|
1
|
Favoriti P, Carbone G, Greco M, Pirozzi F,
Pirozzi RE and Corcione F: Worldwide burden of colorectal cancer: A
review. Updates Surg. 68:7–11. 2016.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Barberis E, Joseph S, Amede E, Clavenna
MG, La Vecchia M, Sculco M, Aspesi A, Occhipinti P, Robotti E,
Boldorini R, et al: A new method for investigating
microbiota-produced small molecules in adenomatous polyps. Anal
Chim Acta. 1179(338841)2021.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Øines M, Helsingen LM, Bretthauer M and
Emilsson L: Epidemiology and risk factors of colorectal polyps.
Best Pract Res Clin Gastroenterol. 31:419–424. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Kordahi MC, Stanaway IB, Avril M, Chac D,
Blanc MP, Ross B, Diener C, Jain S, McCleary P, Parker A, et al:
Genomic and functional characterization of a mucosal symbiont
involved in early-stage colorectal cancer. Cell Host Microbe.
29:1589–1598.e6. 2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zitvogel L, Galluzzi L, Viaud S, Vétizou
M, Daillère R, Merad M and Kroemer G: Cancer and the gut
microbiota: An unexpected link. Sci Transl Med.
7(271ps1)2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Vipperla K and O'Keefe SJ: Diet,
microbiota, and dysbiosis: A ‘recipe’ for colorectal cancer. Food
Funct. 7:1731–1740. 2016.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Wong CC and Yu J: Gut microbiota in
colorectal cancer development and therapy. Nat Rev Clin Oncol.
20:429–452. 2023.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Woo V and Alenghat T: Epigenetic
regulation by gut microbiota. Gut Microbes.
14(2022407)2022.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Baba Y, Hara Y, Toihata T, Kosumi K,
Iwatsuki M, Iwagami S, Miyamoto Y, Yoshida N, Komohara Y and Baba
H: Relationship between gut microbiome Fusobacterium nucleatum and
LINE-1 methylation level in esophageal cancer. Esophagus.
20:704–712. 2023.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Mima K, Nishihara R, Qian ZR, Cao Y,
Sukawa Y, Nowak JA, Yang J, Dou R, Masugi Y, Song M, et al:
Fusobacterium nucleatum in colorectal carcinoma tissue and patient
prognosis. Gut. 65:1973–1980. 2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Xu R, Wang Q and Li L: A genome-wide
systems analysis reveals strong link between colorectal cancer and
trimethylamine N-oxide (TMAO), a gut microbial metabolite of
dietary meat and fat. BMC Genomics 16 Suppl. 7(S4)2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Hale VL, Jeraldo P, Mundy M, Yao J, Keeney
G, Scott N, Cheek EH, Davidson J, Greene M, Martinez C, et al:
Synthesis of multi-omic data and community metabolic models reveals
insights into the role of hydrogen sulfide in colon cancer.
Methods. 149:59–68. 2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Yazici C, Wolf PG, Kim H, Cross TL,
Vermillion K, Carroll T, Augustus GJ, Mutlu E, Tussing-Humphreys L,
Braunschweig C, et al: Race-dependent association of sulfidogenic
bacteria with colorectal cancer. Gut. 66:1983–1994. 2017.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Davies J, Mayer MJ, Juge N, Narbad A and
Sayavedra L: Bacteroides thetaiotaomicron enhances H2S production
in Bilophila wadsworthia. Gut Microbes.
16(2431644)2024.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Fusco W, Lorenzo MB, Cintoni M, Porcari S,
Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado
MC, et al: Short-chain fatty-acid-producing bacteria: Key
components of the human gut microbiota. Nutrients.
15(2211)2023.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Doubeni CA, Corley DA, Quinn VP, Jensen
CD, Zauber AG, Goodman M, Johnson JR, Mehta SJ, Becerra TA, Zhao
WK, et al: Effectiveness of screening colonoscopy in reducing the
risk of death from right and left colon cancer: A large
community-based study. Gut. 67:291–298. 2018.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Coker OO, Liu C, Wu WKK, Wong SH, Jia W,
Sung JJY and Yu J: Altered gut metabolites and microbiota
interactions are implicated in colorectal carcinogenesis and can be
non-invasive diagnostic biomarkers. Microbiome.
10(35)2022.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Li Z, Deng X, Luo J, Lei Y, Jin X, Zhu J
and Lv G: Metabolomic comparison of patients with colorectal cancer
at different anticancer treatment stages. Front Oncol.
11(574318)2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Deng D, Zhao L, Song H, Wang H, Cao H, Cui
H, Zhou Y and Cui R: Microbiome analysis of gut microbiota in
patients with colorectal polyps and healthy individuals. Sci Rep.
15(7126)2025.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins
B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O and Arita M:
MS-DIAL: Data-independent MS/MS deconvolution for comprehensive
metabolome analysis. Nat Methods. 12:523–526. 2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
van den Berg RA, Hoefsloot HC, Westerhuis
JA, Smilde AK and van der Werf MJ: Centering, scaling, and
transformations: Improving the biological information content of
metabolomics data. BMC Genomics. 7(142)2006.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Eng C, Yoshino T, Ruíz-García E, Mostafa
N, Cann CG, O'Brian B, Benny A, Perez RO and Cremolini C:
Colorectal cancer. Lancet. 404:294–310. 2024.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Louis P, Hold GL and Flint HJ: The gut
microbiota, bacterial metabolites and colorectal cancer. Nat Rev
Microbiol. 12:661–672. 2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Zierer J, Jackson MA, Kastenmüller G,
Mangino M, Long T, Telenti A, Mohney RP, Small KS, Bell JT, Steves
CJ, et al: The fecal metabolome as a functional readout of the gut
microbiome. Nat Genet. 50:790–795. 2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
van der Veen JN, Kennelly JP, Wan S, Vance
JE, Vance DE and Jacobs RL: The critical role of
phosphatidylcholine and phosphatidylethanolamine metabolism in
health and disease. Biochim Biophys Acta Biomembr. 1859:1558–1572.
2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Pakiet A, Kobiela J, Stepnowski P,
Sledzinski T and Mika A: Changes in lipids composition and
metabolism in colorectal cancer: A review. Lipids Health Dis.
18(29)2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Finetti F, Travelli C, Ercoli J, Colombo
G, Buoso E and Trabalzini L: Prostaglandin E2 and cancer: Insight
into tumor progression and immunity. Biology (Basel).
9(434)2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Karpisheh V, Nikkhoo A, Hojjat-Farsangi M,
Namdar A, Azizi G, Ghalamfarsa G, Sabz G, Yousefi M, Yousefi B and
Jadidi-Niaragh F: Prostaglandin E2 as a potent therapeutic target
for treatment of colon cancer. Prostaglandins Other Lipid Mediat.
144(106338)2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Zhou Z, Sun B, Huang S, Yu D and Zhang X:
Roles of aminoacyl-tRNA synthetase-interacting multi-functional
proteins in physiology and cancer. Cell Death Dis.
11(579)2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Dodd D, Spitzer MH, Van Treuren W, Merrill
BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP,
Fischbach MA and Sonnenburg JL: A gut bacterial pathway metabolizes
aromatic amino acids into nine circulating metabolites. Nature.
551:648–652. 2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Platten M, Nollen EAA, Röhrig UF,
Fallarino F and Opitz CA: Tryptophan metabolism as a common
therapeutic target in cancer, neurodegeneration and beyond. Nat Rev
Drug Discov. 18:379–401. 2019.PubMed/NCBI View Article : Google Scholar
|