Wang Q: JMJD1A represses the development of cardiomyocyte hypertrophy by regulating the expression of catalase. Biomed Res Int. 2020(5081323)2020.PubMed/NCBI View Article : Google Scholar

59 

Liu X, Chen J, Zhang B, Liu G, Zhao H and Hu Q: KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway. Cell Signal. 64(109415)2019.PubMed/NCBI View Article : Google Scholar

60 

Yang G, Weng X, Zhao Y, Zhang X, Hu Y, Dai X, Liang P, Wang P, Ma L, Sun X, et al: The histone H3K9 methyltransferase SUV39H links SIRT1 repression to myocardial infarction. Nat Commun. 8(14941)2017.PubMed/NCBI View Article : Google Scholar

61 

Jiang H, Li Y, Xiang X, Tang Z, Liu K, Su Q, Zhang X and Li L: Chaetocin: A review of its anticancer potentials and mechanisms. Eur J Pharmacol. 910(174459)2021.PubMed/NCBI View Article : Google Scholar

62 

Schweizer S, Harms C, Lerch H, Flynn J, Hecht J, Yildirim F, Meisel A and Märschenz S: Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia. J Cereb Blood Flow Metab. 35:1640–1647. 2015.PubMed/NCBI View Article : Google Scholar

63 

Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu H, Sivendran S, Bender A, Kumar A, Sanchez R, Scott DK, Garcia-Ocaña A and Stewart AF: A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 21:383–388. 2015.PubMed/NCBI View Article : Google Scholar

64 

Hille S, Dierck F, Kuehl C, Sosna J, Adam-Klages S, Adam D, Luellmann-Rauch R, Frey N and Kuhn C: Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Cardiovasc Res. 110:381–394. 2016.PubMed/NCBI View Article : Google Scholar

65 

Lan C, Chen C, Qu S, Cao N, Luo H, Yu C, Wang N, Xue Y, Xia X, Fan C, et al: Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine. 82(104139)2022.PubMed/NCBI View Article : Google Scholar

66 

Young A, Bradley LA, Farrar E, Bilcheck HO, Tkachenko S, Saucerman JJ, Bekiranov S and Wolf MJ: Inhibition of DYRK1a enhances cardiomyocyte cycling after myocardial infarction. Circ Res. 130:1345–1361. 2022.PubMed/NCBI View Article : Google Scholar

67 

Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, et al: Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 131:893–908. 2022.PubMed/NCBI View Article : Google Scholar

68 

Dal-Pra S, Hodgkinson CP, Mirotsou M, Kirste I and Dzau VJ: Demethylation of H3K27 is essential for the induction of direct cardiac reprogramming by miR combo. Circ Res. 120:1403–1413. 2017.PubMed/NCBI View Article : Google Scholar

69 

Lee S, Lee JW and Lee SK: UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell. 22:25–37. 2012.PubMed/NCBI View Article : Google Scholar

70 

Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q, et al: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21:1050–1063. 2007.PubMed/NCBI View Article : Google Scholar

71 

Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, et al: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 341:651–654. 2013.PubMed/NCBI View Article : Google Scholar

72 

LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J Cell Mol Med. 27:1757–1760. 2023.PubMed/NCBI View Article : Google Scholar

73 

Repetti GG, Toepfer CN, Seidman JG and Seidman CE: Novel therapies for prevention and early treatment of cardiomyopathies now and in the future. Circ Res. 124:1536–1550. 2019.PubMed/NCBI View Article : Google Scholar

74 

Xu J, Liang S, Wang Q, Zheng Q, Wang M, Qian J, Yu T, Lou S, Luo W, Zhou H and Liang G: JOSD2 mediates isoprenaline-induced heart failure by deubiquitinating CaMKIIδ in cardiomyocytes. Cell Mol Life Sci. 81(18)2024.PubMed/NCBI View Article : Google Scholar

75 

Ying X, Zhao Y, Yao T, Yuan A, Xu L, Gao L, Ding S, Ding H, Pu J and He B: Novel protective role for ubiquitin-specific protease 18 in pathological cardiac remodeling. Hypertension. 68:1160–1170. 2016.PubMed/NCBI View Article : Google Scholar

76 

Liu N, Chai R, Liu B, Zhang Z, Zhang S, Zhang J, Liao Y, Cai J, Xia X, Li A, et al: Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3β phosphorylation. Biochem Biophys Res Commun. 478:1236–1241. 2016.PubMed/NCBI View Article : Google Scholar

77 

Zhao D, Zhong G, Li J, Pan J, Zhao Y, Song H, Sun W, Jin X, Li Y, Du R, et al: Targeting E3 ubiquitin ligase WWP1 prevents cardiac hypertrophy through destabilizing DVL2 via inhibition of K27-linked ubiquitination. Circulation. 144:694–711. 2021.PubMed/NCBI View Article : Google Scholar

78 

Maejima Y, Usui S, Zhai P, Takamura M, Kaneko S, Zablocki D, Yokota M, Isobe M and Sadoshima J: Muscle-specific RING finger 1 negatively regulates pathological cardiac hypertrophy through downregulation of calcineurin A. Circ Heart Fail. 7:479–490. 2014.PubMed/NCBI View Article : Google Scholar

79 

Gupta MK, McLendon PM, Gulick J, James J, Khalili K and Robbins J: UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts. Circ Res. 118:1894–1905. 2016.PubMed/NCBI View Article : Google Scholar

80 

Huang CY, Kuo CH, Pai PY, Ho TJ, Lin YM, Chen RJ, Tsai FJ, Padma VV, Kuo WW and Huang CY: Data supporting the angiotensin II activates MEL18 to deSUMOylate HSF2 for hypertension-related heart failure. Data Brief. 16:521–526. 2018.PubMed/NCBI View Article : Google Scholar

81 

Pai P, Shibu MA, Chang RL, Yang JJ, Su CC, Lai CH, Liao HE, Viswanadha VP, Kuo WW and Huang CY: ERβ targets ZAK and attenuates cellular hypertrophy via SUMO-1 modification in H9c2 cells. J Cell Biochem. 119:7855–7864. 2018.PubMed/NCBI View Article : Google Scholar

82 

Carreras D, Martinez-Moreno R, Pinsach-Abuin ML, Santafe MM, Gomà P, Brugada R, Scornik FS, Pérez GJ and Pagans S: Epigenetic changes governing scn5a expression in denervated skeletal muscle. Int J Mol Sci. 22(2755)2021.PubMed/NCBI View Article : Google Scholar

83 

Peterkin T, Gibson A and Patient R: Redundancy and evolution of GATA factor requirements in development of the myocardium. Dev Biol. 311:623–635. 2007.PubMed/NCBI View Article : Google Scholar

84 

Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C and Leiden JM: GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11:1048–1060. 1997.PubMed/NCBI View Article : Google Scholar

85 

Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V, Srivastava D, et al: Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol. 43:677–685. 2007.PubMed/NCBI View Article : Google Scholar

86 

Munshi NV, McAnally J, Bezprozvannaya S, Berry JM, Richardson JA, Hill JA and Olson EN: Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development. 136:2665–2674. 2009.PubMed/NCBI View Article : Google Scholar

87 

He A, Gu F, Hu Y, Ma Q, Ye LY, Akiyama JA, Visel A, Pennacchio LA and Pu WT: Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat Commun. 5(4907)2014.PubMed/NCBI View Article : Google Scholar

88 

He A, Kong SW, Ma Q and Pu WT: Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci USA. 108:5632–5637. 2011.PubMed/NCBI View Article : Google Scholar

89 

van den Boogaard M, Wong LY, Tessadori F, Bakker ML, Dreizehnter LK, Wakker V, Bezzina CR, Hoen PA, Bakkers J, Barnett P and Christoffels VM: Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J Clin Invest. 122:2519–2530. 2012.PubMed/NCBI View Article : Google Scholar

90 

Maron BJ: Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med. 379:655–668. 2018.PubMed/NCBI View Article : Google Scholar

91 

Spudich JA: Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflugers Arch. 471:701–717. 2019.PubMed/NCBI View Article : Google Scholar

92 

Tang X, Chen XF, Sun X, Xu P, Zhao X, Tong Y, Wang XM, Yang K, Zhu YT, Hao DL, et al: Short-Chain Enoyl-CoA hydratase mediates histone crotonylation and contributes to cardiac homeostasis. Circulation. 143:1066–1069. 2021.PubMed/NCBI View Article : Google Scholar

93 

Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, Yuan S, Chen Z, Xie G, Li W, et al: Chromodomain protein CDYL acts as a crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis. Mol Cell. 67:853–866.e855. 2017.PubMed/NCBI View Article : Google Scholar

94 

Nussbaum SS, Henry S, Yong CM, Daugherty SL, Mehran R and Poppas A: Sex-specific considerations in the presentation, diagnosis, and management of ischemic heart disease: JACC focus seminar 2/7. J Am Coll Cardiol. 79:1398–1406. 2022.PubMed/NCBI View Article : Google Scholar

95 

Li Y, Chen B, Yang X, Zhang C, Jiao Y, Li P, Liu Y, Li Z, Qiao B, Lau WB, et al: S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation. 140:751–764. 2019.PubMed/NCBI View Article : Google Scholar

96 

He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L and Xia Z: Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp Ther Med. 23(430)2022.PubMed/NCBI View Article : Google Scholar

97 

Ni L, Lin B, Zhang Y, Hu L, Lin J, Fu F, Shen M, Li C, Chen L, Yang J, et al: Histone modification landscape and the key significance of H3K27me3 in myocardial ischaemia/reperfusion injury. Sci China Life Sci. 66:1264–1279. 2023.PubMed/NCBI View Article : Google Scholar

98 

Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H and Qu S: The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int. 24(246)2024.PubMed/NCBI View Article : Google Scholar

99 

Xu Y and Fang F: Histone methylation and transcriptional regulation in cardiovascular disease. Cardiovasc Hematol Disord Drug Targets. 14:89–97. 2014.PubMed/NCBI View Article : Google Scholar

100 

Ibarrola J, Xiang RR, Sun Z, Lu Q, Hill MA and Jaffe IZ: Inhibition of the histone methyltransferase EZH2 induces vascular stiffness. Clin Sci (Lond). 138:251–268. 2024.PubMed/NCBI View Article : Google Scholar

101 

Klonou A, Chlamydas S and Piperi C: Structure, activity and function of the MLL2 (KMT2B) protein lysine methyltransferase. Life (Basel). 11(823)2021.PubMed/NCBI View Article : Google Scholar

102 

Zhao WK, Zhou YT and Wu Q: Ferroptosis: Opportunities and challenges in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2021(9929687)2021.PubMed/NCBI View Article : Google Scholar

103 

Cao Y, Luo F, Peng J, Fang Z, Liu Q and Zhou S: KMT2B-dependent RFK transcription activates the TNF-α/NOX2 pathway and enhances ferroptosis caused by myocardial ischemia-reperfusion. J Mol Cell Cardiol. 173:75–91. 2022.PubMed/NCBI View Article : Google Scholar

104 

Gao C, Liu Y, Yu Q, Yang Q, Li B, Sun L, Yan W, Cai X, Gao E, Xiong L, et al: TNF-α antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregulating adiponectin. Am J Physiol Heart Circ Physiol. 308:H1583–H1591. 2015.PubMed/NCBI View Article : Google Scholar

105 

Pei H, Song X, Peng C, Tan Y, Li Y, Li X, Ma S, Wang Q, Huang R, Yang D, et al: TNF-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radic Biol Med. 82:114–121. 2015.PubMed/NCBI View Article : Google Scholar

106 

Moe KT, Yin NO, Naylynn TM, Khairunnisa K, Wutyi MA, Gu Y, Atan MS, Wong MC, Koh TH and Wong P: Nox2 and Nox4 mediate tumour necrosis factor-α-induced ventricular remodelling in mice. J Cell Mol Med. 15:2601–2613. 2011.PubMed/NCBI View Article : Google Scholar

107 

Bravo-Sánchez E, Peña-Montes D, Sánchez-Duarte S, Saavedra-Molina A, Sánchez-Duarte E and Montoya-Pérez R: Effects of apocynin on heart muscle oxidative stress of rats with experimental diabetes: Implications for mitochondria. Antioxidants (Basel). 10(335)2021.PubMed/NCBI View Article : Google Scholar

108 

Du ZD, Yu S, Qi Y, Qu TF, He L, Wei W, Liu K and Gong SS: NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging model in rats. Neurochem Int. 124:31–40. 2019.PubMed/NCBI View Article : Google Scholar

109 

Wang C, Zhu L, Yuan W, Sun L, Xia Z, Zhang Z and Yao W: Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med. 24:6670–6679. 2020.PubMed/NCBI View Article : Google Scholar

110 

Szekeres FLM, Walum E, Wikström P and Arner A: A small molecule inhibitor of Nox2 and Nox4 improves contractile function after ischemia-reperfusion in the mouse heart. Sci Rep. 11(11970)2021.PubMed/NCBI View Article : Google Scholar

111 

Yu B, Meng F, Yang Y, Liu D and Shi K: NOX2 antisense attenuates hypoxia-induced oxidative stress and apoptosis in cardiomyocyte. Int J Med Sci. 13:646–652. 2016.PubMed/NCBI View Article : Google Scholar

112 

Song H, Feng X, Zhang M, Jin X, Xu X, Wang L, Ding X, Luo Y, Lin F, Wu Q, et al: Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes. Autophagy. 14:825–844. 2018.PubMed/NCBI View Article : Google Scholar

113 

He L, Wang Y and Luo J: Epigenetic modification mechanism of histone demethylase KDM1A in regulating cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury. PeerJ. 10(e13823)2022.PubMed/NCBI View Article : Google Scholar

114 

Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ and Hopkinson RJ: Targeting histone lysine demethylases-progress, challenges, and the future. Biochim Biophys Acta. 1839:1416–1432. 2014.PubMed/NCBI View Article : Google Scholar

115 

Li Y, Quan X, Li X, Pan Y, Zhang T, Liang Z and Wang Y: Kdm6A protects against hypoxia-induced cardiomyocyte apoptosis via H3K27me3 demethylation of Ncx gene. J Cardiovasc Transl Res. 12:488–495. 2019.PubMed/NCBI View Article : Google Scholar

116 

Lin CF, Hsu KC, HuangFu WC, Lin TE, Huang HL and Pan SL: Investigating the potential effects of selective histone deacetylase 6 inhibitor ACY1215 on infarct size in rats with cardiac ischemia-reperfusion injury. BMC Pharmacol Toxicol. 21(21)2020.PubMed/NCBI View Article : Google Scholar

117 

Chaturvedi P, Kalani A, Givvimani S, Kamat PK, Familtseva A and Tyagi SC: Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: An epigenetic mechanism. Physiol Genomics. 46:245–255. 2014.PubMed/NCBI View Article : Google Scholar

118 

Xiao Y, Huang W, Zhang J, Peng C, Xia M and Ling W: Increased plasma S-adenosylhomocysteine-accelerated atherosclerosis is associated with epigenetic regulation of endoplasmic reticulum stress in apoE-/- mice. Arterioscler Thromb Vasc Biol. 35:60–70. 2015.PubMed/NCBI View Article : Google Scholar

119 

Wang J, Lin B, Zhang Y, Ni L, Hu L, Yang J, Xu L, Shi D and Chen YH: The regulatory role of histone modification on gene expression in the early stage of myocardial infarction. Front Cardiovasc Med. 7(594325)2020.PubMed/NCBI View Article : Google Scholar

120 

Pei J, Schuldt M, Nagyova E, Gu Z, El Bouhaddani S, Yiangou L, Jansen M, Calis JJA, Dorsch LM, Blok CS, et al: Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations. Clin Epigenetics. 13(61)2021.PubMed/NCBI View Article : Google Scholar

121 

Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P and Huang H: Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct Target Ther. 7(200)2022.PubMed/NCBI View Article : Google Scholar

122 

Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, Wu CL, Sano S, Muralidharan S, Rius C, et al: Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 355:842–847. 2017.PubMed/NCBI View Article : Google Scholar

123 

Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, McConkey M, Gupta N, Gabriel S, Ardissino D, et al: Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 377:111–121. 2017.PubMed/NCBI View Article : Google Scholar

124 

Souidi A, Nakamori M, Zmojdzian M, Jagla T, Renaud Y and Jagla K: Deregulations of miR-1 and its target Multiplexin promote dilated cardiomyopathy associated with myotonic dystrophy type 1. EMBO Rep. 24(e56616)2023.PubMed/NCBI View Article : Google Scholar

125 

Kura B, Kalocayova B, Devaux Y and Bartekova M: Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection. Int J Mol Sci. 21(700)2020.PubMed/NCBI View Article : Google Scholar

126 

Lazar IM, Hoeschele I, de Morais J and Tenga MJ: Cell cycle model system for advancing cancer biomarker research. Sci Rep. 7(17989)2017.PubMed/NCBI View Article : Google Scholar

127 

Liu X, Xiang M, Tong Z, Luo F, Chen W, Liu F, Wang F, Yu RQ and Jiang JH: Activatable fluorescence probe via self-immolative intramolecular cyclization for histone deacetylase imaging in live cells and tissues. Anal Chem. 90:5534–5539. 2018.PubMed/NCBI View Article : Google Scholar

128 

Hussain S, Tulsyan S, Dar SA, Sisodiya S, Abiha U, Kumar R, Mishra BN and Haque S: Role of epigenetics in carcinogenesis: Recent advancements in anticancer therapy. Semin Cancer Biol. 83:441–451. 2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qi Q, Li L, Liang H and Zeng Y: Role and research progress of histone modification in cardiovascular diseases (Review). Exp Ther Med 30: 132, 2025.
APA
Qi, Q., Li, L., Liang, H., & Zeng, Y. (2025). Role and research progress of histone modification in cardiovascular diseases (Review). Experimental and Therapeutic Medicine, 30, 132. https://doi.org/10.3892/etm.2025.12882
MLA
Qi, Q., Li, L., Liang, H., Zeng, Y."Role and research progress of histone modification in cardiovascular diseases (Review)". Experimental and Therapeutic Medicine 30.1 (2025): 132.
Chicago
Qi, Q., Li, L., Liang, H., Zeng, Y."Role and research progress of histone modification in cardiovascular diseases (Review)". Experimental and Therapeutic Medicine 30, no. 1 (2025): 132. https://doi.org/10.3892/etm.2025.12882
Copy and paste a formatted citation
x
Spandidos Publications style
Qi Q, Li L, Liang H and Zeng Y: Role and research progress of histone modification in cardiovascular diseases (Review). Exp Ther Med 30: 132, 2025.
APA
Qi, Q., Li, L., Liang, H., & Zeng, Y. (2025). Role and research progress of histone modification in cardiovascular diseases (Review). Experimental and Therapeutic Medicine, 30, 132. https://doi.org/10.3892/etm.2025.12882
MLA
Qi, Q., Li, L., Liang, H., Zeng, Y."Role and research progress of histone modification in cardiovascular diseases (Review)". Experimental and Therapeutic Medicine 30.1 (2025): 132.
Chicago
Qi, Q., Li, L., Liang, H., Zeng, Y."Role and research progress of histone modification in cardiovascular diseases (Review)". Experimental and Therapeutic Medicine 30, no. 1 (2025): 132. https://doi.org/10.3892/etm.2025.12882
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team