|
1
|
Serhan CN and Sulciner ML: Resolution
medicine in cancer, infection, pain and inflammation: Are we on
track to address the next Pandemic? Cancer Metastasis Rev.
42:13–17. 2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Furman D, Campisi J, Verdin E,
Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW,
Fasano A, Miller GW, et al: Chronic inflammation in the etiology of
disease across the life span. Nat Med. 25:1822–1832.
2019.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lee KE, Tu VY and Faye AS: Optimal
management of refractory Crohn's disease: Current landscape and
future direction. Clin Exp Gastroenterol. 17:75–86. 2024.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Hofman ZLM, Roodenrijs NMT, Nikiphorou E,
Kent AL, Nagy G, Welsing PMJ and van Laar JM: Difficult-to-treat
rheumatoid arthritis: What have we learned and what do we still
need to learn? Rheumatology (Oxford). 64:65–73. 2025.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Pelaia C, Giacalone A, Ippolito G, Pastore
D, Maglio A, Piazzetta GL, Lobello N, Lombardo N, Vatrella A and
Pelaia G: Difficult-to-treat and severe asthma: Can real-world
studies on effectiveness of biological treatments change the lives
of patients? Pragmat Obs Res. 15:45–51. 2024.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Bertin L, Crepaldi M, Zanconato M,
Lorenzon G, Maniero D, De Barba C, Bonazzi E, Facchin S, Scarpa M,
Ruffolo C, et al: Refractory Crohn's disease: Perspectives, unmet
needs and innovations. Clin Exp Gastroenterol. 17:261–315.
2024.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Chadda KR and Puthucheary Z: Persistent
inflammation, immunosuppression, and catabolism syndrome (PICS): A
review of definitions, potential therapies, and research
priorities. Br J Anaesth. 132:507–518. 2024.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Halpin DM, Miravitlles M, Metzdorf N and
Celli B: Impact and prevention of severe exacerbations of COPD: A
review of the evidence. Int J Chron Obstruct Pulmon Dis.
12:2891–2908. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Papi A, Brightling C, Pedersen SE and
Reddel HK: Asthma. Lancet. 391:783–800. 2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Kumari N, Dwarakanath BS, Das A and Bhatt
AN: Role of interleukin-6 in cancer progression and therapeutic
resistance. Tumour Biol. 37:11553–11572. 2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Raeber ME, Sahin D and Boyman O:
Interleukin-2-based therapies in cancer. Sci Transl Med.
14(eabo5409)2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins
JJ, Wagner ES, Gabaldon TA and Zaharoff DA: Localized
interleukin-12 for cancer immunotherapy. Front Immunol.
11(575597)2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ye C, Yano H, Workman CJ and Vignali DAA:
Interleukin-35: Structure, function and its impact on
immune-related diseases. J Interferon Cytokine Res. 41:391–406.
2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Salkeni MA and Naing A: Interleukin-10 in
cancer immunotherapy: From bench to bedside. Trends Cancer.
9:716–725. 2023.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Chen L, Fan J, Chen H, Meng Z, Chen Z,
Wang P and Liu L: The IL-8/CXCR1 axis is associated with cancer
stem cell-like properties and correlates with clinical prognosis in
human pancreatic cancer cases. Sci Rep. 4(5911)2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Ji Z, Tian W, Gao W, Zang R, Wang H and
Yang G: Cancer-associated fibroblast-derived interleukin-8 promotes
ovarian cancer cell stemness and malignancy through the
notch3-mediated signaling. Front Cell Dev Biol.
9(684505)2021.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori
G and Mumby S: New drugs under development for COPD. Minerva Med.
113:471–496. 2022.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Ghallab AM, Eissa RA and El Tayebi HM:
CXCR2 small-molecule antagonist combats chemoresistance and
eenhances immunotherapy in triple-negative breast cancer. Front
Pharmacol. 13(862125)2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME,
Teijeira Á, Oñate C, González Á, Ponz M, Schalper KA, Pérez-Gracia
JL and Melero I: Interleukin-8 in cancer pathogenesis, treatment
and follow-up. Cancer Treat Rev. 60:24–31. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Chapman RW, Minnicozzi M, Celly CS,
Phillips JE, Kung TT, Hipkin RW, Fan X, Rindgen D, Deno G, Bond R,
et al: A novel, orally active CXCR1/2 receptor antagonist,
Sch527123, inhibits neutrophil recruitment, mucus production, and
goblet cell hyperplasia in animal models of pulmonary inflammation.
J Pharmacol Exp Ther. 322:486–493. 2007.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Singh S, Sadanandam A, Nannuru KC, Varney
ML, Mayer-Ezell R, Bond R and Singh RK: Small-molecule antagonists
for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing
tumor cell proliferation, survival, and angiogenesis. Clin Cancer
Res. 15:2380–2386. 2009.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Khanam A, Trehanpati N, Riese P, Rastogi
A, Guzman CA and Sarin SK: Blockade of Neutrophil's chemokine
receptors CXCR1/2 abrogate liver damage in acute-on-chronic liver
failure. Front Immunol. 8(464)2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Baggiolini M and Clark-Lewis I:
Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett.
307:97–101. 1992.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Gonsiorek W, Fan X, Hesk D, Fossetta J,
Qiu H, Jakway J, Billah M, Dwyer M, Chao J, Deno G, et al:
Pharmacological characterization of Sch527123, a potent allosteric
CXCR1/CXCR2 antagonist. J Pharmacol Exp Ther. 322:477–485.
2007.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Fu S, Chen X, Lin HJ and Lin J: Inhibition
of interleukin 8/C-X-C chemokine receptor 1,/2 signaling reduces
malignant features in human pancreatic cancer cells. Int J Oncol.
53:349–357. 2018.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zinkernagel AS, Timmer AM, Pence MA, Locke
JB, Buchanan JT, Turner CE, Mishalian I, Sriskandan S, Hanski E and
Nizet V: The IL-8 protease SpyCEP/ScpC of group A Streptococcus
promotes resistance to neutrophil killing. Cell Host Microbe.
4:170–178. 2008.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Simpson S, Kaislasuo J, Guller S and Pal
L: Thermal stability of cytokines: A review. Cytokine.
125(154829)2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Matsushima K, Yang D and Oppenheim JJ:
Interleukin-8: An evolving chemokine. Cytokine.
153(155828)2022.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Kofanova O, Henry E, Aguilar Quesada R,
Bulla A, Navarro Linares H, Lescuyer P, Shea K, Stone M, Tybring G,
Bellora C and Betsou F: IL8 and IL16 levels indicate serum and
plasma quality. Clin Chem Lab Med. 56:1054–1062. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Shkundin A and Halaris A: IL-8 (CXCL8)
correlations with psychoneuroimmunological processes and
neuropsychiatric conditions. J Pers Med. 14(488)2024.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kunkel SL, Standiford T, Kasahara K and
Strieter RM: Interleukin-8 (IL-8): The major neutrophil chemotactic
factor in the lung. Exp Lung Res. 17:17–23. 1991.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Harada A, Sekido N, Akahoshi T, Wada T,
Mukaida N and Matsushima K: Essential involvement of interleukin-8
(IL-8) in acute inflammation. J Leukoc Biol. 56:559–564.
1994.PubMed/NCBI
|
|
34
|
Rampart M, Van Damme J, Zonnekeyn L and
Herman AG: Granulocyte chemotactic protein/interleukin-8 induces
plasma leakage and neutrophil accumulation in rabbit skin. Am J
Pathol. 135:21–25. 1989.PubMed/NCBI
|
|
35
|
Brennan FM, Zachariae CO, Chantry D,
Larsen CG, Turner M, Maini RN, Matsushima K and Feldmann M:
Detection of interleukin 8 biological activity in synovial fluids
from patients with rheumatoid arthritis and production of
interleukin 8 mRNA by isolated synovial cells. Eur J Immunol.
20:2141–2144. 1990.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Scheibenbogen C, Möhler T, Haefele J,
Hunstein W and Keilholz U: Serum interleukin-8 (IL-8) is elevated
in patients with metastatic melanoma and correlates with tumour
load. Melanoma Res. 5:179–181. 1995.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Waugh DJJ and Wilson C: The interleukin-8
pathway in cancer. Clin Cancer Res. 14:6735–6741. 2008.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Luppi F, Longo AM, de Boer WI, Rabe KF and
Hiemstra PS: Interleukin-8 stimulates cell proliferation in
non-small cell lung cancer through epidermal growth factor receptor
transactivation. Lung Cancer. 56:25–33. 2007.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Grivennikov SI, Greten FR and Karin M:
Immunity, inflammation, and cancer. Cell. 140:883–899.
2010.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Singh N, Baby D, Rajguru JP, Patil PB,
Thakkannavar SS and Pujari VB: Inflammation and cancer. Ann Afr
Med. 18:121–126. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Li X, Li J, Zhang Y and Zhang L: The role
of IL-8 in the chronic airway inflammation and its research
progress. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.
35:1144–1148. 2021.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
42
|
Ghasemi H, Ghazanfari T, Yaraee R,
Faghihzadeh S and Hassan ZM: Roles of IL-8 in ocular inflammations:
A review. Ocul Immunol Inflamm. 19:401–412. 2011.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Cheng Y, Ma XL, Wei YQ and Wei XW:
Potential roles and targeted therapy of the CXCLs/CXCR2 axis in
cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer.
1871:289–312. 2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhang J, Shao N, Yang X, Xie C, Shi Y and
Lin Y: Interleukin-8 promotes epithelial-to-mesenchymal ransition
via downregulation of mir-200 family in breast cancer cells.
Technol Cancer Res Treat: Dec 7, 2020 (Epub ahead of print). doi:
10.1177/1533033820979672.
|
|
45
|
Li XJ, Peng LX, Shao JY, Lu WH, Zhang JX,
Chen S, Chen ZY, Xiang YQ, Bao YN, Zheng FJ, et al: As an
independent unfavorable prognostic factor, IL-8 promotes metastasis
of nasopharyngeal carcinoma through induction of
epithelial-mesenchymal transition and activation of AKT signaling.
Carcinogenesis. 33:1302–1309. 2012.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Park SY, Han J, Kim JB, Yang MG, Kim YJ,
Lim HJ, An SY and Kim JH: Interleukin-8 is related to poor
chemotherapeutic response and tumourigenicity in hepatocellular
carcinoma. Eur J Cancer. 50:341–350. 2014.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Merritt WM, Lin YG, Spannuth WA, Fletcher
MS, Kamat AA, Han LY, Landen CN, Jennings N, De Geest K, Langley
RR, et al: Effect of interleukin-8 gene silencing with
liposome-encapsulated small interfering RNA on ovarian cancer cell
growth. J Natl Cancer Inst. 100:359–372. 2008.PubMed/NCBI View Article : Google Scholar
|
|
48
|
White JR, Lee JM, Young PR, Hertzberg RP,
Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold
DE and Sarau HM: Identification of a potent, selective non-peptide
CXCR2 antagonist that inhibits interleukin-8-induced neutrophil
migration. J Biol Chem. 273:10095–10098. 1998.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Li JJ, Carson KG, Trivedi BK, Yue WS, Ye
Q, Glynn RA, Miller SR, Connor DT, Roth BD, Luly JR, et al:
Synthesis and structure-activity relationship of
2-amino-3-heteroaryl-quinoxalines as non-peptide, small-molecule
antagonists for interleukin-8 receptor. Bioorg Med Chem.
11:3777–3790. 2003.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Dwyer MP, Yu Y, Chao J, Aki C, Chao J,
Biju P, Girijavallabhan V, Rindgen D, Bond R, Mayer-Ezel R, et al:
Discovery of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5-
methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}benzamide
(SCH 527123): A potent, orally bioavailable CXCR2/CXCR1 receptor
antagonist. J Med Chem. 49:7603–7606. 2006.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Russo RC, Garcia CC, Teixeira MM and
Amaral FA: The CXCL8/IL-8 chemokine family and its receptors in
inflammatory diseases. Expert Rev Clin Immunol. 10:593–619.
2014.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Sitaru S, Budke A, Bertini R and Sperandio
M: Therapeutic inhibition of CXCR1/2: Where do we stand? Intern
Emerg Med. 18:1647–1664. 2023.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Holz O, Khalilieh S, Ludwig-Sengpiel A,
Watz H, Stryszak P, Soni P, Tsai M, Sadeh J and Magnussen H:
SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced
neutrophilia in healthy subjects. Eur Respir J. 35:564–570.
2010.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Mims JW: Asthma: Definitions and
pathophysiology. Int Forum Allergy Rhinol. 5 (Suppl 1):S2–S6.
2015.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Bizzarri C, Beccari AR, Bertini R,
Cavicchia MR, Giorgini S and Allegretti M: ELR+ CXC chemokines and
their receptors (CXC chemokine receptor 1 and CXC chemokine
receptor 2) as new therapeutic targets. Pharmacol Ther.
112:139–149. 2006.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Ha H, Debnath B and Neamati N: Role of the
CXCL8-CXCR1/2 axis in cancer and inflammatory diseases.
Theranostics. 7:1543–1588. 2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Nocker RE, Schoonbrood DF, van de Graaf
EA, Hack CE, Lutter R, Jansen HM and Out TA: Interleukin-8 in
airway inflammation in patients with asthma and chronic obstructive
pulmonary disease. Int Arch Allergy Immunol. 109:183–191.
1996.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Nair P, Gaga M, Zervas E, Alagha K,
Hargreave FE, O'Byrne PM, Stryszak P, Gann L, Sadeh J and Chanez P:
Study Investigators. Safety and efficacy of a CXCR2 antagonist in
patients with severe asthma and sputum neutrophils: A randomized,
placebo-controlled clinical trial. Clin Exp Allergy. 42:1097–1103.
2012.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ordoñez CL, Shaughnessy TE, Matthay MA and
Fahy JV: Increased neutrophil numbers and IL-8 levels in airway
secretions in acute severe asthma: Clinical and biologic
significance. Am J Respir Crit Care Med. 161:1185–1190.
2000.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yan Q, Zhang X, Xie Y, Yang J, Liu C,
Zhang M, Zheng W, Lin X, Huang HT, Liu X, et al: Bronchial
epithelial transcriptomics and experimental validation reveal
asthma severity-related neutrophilc signatures and potential
treatments. Commun Biol. 7(181)2024.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Todd CM, Salter BM, Murphy DM, Watson RM,
Howie KJ, Milot J, Sadeh J, Boulet LP, O'Byrne PM and Gauvreau GM:
The effects of a CXCR1/CXCR2 antagonist on neutrophil migration in
mild atopic asthmatic subjects. Pulm Pharmacol Ther. 41:34–39.
2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Raherison C and Girodet PO: Epidemiology
of COPD. Eur Respir Rev. 18:213–221. 2009.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Kaur M and Singh D: Neutrophil chemotaxis
caused by chronic obstructive pulmonary disease alveolar
macrophages: The role of CXCL8 and the receptors CXCR1/CXCR2. J
Pharmacol Exp Ther. 347:173–180. 2013.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Demkow U and van Overveld FJ: Role of
elastases in the pathogenesis of chronic obstructive pulmonary
disease: Implications for treatment. Eur J Med Res. 15 (Suppl
2):S27–S35. 2010.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kim S and Nadel JA: Role of neutrophils in
mucus hypersecretion in COPD and implications for therapy. Treat
Respir Med. 3:147–159. 2004.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Arai N, Kondo M, Izumo T, Tamaoki J and
Nagai A: Inhibition of neutrophil elastase-induced goblet cell
metaplasia by tiotropium in mice. Eur Respir J. 35:1164–1171.
2010.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Voynow JA, Fischer BM, Malarkey DE, Burch
LH, Wong T, Longphre M, Ho SB and Foster WM: Neutrophil elastase
induces mucus cell metaplasia in mouse lung. Am J Physiol Lung Cell
Mol Physiol. 287:L1293–L1302. 2004.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC,
Mu J, Li J, Yao H and Chen K: Role of tumor microenvironment in
cancer progression and therapeutic strategy. Cancer Med.
12:11149–11165. 2023.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Desai SA, Patel VP, Bhosle KP, Nagare SD
and Thombare KC: The tumor microenvironment: Shaping cancer
progression and treatment response. J Chemother. 37:15–44.
2025.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Cheng K, Cai N, Zhu J, Yang X, Liang H and
Zhang W: Tumor-associated macrophages in liver cancer: From
mechanisms to therapy. Cancer Commun (Lond). 42:1112–1140.
2022.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Lorusso G and Rüegg C: The tumor
microenvironment and its contribution to tumor evolution toward
metastasis. Histochem Cell Biol. 130:1091–1103. 2008.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Chao CC, Lee CW, Chang TM, Chen PC and Liu
JF: CXCL1/CXCR2 paracrine axis contributes to lung metastasis in
osteosarcoma. Cancers (Basel). 12(459)2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Wu T, Yang W, Sun A, Wei Z and Lin Q: The
role of CXC chemokines in cancer progression. Cancers (Basel).
15(167)2022.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Ganesan P and Kulik LM: Hepatocellular
carcinoma: New developments. Clini Liver Dis. 27:85–102.
2023.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Lee JG, Kang CM, Park JS, Kim KS, Yoon DS,
Choi JS, Lee WJ and Kim BR: The actual five-year survival rate of
hepatocellular carcinoma patients after curative resection. Yonsei
Med J. 47:105–112. 2006.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Anwanwan D, Singh SK, Singh S, Saikam V
and Singh R: Challenges in liver cancer and possible treatment
approaches. Biochim Biophys Acta Rev Cancer.
1873(188314)2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Bi H, Zhang Y, Wang S, Fang W, He W, Yin
L, Xue Y, Cheng Z, Yang M and Shen J: Interleukin-8 promotes cell
migration via CXCR1 and CXCR2 in liver cancer. Oncol Lett.
18:4176–4184. 2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Yang S, Wang H, Qin C, Sun H and Han Y:
Up-regulation of CXCL8 expression is associated with a poor
prognosis and enhances tumor cell malignant behaviors in liver
cancer. Biosci Rep. 40(BSR20201169)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Sun F, Wang J, Sun Q, Li F, Gao H, Xu L,
Zhang J, Sun X, Tian Y, Zhao Q, et al: Interleukin-8 promotes
integrin β3 upregulation and cell invasion through PI3K/Akt pathway
in hepatocellular carcinoma. J Exp Clin Cancer Res.
38(449)2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Varney ML, Singh S, Li A, Mayer-Ezell R,
Bond R and Singh RK: Small molecule antagonists for CXCR2 and CXCR1
inhibit human colon cancer liver metastases. Cancer Lett.
300:180–188. 2011.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Vincent A, Herman J, Schulick R, Hruban RH
and Goggins M: Pancreatic cancer. Lancet. 378:607–620.
2011.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Goral V: Pancreatic cancer: Pathogenesis
and diagnosis. Asian Pac J Cancer Prev. 16:5619–5624.
2015.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zhao Z and Liu W: Pancreatic cancer: A
review of risk factors, diagnosis, and treatment. Technol Cancer
Res Treat: Dec 24, 2020 (Epub ahead of print). doi:
10.1177/1533033820962117.
|
|
84
|
National Cancer Institute: Pancreatic
cancer treatment (PDQ®)-Health Professional Version.
National Cancer Institute, Bethesda, MD, 2025.
|
|
85
|
Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T,
Chen Y, Han X and Wu K: The CXCL8-CXCR1/2 pathways in cancer.
Cytokine Growth Factor Rev. 31:61–71. 2016.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Xiong X, Liao X, Qiu S, Xu H, Zhang S,
Wang S, Ai J and Yang L: CXCL8 in tumor biology and its
implications for clinical translation. Front Mol Biosci.
9(723846)2022.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Ning Y, Labonte MJ, Zhang W, Bohanes PO,
Gerger A, Yang D, Benhaim L, Paez D, Rosenberg DO, Nagulapalli
Venkata KC, et al: The CXCR2 antagonist, SCH-527123, shows
antitumor activity and sensitizes cells to oxaliplatin in
preclinical colon cancer models. Mol Cancer Ther. 11:1353–1364.
2012.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Fu S and Lin J: Blocking interleukin-6 and
interleukin-8 signaling inhibits cell viability, colony-forming
activity, and cell migration in human triple-negative breast cancer
and pancreatic cancer cells. Anticancer Res. 38:6271–6279.
2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Stewart C, Ralyea C and Lockwood S:
Ovarian cancer: An integrated review. Semin Oncol Nurs. 35:151–156.
2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Feng J, Xu L, Chen Y, Lin R, Li H and He
H: Trends in incidence and mortality for ovarian cancer in China
from 1990 to 2019 and its forecasted levels in 30 years. J Ovarian
Res. 16(139)2023.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Reid BM, Permuth JB and Sellers TA:
Epidemiology of ovarian cancer: A review. Cancer Biol Med. 14:9–32.
2017.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Ali AT, Al-Ani O and Al-Ani F:
Epidemiology and risk factors for ovarian cancer. Prz Menopauzalny.
22:93–104. 2023.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Zhang R, Roque DM, Reader J and Lin J:
Combined inhibition of IL-6 and IL-8 pathways suppresses ovarian
cancer cell viability and migration and tumor growth. Int J Oncol.
60(50)2022.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Rašková M, Lacina L, Kejík Z, Venhauerová
A, Skaličková M, Kolář M, Jakubek M, Rosel D, Smetana K Jr and
Brábek J: The role of IL-6 in cancer cell invasiveness and
metastasis-overview and therapeutic opportunities. Cells.
11(3698)2022.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu
C, Stone RL, Moreno-Smith M, Nishimura M, Lee JW, Jennings NB,
Bottsford-Miller J, et al: Stress effects on FosB- and
interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J
Biol Chem. 285:35462–35470. 2010.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Son JS, Chow R, Kim H, Lieu T, Xiao M, Kim
S, Matuszewska K, Pereira M, Nguyen DL and Petrik J: Liposomal
delivery of gene therapy for ovarian cancer: A systematic review.
Reprod Biol Endocrinol. 21(75)2023.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Li Y, Liu L, Yin Z, Xu H, Li S, Tao W,
Cheng H, Du L, Zhou X and Zhang B: Effect of targeted silencing of
IL-8 on in vitro migration and invasion of SKOV3 ovarian
cancer cells. Oncol Lett. 13:567–572. 2017.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Singh S, Wu S, Varney M, Singh AP and
Singh RK: CXCR1 and CXCR2 silencing modulates CXCL8-dependent
endothelial cell proliferation, migration and capillary-like
structure formation. Microvasc Res. 82:318–325. 2011.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Park GY, Pathak HB, Godwin AK and Kwon Y:
Epithelial-stromal communication via CXCL1-CXCR2 interaction
stimulates growth of ovarian cancer cells through p38 activation.
Cell Oncol (Dordr). 44:77–92. 2021.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Yang G, Rosen DG, Liu G, Yang F, Guo X,
Xiao X, Xue F, Mercado-Uribe I, Huang J, Lin SH, et al: CXCR2
promotes ovarian cancer growth through dysregulated cell cycle,
diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res.
16:3875–3886. 2010.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Li A, Dubey S, Varney ML, Dave BJ and
Singh RK: IL-8 directly enhanced endothelial cell survival,
proliferation, and matrix metalloproteinases production and
regulated angiogenesis. J Immunol. 170:3369–3376. 2003.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wang ZX, Cao JX, Liu ZP, Cui YX, Li CY, Li
D, Zhang XY, Liu JL and Li JL: Combination of chemotherapy and
immunotherapy for colon cancer in China: A meta-analysis. World J
Gastroenterol. 20:1095–1106. 2014.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Katsaounou K, Nicolaou E, Vogazianos P,
Brown C, Stavrou M, Teloni S, Hatzis P, Agapiou A, Fragkou E,
Tsiaoussis G, et al: Colon cancer: From epidemiology to prevention.
Metabolites. 12(499)2022.PubMed/NCBI View Article : Google Scholar
|
|
104
|
André T, Boni C, Mounedji-Boudiaf L,
Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan
P, Bridgewater J, et al: Oxaliplatin, fluorouracil, and leucovorin
as adjuvant treatment for colon cancer. N Engl J Med.
350:2343–2351. 2004.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Singh JK, Farnie G, Bundred NJ, Simões BM,
Shergill A, Landberg G, Howell SJ and Clarke RB: Targeting CXCR1/2
significantly reduces breast cancer stem cell activity and
increases the efficacy of inhibiting HER2 via HER2-dependent and
-independent mechanisms. Clin Cancer Res. 19:643–656.
2013.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Khan MN, Wang B, Wei J, Zhang Y, Li Q,
Luan X, Cheng JW, Gordon JR, Li F and Liu H: CXCR1/2 antagonism
with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts
lung cancer growth by inhibiting tumor cell proliferation and
suppressing angiogenesis. Oncotarget. 6:21315–21327.
2015.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Hertzer KM, Donald GW and Hines OJ: CXCR2:
A target for pancreatic cancer treatment? Expert Opin Ther Targets.
17:667–680. 2013.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Gungabeesoon J, Gort-Freitas NA, Kiss M,
Bolli E, Messemaker M, Siwicki M, Hicham M, Bill R, Koch P,
Cianciaruso C, et al: A neutrophil response linked to tumor control
in immunotherapy. Cell. 186:1448–1464.e20. 2023.PubMed/NCBI View Article : Google Scholar
|