
Role and research progress of histone modification in cardiovascular diseases (Review)
- Authors:
- Qing Qi
- Lin Li
- Hao Liang
- Yidi Zeng
-
Affiliations: School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China - Published online on: May 13, 2025 https://doi.org/10.3892/etm.2025.12882
- Article Number: 132
-
Copyright: © Qi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Feinberg AP: The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 378:1323–1334. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhou BR and Bai Y: Chromatin structures condensed by linker histones. Essays Biochem. 63:75–87. 2019.PubMed/NCBI View Article : Google Scholar | |
Ke L: Single molecule study of DNA and nucleosome complexes. Journal 2022. | |
Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49(e324)2017.PubMed/NCBI View Article : Google Scholar | |
Wang K, Li Y, Qiang T, Chen J and Wang X: Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res. 170(105743)2021.PubMed/NCBI View Article : Google Scholar | |
Gupta I, Varshney NK and Khan S: Emergence of members of TRAF and DUB of ubiquitin proteasome system in the regulation of hypertrophic cardiomyopathy. Front Genet. 9(336)2018.PubMed/NCBI View Article : Google Scholar | |
He B, Zhao YC, Gao LC, Ying XY, Xu LW, Su YY, Ji QQ, Lin N and Pu J: Ubiquitin-specific protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy. Hypertension. 67:1237–1248. 2016.PubMed/NCBI View Article : Google Scholar | |
Yan K, Ponnusamy M, Xin Y, Wang Q, Li P and Wang K: The role of K63-linked polyubiquitination in cardiac hypertrophy. J Cell Mol Med. 22:4558–4567. 2018.PubMed/NCBI View Article : Google Scholar | |
Kim U and Lee DS: Epigenetic regulations in mammalian cells: Roles and profiling techniques. Mol Cells. 46:86–98. 2023.PubMed/NCBI View Article : Google Scholar | |
Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011.PubMed/NCBI View Article : Google Scholar | |
Cheng X and Wang K, Zhao Y and Wang K: Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov. 9(275)2023.PubMed/NCBI View Article : Google Scholar | |
Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et al: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 146:1016–1028. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019.PubMed/NCBI View Article : Google Scholar | |
Soler-Botija C, Gálvez-Montón C and Bayés-Genís A: Epigenetic biomarkers in cardiovascular diseases. Front Genet. 10(950)2019.PubMed/NCBI View Article : Google Scholar | |
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther. 8(32)2023.PubMed/NCBI View Article : Google Scholar | |
Vlad ML, Manea SA, Iazar AG, Raicu M, Muresian H, Simionescu M and Manea A: Histone acetyltransferase-dependent pathways mediate upregulation of nadph oxidase 5 in human macrophages under inflammatory conditions: A potential mechanism of reactive oxygen species overproduction in atherosclerosis. Oxid Med Cell Longev. 2019(3201062)2019.PubMed/NCBI View Article : Google Scholar | |
Chan SH, Hung CH, Shih JY, Chu PM, Cheng YH, Lin HC, Hsieh PL and Tsai KL: Exercise intervention attenuates hyperhomocysteinemia-induced aortic endothelial oxidative injury by regulating SIRT1 through mitigating NADPH oxidase/LOX-1 signaling. Redox Biol. 14:116–125. 2018.PubMed/NCBI View Article : Google Scholar | |
Lijuan L: Discovery of microbially derived KLF2 small molecule up-regulation Study on the effect of anti-atherosclerosis. Journal 2023. | |
Marks PA and Breslow R: Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 25:84–90. 2007.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Xu S, Liu P, Koroleva M, Zhang S, Si S and Jin ZG: Suberanilohydroxamic acid as a pharmacological kruppel-like factor 2 activator that represses vascular inflammation and atherosclerosis. J Am Heart Assoc. 6(e007134)2017.PubMed/NCBI View Article : Google Scholar | |
SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, et al: KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 199:1305–1315. 2004.PubMed/NCBI View Article : Google Scholar | |
Liu M, Kluger MS, D'Alessio A, García-Cardeña G and Pober JS: Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am J Pathol. 172:1088–1099. 2008.PubMed/NCBI View Article : Google Scholar | |
Bu DX, Griffin G and Lichtman AH: Mechanisms for the anti-inflammatory effects of statins. Curr Opin Lipidol. 22:165–170. 2011.PubMed/NCBI View Article : Google Scholar | |
Ridker PM and Lüscher TF: Anti-inflammatory therapies for cardiovascular disease. Eur Heart J. 35:1782–1791. 2014.PubMed/NCBI View Article : Google Scholar | |
Sen-Banerjee S, Mir S, Lin Z, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A and Jain MK: Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation. 112:720–726. 2005.PubMed/NCBI View Article : Google Scholar | |
Wang J, Xu X, Li P, Zhang B and Zhang J: HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis. 323:1–12. 2021.PubMed/NCBI View Article : Google Scholar | |
Jackson AO, Zhang J, Jiang Z and Yin K: Endothelial-to-mesenchymal transition: A novel therapeutic target for cardiovascular diseases. Trends Cardiovasc Med. 27:383–393. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen L, Shang C, Wang B, Wang G, Jin Z, Yao F, Yue Z, Bai L, Wang R, Zhao S, et al: HDAC3 inhibitor suppresses endothelial-to-mesenchymal transition via modulating inflammatory response in atherosclerosis. Biochem Pharmacol. 192(114716)2021.PubMed/NCBI View Article : Google Scholar | |
Cai L, Ma X, Huang Y, Zou Y and Chen X: Aberrant histone methylation and the effect of SUV39H1 siRNA on gastric carcinoma. Oncol Rep. 31:2593–2600. 2014.PubMed/NCBI View Article : Google Scholar | |
Cherrier T, Suzanne S, Redel L, Calao M, Marban C, Samah B, Mukerjee R, Schwartz C, Gras G, Sawaya BE, et al: p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene. 28:3380–3389. 2009.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Chen J, Yang J, Xu C, Hu Q, Wu H, Cai W, Guo Q, Gao W, He C, et al: SUV39H1 downregulation inhibits neointimal hyperplasia after vascular injury. Atherosclerosis. 288:76–84. 2019.PubMed/NCBI View Article : Google Scholar | |
Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Luescher TF, Paneni F and Costantino S: Epigenetic remodeling in obesity-related vascular disease. Antioxid Redox Signal. 34:1165–1199. 2021.PubMed/NCBI View Article : Google Scholar | |
Costantino S, Paneni F and Cosentino F: Ageing, metabolism and cardiovascular disease. J Physiol. 594:2061–2073. 2016.PubMed/NCBI View Article : Google Scholar | |
Costantino S, Paneni F, Virdis A, Hussain S, Mohammed SA, Capretti G, Akhmedov A, Dalgaard K, Chiandotto S, Pospisilik JA, et al: Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J. 40:383–391. 2019.PubMed/NCBI View Article : Google Scholar | |
Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N, Jerald MK and Kotamraju S: Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim Biophys Acta. 1864:1115–1128. 2018.PubMed/NCBI View Article : Google Scholar | |
Greissel A, Culmes M, Napieralski R, Wagner E, Gebhard H, Schmitt M, Zimmermann A, Eckstein HH, Zernecke A and Pelisek J: Alternation of histone and DNA methylation in human atherosclerotic carotid plaques. Thromb Haemost. 114:390–402. 2015.PubMed/NCBI View Article : Google Scholar | |
Greissel A, Culmes M, Burgkart R, Zimmermann A, Eckstein HH, Zernecke A and Pelisek J: Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc Pathol. 25:79–86. 2016.PubMed/NCBI View Article : Google Scholar | |
Huang Z, Song S, Zhang X, Zeng L, Sun A and Ge J: Metabolic substrates, histone modifications, and heart failure. Biochim Biophys Acta. 1866(194898)2023.PubMed/NCBI View Article : Google Scholar | |
Jing Y, Li X, Liu Z and Li XD: Roles of negatively charged histone lysine acylations in regulating nucleosome structure and dynamics. Front Mol Biosci. 9(899013)2022.PubMed/NCBI View Article : Google Scholar | |
Papait R and Condorelli G: Epigenetics in heart failure. Ann N Y Acad Sci. 1188:159–164. 2010.PubMed/NCBI View Article : Google Scholar | |
Chelladurai P, Boucherat O, Stenmark K, Kracht M, Seeger W, Bauer UM, Bonnet S and Pullamsetti SS: Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br J Pharmacol. 178:54–71. 2021.PubMed/NCBI View Article : Google Scholar | |
Yan M, Chen C, Gong W, Yin Z, Zhou L, Chaugai S and Wang DW: miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res. 105:340–352. 2015.PubMed/NCBI View Article : Google Scholar | |
Xiao-mei L, Chang P, Shu-qi W, Huan-ting Z and Xiao-chun T: Role of histone deacetylase 2-mediated histone acetylation imbalance in myocardial remodeling induced by pressure overload. Chinese Journal of Pathophysiology. 38:584–591. 2022. | |
Yuhang C, Rui H, Yujun S and Li S: Myocardial-specific Hdac3 deletion induces by ventricular remodeling in mice. J Army Med Univ. 40:1205–1212. 2018.(In Chinese). | |
Wang B, Zhang LD, Zhao QF, Zhu MJ and Wang XL: Research progress of histone acetylation in prevention and treatment of heart failure and new ideas based on traditional Chinese medicine. China J Chinese Materia Medica. 48:2010–2019. 2023.PubMed/NCBI View Article : Google Scholar | |
Mengqing D: Mechanism of peptidase inhibitory protein PI16 inhibiting angiotensin-ⅱinduced cardiac hypertrophy and cardiac fibrosis by down-regulating HDAC1. Journal 2019. | |
Jia-pei X and Yu-hua L: Role and mechanism of histone deacetylase 3 in cardiac fibrosis in mice. Hainan Medical Journal. 32:2998–3002. 2021. | |
Min Z, Hui T and Zewen C: The role of HDAC 8 in isoprenaline-induced myocardial fibrosis of rat. Acta Univ Med Anhui. 50:950–953. 2015.(In Chinese). | |
Han Y, Nie J, Wang DW and Ni L: Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med. 9(931475)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang HN, Dai Y, Zhang CH, Omondi AM, Ghosh A, Khanra I, Chakraborty M, Yu XB and Liang J: Sirtuins family as a target in endothelial cell dysfunction: Implications for vascular ageing. Biogerontology. 21:495–516. 2020.PubMed/NCBI View Article : Google Scholar | |
Wu B, You S, Qian H, Wu S, Lu S, Zhang Y, Sun Y and Zhang N: The role of SIRT2 in vascular-related and heart-related diseases: A review. J Cell Mol Med. 25:6470–6478. 2021.PubMed/NCBI View Article : Google Scholar | |
Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, et al: Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca(2+)-ATPase in heart failure. Circ Res. 124:e63–e80. 2019.PubMed/NCBI View Article : Google Scholar | |
Li J, Chen T, Xiao M, Li N, Wang S, Su H, Guo X, Liu H, Yan F, Yang Y, et al: Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 7:86648–86659. 2016.PubMed/NCBI View Article : Google Scholar | |
Mehra MR, Park MH, Landzberg MJ, Lala A and Waxman AB: Right heart failure: Toward a common language. J Heart Lung Transplant. 33:123–126. 2014.PubMed/NCBI View Article : Google Scholar | |
Tomson T, Battino D and Perucca E: The remarkable story of valproic acid. Lancet Neurol. 15(141)2016.PubMed/NCBI View Article : Google Scholar | |
Benza RL, Adamson PB, Bhatt DL, Frick F, Olsson G, Bergh N and Dahlöf B: CS1, a controlled-release formulation of valproic acid, for the treatment of patients with pulmonary arterial hypertension: Rationale and design of a Phase 2 clinical trial. Pulm Circ. 14(e12323)2024.PubMed/NCBI View Article : Google Scholar | |
Pang M, Li Y, Gu W, Sun Z, Wang Z and Li L: Recent advances in epigenetics of macrovascular complications in diabetes mellitus. Heart Lung Circ. 30:186–196. 2020.PubMed/NCBI View Article : Google Scholar | |
Zang R, Tan Q, Zeng F, Wang D, Yu S and Wang Q: JMJD1A represses the development of cardiomyocyte hypertrophy by regulating the expression of catalase. Biomed Res Int. 2020(5081323)2020.PubMed/NCBI View Article : Google Scholar | |
Liu X, Chen J, Zhang B, Liu G, Zhao H and Hu Q: KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway. Cell Signal. 64(109415)2019.PubMed/NCBI View Article : Google Scholar | |
Yang G, Weng X, Zhao Y, Zhang X, Hu Y, Dai X, Liang P, Wang P, Ma L, Sun X, et al: The histone H3K9 methyltransferase SUV39H links SIRT1 repression to myocardial infarction. Nat Commun. 8(14941)2017.PubMed/NCBI View Article : Google Scholar | |
Jiang H, Li Y, Xiang X, Tang Z, Liu K, Su Q, Zhang X and Li L: Chaetocin: A review of its anticancer potentials and mechanisms. Eur J Pharmacol. 910(174459)2021.PubMed/NCBI View Article : Google Scholar | |
Schweizer S, Harms C, Lerch H, Flynn J, Hecht J, Yildirim F, Meisel A and Märschenz S: Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia. J Cereb Blood Flow Metab. 35:1640–1647. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu H, Sivendran S, Bender A, Kumar A, Sanchez R, Scott DK, Garcia-Ocaña A and Stewart AF: A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 21:383–388. 2015.PubMed/NCBI View Article : Google Scholar | |
Hille S, Dierck F, Kuehl C, Sosna J, Adam-Klages S, Adam D, Luellmann-Rauch R, Frey N and Kuhn C: Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Cardiovasc Res. 110:381–394. 2016.PubMed/NCBI View Article : Google Scholar | |
Lan C, Chen C, Qu S, Cao N, Luo H, Yu C, Wang N, Xue Y, Xia X, Fan C, et al: Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine. 82(104139)2022.PubMed/NCBI View Article : Google Scholar | |
Young A, Bradley LA, Farrar E, Bilcheck HO, Tkachenko S, Saucerman JJ, Bekiranov S and Wolf MJ: Inhibition of DYRK1a enhances cardiomyocyte cycling after myocardial infarction. Circ Res. 130:1345–1361. 2022.PubMed/NCBI View Article : Google Scholar | |
Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, et al: Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 131:893–908. 2022.PubMed/NCBI View Article : Google Scholar | |
Dal-Pra S, Hodgkinson CP, Mirotsou M, Kirste I and Dzau VJ: Demethylation of H3K27 is essential for the induction of direct cardiac reprogramming by miR combo. Circ Res. 120:1403–1413. 2017.PubMed/NCBI View Article : Google Scholar | |
Lee S, Lee JW and Lee SK: UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell. 22:25–37. 2012.PubMed/NCBI View Article : Google Scholar | |
Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q, et al: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21:1050–1063. 2007.PubMed/NCBI View Article : Google Scholar | |
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, et al: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 341:651–654. 2013.PubMed/NCBI View Article : Google Scholar | |
LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J Cell Mol Med. 27:1757–1760. 2023.PubMed/NCBI View Article : Google Scholar | |
Repetti GG, Toepfer CN, Seidman JG and Seidman CE: Novel therapies for prevention and early treatment of cardiomyopathies now and in the future. Circ Res. 124:1536–1550. 2019.PubMed/NCBI View Article : Google Scholar | |
Xu J, Liang S, Wang Q, Zheng Q, Wang M, Qian J, Yu T, Lou S, Luo W, Zhou H and Liang G: JOSD2 mediates isoprenaline-induced heart failure by deubiquitinating CaMKIIδ in cardiomyocytes. Cell Mol Life Sci. 81(18)2024.PubMed/NCBI View Article : Google Scholar | |
Ying X, Zhao Y, Yao T, Yuan A, Xu L, Gao L, Ding S, Ding H, Pu J and He B: Novel protective role for ubiquitin-specific protease 18 in pathological cardiac remodeling. Hypertension. 68:1160–1170. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu N, Chai R, Liu B, Zhang Z, Zhang S, Zhang J, Liao Y, Cai J, Xia X, Li A, et al: Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3β phosphorylation. Biochem Biophys Res Commun. 478:1236–1241. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhao D, Zhong G, Li J, Pan J, Zhao Y, Song H, Sun W, Jin X, Li Y, Du R, et al: Targeting E3 ubiquitin ligase WWP1 prevents cardiac hypertrophy through destabilizing DVL2 via inhibition of K27-linked ubiquitination. Circulation. 144:694–711. 2021.PubMed/NCBI View Article : Google Scholar | |
Maejima Y, Usui S, Zhai P, Takamura M, Kaneko S, Zablocki D, Yokota M, Isobe M and Sadoshima J: Muscle-specific RING finger 1 negatively regulates pathological cardiac hypertrophy through downregulation of calcineurin A. Circ Heart Fail. 7:479–490. 2014.PubMed/NCBI View Article : Google Scholar | |
Gupta MK, McLendon PM, Gulick J, James J, Khalili K and Robbins J: UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts. Circ Res. 118:1894–1905. 2016.PubMed/NCBI View Article : Google Scholar | |
Huang CY, Kuo CH, Pai PY, Ho TJ, Lin YM, Chen RJ, Tsai FJ, Padma VV, Kuo WW and Huang CY: Data supporting the angiotensin II activates MEL18 to deSUMOylate HSF2 for hypertension-related heart failure. Data Brief. 16:521–526. 2018.PubMed/NCBI View Article : Google Scholar | |
Pai P, Shibu MA, Chang RL, Yang JJ, Su CC, Lai CH, Liao HE, Viswanadha VP, Kuo WW and Huang CY: ERβ targets ZAK and attenuates cellular hypertrophy via SUMO-1 modification in H9c2 cells. J Cell Biochem. 119:7855–7864. 2018.PubMed/NCBI View Article : Google Scholar | |
Carreras D, Martinez-Moreno R, Pinsach-Abuin ML, Santafe MM, Gomà P, Brugada R, Scornik FS, Pérez GJ and Pagans S: Epigenetic changes governing scn5a expression in denervated skeletal muscle. Int J Mol Sci. 22(2755)2021.PubMed/NCBI View Article : Google Scholar | |
Peterkin T, Gibson A and Patient R: Redundancy and evolution of GATA factor requirements in development of the myocardium. Dev Biol. 311:623–635. 2007.PubMed/NCBI View Article : Google Scholar | |
Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C and Leiden JM: GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11:1048–1060. 1997.PubMed/NCBI View Article : Google Scholar | |
Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V, Srivastava D, et al: Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol. 43:677–685. 2007.PubMed/NCBI View Article : Google Scholar | |
Munshi NV, McAnally J, Bezprozvannaya S, Berry JM, Richardson JA, Hill JA and Olson EN: Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development. 136:2665–2674. 2009.PubMed/NCBI View Article : Google Scholar | |
He A, Gu F, Hu Y, Ma Q, Ye LY, Akiyama JA, Visel A, Pennacchio LA and Pu WT: Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat Commun. 5(4907)2014.PubMed/NCBI View Article : Google Scholar | |
He A, Kong SW, Ma Q and Pu WT: Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci USA. 108:5632–5637. 2011.PubMed/NCBI View Article : Google Scholar | |
van den Boogaard M, Wong LY, Tessadori F, Bakker ML, Dreizehnter LK, Wakker V, Bezzina CR, Hoen PA, Bakkers J, Barnett P and Christoffels VM: Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J Clin Invest. 122:2519–2530. 2012.PubMed/NCBI View Article : Google Scholar | |
Maron BJ: Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med. 379:655–668. 2018.PubMed/NCBI View Article : Google Scholar | |
Spudich JA: Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflugers Arch. 471:701–717. 2019.PubMed/NCBI View Article : Google Scholar | |
Tang X, Chen XF, Sun X, Xu P, Zhao X, Tong Y, Wang XM, Yang K, Zhu YT, Hao DL, et al: Short-Chain Enoyl-CoA hydratase mediates histone crotonylation and contributes to cardiac homeostasis. Circulation. 143:1066–1069. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, Yuan S, Chen Z, Xie G, Li W, et al: Chromodomain protein CDYL acts as a crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis. Mol Cell. 67:853–866.e855. 2017.PubMed/NCBI View Article : Google Scholar | |
Nussbaum SS, Henry S, Yong CM, Daugherty SL, Mehran R and Poppas A: Sex-specific considerations in the presentation, diagnosis, and management of ischemic heart disease: JACC focus seminar 2/7. J Am Coll Cardiol. 79:1398–1406. 2022.PubMed/NCBI View Article : Google Scholar | |
Li Y, Chen B, Yang X, Zhang C, Jiao Y, Li P, Liu Y, Li Z, Qiao B, Lau WB, et al: S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation. 140:751–764. 2019.PubMed/NCBI View Article : Google Scholar | |
He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L and Xia Z: Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp Ther Med. 23(430)2022.PubMed/NCBI View Article : Google Scholar | |
Ni L, Lin B, Zhang Y, Hu L, Lin J, Fu F, Shen M, Li C, Chen L, Yang J, et al: Histone modification landscape and the key significance of H3K27me3 in myocardial ischaemia/reperfusion injury. Sci China Life Sci. 66:1264–1279. 2023.PubMed/NCBI View Article : Google Scholar | |
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H and Qu S: The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int. 24(246)2024.PubMed/NCBI View Article : Google Scholar | |
Xu Y and Fang F: Histone methylation and transcriptional regulation in cardiovascular disease. Cardiovasc Hematol Disord Drug Targets. 14:89–97. 2014.PubMed/NCBI View Article : Google Scholar | |
Ibarrola J, Xiang RR, Sun Z, Lu Q, Hill MA and Jaffe IZ: Inhibition of the histone methyltransferase EZH2 induces vascular stiffness. Clin Sci (Lond). 138:251–268. 2024.PubMed/NCBI View Article : Google Scholar | |
Klonou A, Chlamydas S and Piperi C: Structure, activity and function of the MLL2 (KMT2B) protein lysine methyltransferase. Life (Basel). 11(823)2021.PubMed/NCBI View Article : Google Scholar | |
Zhao WK, Zhou YT and Wu Q: Ferroptosis: Opportunities and challenges in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2021(9929687)2021.PubMed/NCBI View Article : Google Scholar | |
Cao Y, Luo F, Peng J, Fang Z, Liu Q and Zhou S: KMT2B-dependent RFK transcription activates the TNF-α/NOX2 pathway and enhances ferroptosis caused by myocardial ischemia-reperfusion. J Mol Cell Cardiol. 173:75–91. 2022.PubMed/NCBI View Article : Google Scholar | |
Gao C, Liu Y, Yu Q, Yang Q, Li B, Sun L, Yan W, Cai X, Gao E, Xiong L, et al: TNF-α antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregulating adiponectin. Am J Physiol Heart Circ Physiol. 308:H1583–H1591. 2015.PubMed/NCBI View Article : Google Scholar | |
Pei H, Song X, Peng C, Tan Y, Li Y, Li X, Ma S, Wang Q, Huang R, Yang D, et al: TNF-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radic Biol Med. 82:114–121. 2015.PubMed/NCBI View Article : Google Scholar | |
Moe KT, Yin NO, Naylynn TM, Khairunnisa K, Wutyi MA, Gu Y, Atan MS, Wong MC, Koh TH and Wong P: Nox2 and Nox4 mediate tumour necrosis factor-α-induced ventricular remodelling in mice. J Cell Mol Med. 15:2601–2613. 2011.PubMed/NCBI View Article : Google Scholar | |
Bravo-Sánchez E, Peña-Montes D, Sánchez-Duarte S, Saavedra-Molina A, Sánchez-Duarte E and Montoya-Pérez R: Effects of apocynin on heart muscle oxidative stress of rats with experimental diabetes: Implications for mitochondria. Antioxidants (Basel). 10(335)2021.PubMed/NCBI View Article : Google Scholar | |
Du ZD, Yu S, Qi Y, Qu TF, He L, Wei W, Liu K and Gong SS: NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging model in rats. Neurochem Int. 124:31–40. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang C, Zhu L, Yuan W, Sun L, Xia Z, Zhang Z and Yao W: Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med. 24:6670–6679. 2020.PubMed/NCBI View Article : Google Scholar | |
Szekeres FLM, Walum E, Wikström P and Arner A: A small molecule inhibitor of Nox2 and Nox4 improves contractile function after ischemia-reperfusion in the mouse heart. Sci Rep. 11(11970)2021.PubMed/NCBI View Article : Google Scholar | |
Yu B, Meng F, Yang Y, Liu D and Shi K: NOX2 antisense attenuates hypoxia-induced oxidative stress and apoptosis in cardiomyocyte. Int J Med Sci. 13:646–652. 2016.PubMed/NCBI View Article : Google Scholar | |
Song H, Feng X, Zhang M, Jin X, Xu X, Wang L, Ding X, Luo Y, Lin F, Wu Q, et al: Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes. Autophagy. 14:825–844. 2018.PubMed/NCBI View Article : Google Scholar | |
He L, Wang Y and Luo J: Epigenetic modification mechanism of histone demethylase KDM1A in regulating cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury. PeerJ. 10(e13823)2022.PubMed/NCBI View Article : Google Scholar | |
Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ and Hopkinson RJ: Targeting histone lysine demethylases-progress, challenges, and the future. Biochim Biophys Acta. 1839:1416–1432. 2014.PubMed/NCBI View Article : Google Scholar | |
Li Y, Quan X, Li X, Pan Y, Zhang T, Liang Z and Wang Y: Kdm6A protects against hypoxia-induced cardiomyocyte apoptosis via H3K27me3 demethylation of Ncx gene. J Cardiovasc Transl Res. 12:488–495. 2019.PubMed/NCBI View Article : Google Scholar | |
Lin CF, Hsu KC, HuangFu WC, Lin TE, Huang HL and Pan SL: Investigating the potential effects of selective histone deacetylase 6 inhibitor ACY1215 on infarct size in rats with cardiac ischemia-reperfusion injury. BMC Pharmacol Toxicol. 21(21)2020.PubMed/NCBI View Article : Google Scholar | |
Chaturvedi P, Kalani A, Givvimani S, Kamat PK, Familtseva A and Tyagi SC: Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: An epigenetic mechanism. Physiol Genomics. 46:245–255. 2014.PubMed/NCBI View Article : Google Scholar | |
Xiao Y, Huang W, Zhang J, Peng C, Xia M and Ling W: Increased plasma S-adenosylhomocysteine-accelerated atherosclerosis is associated with epigenetic regulation of endoplasmic reticulum stress in apoE-/- mice. Arterioscler Thromb Vasc Biol. 35:60–70. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang J, Lin B, Zhang Y, Ni L, Hu L, Yang J, Xu L, Shi D and Chen YH: The regulatory role of histone modification on gene expression in the early stage of myocardial infarction. Front Cardiovasc Med. 7(594325)2020.PubMed/NCBI View Article : Google Scholar | |
Pei J, Schuldt M, Nagyova E, Gu Z, El Bouhaddani S, Yiangou L, Jansen M, Calis JJA, Dorsch LM, Blok CS, et al: Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations. Clin Epigenetics. 13(61)2021.PubMed/NCBI View Article : Google Scholar | |
Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P and Huang H: Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct Target Ther. 7(200)2022.PubMed/NCBI View Article : Google Scholar | |
Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, Wu CL, Sano S, Muralidharan S, Rius C, et al: Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 355:842–847. 2017.PubMed/NCBI View Article : Google Scholar | |
Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, McConkey M, Gupta N, Gabriel S, Ardissino D, et al: Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 377:111–121. 2017.PubMed/NCBI View Article : Google Scholar | |
Souidi A, Nakamori M, Zmojdzian M, Jagla T, Renaud Y and Jagla K: Deregulations of miR-1 and its target Multiplexin promote dilated cardiomyopathy associated with myotonic dystrophy type 1. EMBO Rep. 24(e56616)2023.PubMed/NCBI View Article : Google Scholar | |
Kura B, Kalocayova B, Devaux Y and Bartekova M: Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection. Int J Mol Sci. 21(700)2020.PubMed/NCBI View Article : Google Scholar | |
Lazar IM, Hoeschele I, de Morais J and Tenga MJ: Cell cycle model system for advancing cancer biomarker research. Sci Rep. 7(17989)2017.PubMed/NCBI View Article : Google Scholar | |
Liu X, Xiang M, Tong Z, Luo F, Chen W, Liu F, Wang F, Yu RQ and Jiang JH: Activatable fluorescence probe via self-immolative intramolecular cyclization for histone deacetylase imaging in live cells and tissues. Anal Chem. 90:5534–5539. 2018.PubMed/NCBI View Article : Google Scholar | |
Hussain S, Tulsyan S, Dar SA, Sisodiya S, Abiha U, Kumar R, Mishra BN and Haque S: Role of epigenetics in carcinogenesis: Recent advancements in anticancer therapy. Semin Cancer Biol. 83:441–451. 2022.PubMed/NCBI View Article : Google Scholar |