Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Epigenetics
Join Editorial Board Propose a Special Issue
Print ISSN: 2752-5406 Online ISSN: 2752-5414
Journal Cover
January-December 2024 Volume 4 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-December 2024 Volume 4 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mining the epigenetic landscape of medulloblastoma (Review)

  • Authors:
    • Kawalpreet K. Aneja
  • View Affiliations / Copyright

    Affiliations: Dr. Harvey Rubin Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
    Copyright: © Aneja et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 4
    |
    Published online on: December 17, 2024
       https://doi.org/10.3892/ije.2024.23
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Medulloblastoma (MB) is one of the leading types of brain cancer, which is a common and highly malignant type of cancer affecting children. Despite next‑generation sequencing revolutionizing the mutational data in MB, a complete understanding of its causes and epigenetic mechanisms remains to be achieved. Multiple epigenetic mechanisms, including DNA methylation, histone modifications and non‑coding RNAs, have been implicated in MB. Additionally, these mechanisms are interconnected; for example, O6‑methylguanine‑DNA methyltransferase (MGMT) hypermethylation predisposes to mutations in the key tumor suppressor genes, Tp53 and K‑RAS, and MGMT hypermethylation has also been detected in patients with MB. Isocitrate dehydrogenase 1 (NADP+) (IDH1) mutations alter the whole methylation landscape of certain genes, including the differentiation marker, NeuroD1. IDH1‑CIMP has been recognized in sonic hedgehog‑activated MB samples. The 5S rRNA gene is only expressed in the case that histone H4 is acetylated in its nucleosome; without this modification, transcription factor IIIA does not bind to it. Similarly, the GAL4A activator cannot transcribe DNA without acetylated histones. A number of non‑coding RNAs, such as miR‑9, miR‑10, miR‑124, miR125a, miR‑125b and miR‑324‑5p are the driving force behind the growth and differentiation of granular neuronal precursor cells (GNPCs). They protect GNPCs from constant proliferation and trigger differentiation. In the future, the author aims to use epigenetic candidates, such as NeuroD1 and Nestin that activate tumor differentiation and identify more candidates that induce MB differentiation, as a new hope for MB therapies. The present review discusses the epigenetic mechanisms involved in MB proliferation, and whether they can be employed as weapons against the disease.
View Figures
View References

1 

Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2016-2020. Neuro Oncol. 25 (12 Suppl 2):iv1–iv99. 2023.PubMed/NCBI View Article : Google Scholar

2 

Neff C, Price M, Cioffi G, Kruchko C, Waite KA, Barnholtz-Sloan JS and Ostrom QT: Complete prevalence of primary malignant and nonmalignant brain tumors in comparison to other cancers in the United States. Cancer. 129:2514–2521. 2023.PubMed/NCBI View Article : Google Scholar

3 

Johnson DR, Guerin JB, Giannini C, Morris JM, Eckel LJ and Kaufmann TJ: 2016 updates to the WHO brain tumor classification system: What the radiologist needs to know. Radiographics. 37:2164–2180. 2017.PubMed/NCBI View Article : Google Scholar

4 

Kaifi R: A review of recent advances in brain tumor diagnosis based on AI-based classification. Diagnostics (Basel). 13(3007)2023.PubMed/NCBI View Article : Google Scholar

5 

Buckner JC, Brown PD, O'Neill BP, Meyer FB, Wetmore CJ and Uhm JH: Central nervous system tumors. Mayo Clin Proc. 82:1271–1286. 2007.PubMed/NCBI View Article : Google Scholar

6 

Mahapatra S and Amsbaugh MJ: Medulloblastoma. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL, 2024.

7 

Fincham JRS: Epigenetic mechanisms of gene regulation. Edited by V. E. A. Russo, R. A. Martienssen and A. D. Riggs. Cold Spring Harbor Laboratory Press, 1996. 693+xii pages. Price $125. ISBN 0 87969 490 4. Genetical Res 69: 159-162, 1997.

8 

Avery OT, Macleod CM and McCarty M: Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med. 79:137–158. 1944.PubMed/NCBI View Article : Google Scholar

9 

McCarty M and Avery OT: Studies on the chemical nature of the substance inducing transformation on pneumococcal types; an improved method for the isolation of the transforming substance and its application to Pneumococcus types II, III, and VI. J Exp Med. 83:97–104. 1946.PubMed/NCBI

10 

Hotchkiss RD: The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 175:315–332. 1948.PubMed/NCBI

11 

Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013.PubMed/NCBI View Article : Google Scholar

12 

El-Osta A and Wolffe AP: DNA methylation and histone deacetylation in the control of gene expression: Basic biochemistry to human development and disease. Gene Expr. 9:63–75. 2000.PubMed/NCBI View Article : Google Scholar

13 

Lazar NH, Nevonen KA, O'Connell B, McCann C, O'Neill RJ, Green RE, Meyer TJ, Okhovat M and Carbone L: Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res. 28:983–997. 2018.PubMed/NCBI View Article : Google Scholar

14 

Lu Y, Chan YT, Tan HY, Li S, Wang N and Feng Y: Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol Cancer. 19(79)2020.PubMed/NCBI View Article : Google Scholar

15 

Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI and Martienssen RA: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 297:1833–1837. 2002.PubMed/NCBI View Article : Google Scholar

16 

Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ and Viegas-Péquignot E: Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 402:187–191. 1999.PubMed/NCBI View Article : Google Scholar

17 

Flavahan WA, Gaskell E and Bernstein BE: Epigenetic plasticity and the hallmarks of cancer. Science. 357(eaal2380)2017.PubMed/NCBI View Article : Google Scholar

18 

Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, Trojan J, Vaurs-Barrière C, Bignon YJ, Ramus S, et al: DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 10:3001–3007. 2001.PubMed/NCBI View Article : Google Scholar

19 

Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA and Herman JG: Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene. 19:164–168. 2000.PubMed/NCBI View Article : Google Scholar

20 

Esteller M, Risques RA, Toyota M, Capella G, Moreno V, Peinado MA, Baylin SB and Herman JG: Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res. 61:4689–4692. 2001.PubMed/NCBI

21 

Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 91:9700–9704. 1994.PubMed/NCBI View Article : Google Scholar

22 

Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002.PubMed/NCBI View Article : Google Scholar

23 

Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN, Issa JP, Sidransky D, Baylin SB and Herman JG: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 60:2368–2371. 2000.PubMed/NCBI

24 

Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ and Baylin SB: Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 57:837–841. 1997.PubMed/NCBI

25 

Burbee DG, Forgacs E, Zöchbauer-Müller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, et al: Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 93:691–699. 2001.PubMed/NCBI View Article : Google Scholar

26 

Wang Q: Cancer predisposition genes: Molecular mechanisms and clinical impact on personalized cancer care: Examples of Lynch and HBOC syndromes. Acta Pharmacol Sin. 37:143–149. 2016.PubMed/NCBI View Article : Google Scholar

27 

Weemaes CM, van Tol MJ, Wang J, van Ostaijen-ten Dam MM, van Eggermond MC, Thijssen PE, Aytekin C, Brunetti-Pierri N, van der Burg M, Graham Davies E, et al: Heterogeneous clinical presentation in ICF syndrome: Correlation with underlying gene defects. Eur J Hum Genet. 21:1219–1225. 2013.PubMed/NCBI View Article : Google Scholar

28 

Kossel A and Pringle H: Über Protamine und Histone. J Biol Chemistry. 49:301–321. 1906.PubMed/NCBI View Article : Google Scholar

29 

Dahm R: Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet. 122:565–581. 2008.PubMed/NCBI View Article : Google Scholar

30 

Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49(e324)2017.PubMed/NCBI View Article : Google Scholar

31 

Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ III, Voigt P, Martin SR, Taylor WR, De Marco V, et al: Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 461:762–767. 2009.PubMed/NCBI View Article : Google Scholar

32 

Valencia AM and Kadoch C: Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol. 21:152–161. 2019.PubMed/NCBI View Article : Google Scholar

33 

Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8(a019521)2016.PubMed/NCBI View Article : Google Scholar

34 

Dhall A and Chatterjee C: Chemical approaches to understand the language of histone modifications. ACS Chem Biol. 6:987–999. 2011.PubMed/NCBI View Article : Google Scholar

35 

Angrand PO: Structure and function of the polycomb repressive complexes PRC1 and PRC2. Int J Mol Sci. 23(5971)2022.PubMed/NCBI View Article : Google Scholar

36 

Lee CH, Yu JR, Kumar S, Jin Y, LeRoy G, Bhanu N, Kaneko S, Garcia BA, Hamilton AD and Reinberg D: Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol Cell. 70:422–434.e6. 2018.PubMed/NCBI View Article : Google Scholar

37 

Abdouh M, Hanna R, El Hajjar J, Flamier A and Bernier G: The polycomb repressive complex 1 protein BMI1 is required for constitutive heterochromatin formation and silencing in mammalian somatic cells. J Biol Chem. 291:182–197. 2016.PubMed/NCBI View Article : Google Scholar

38 

Gray F, Cho HJ, Shukla S, He S, Harris A, Boytsov B, Jaremko Ł, Jaremko M, Demeler B, Lawlor ER, et al: BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nature Commun. 7(13343)2016.PubMed/NCBI View Article : Google Scholar

39 

Lessard J and Sauvageau G: Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 423:255–260. 2003.PubMed/NCBI View Article : Google Scholar

40 

Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ and Clarke MF: Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 423:302–305. 2003.PubMed/NCBI View Article : Google Scholar

41 

Yuan J, Takeuchi M, Negishi M, Oguro H, Ichikawa H and Iwama A: Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia. 25:1335–1343. 2011.PubMed/NCBI View Article : Google Scholar

42 

Wakamori M, Okabe K, Ura K, Funatsu T, Takinoue M and Umehara T: Quantification of the effect of site-specific histone acetylation on chromatin transcription rate. Nucleic Acids Res. 48:12648–12659. 2020.PubMed/NCBI View Article : Google Scholar

43 

Hebbes TR, Clayton AL, Thorne AW and Crane-Robinson C: Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 13:1823–1830. 1994.PubMed/NCBI View Article : Google Scholar

44 

Krajewski WA and Becker PB: Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc Natl Acad Sci USA. 95:1540–1545. 1998.PubMed/NCBI View Article : Google Scholar

45 

Godde JS, Kass SU, Hirst MC and Wolffe AP: Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter. J Biol Chem. 271:24325–24338. 1996.PubMed/NCBI View Article : Google Scholar

46 

Ball DJ, Gross DS and Garrard WT: 5-methylcytosine is localized in nucleosomes that contain histone H1. Proc Natl Acad Sci USA. 80:5490–5494. 1983.PubMed/NCBI View Article : Google Scholar

47 

Steinbach OC, Wolffe AP and Rupp RA: Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature. 389:395–399. 1997.PubMed/NCBI View Article : Google Scholar

48 

Du Q, Luu PL, Stirzaker C and Clark SJ: Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics. 7:1051–1073. 2015.PubMed/NCBI View Article : Google Scholar

49 

Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F and Wolffe AP: Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 23:62–66. 1999.PubMed/NCBI View Article : Google Scholar

50 

Djupedal I and Ekwall K: Epigenetics: Heterochromatin meets RNAi. Cell Res. 19:282–295. 2009.PubMed/NCBI View Article : Google Scholar

51 

Taverna SD, Coyne RS and Allis CD: Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell. 110:701–711. 2002.PubMed/NCBI View Article : Google Scholar

52 

Holoch D and Moazed D: RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 16:71–84. 2015.PubMed/NCBI View Article : Google Scholar

53 

Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J and Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 19:187–191. 1998.PubMed/NCBI View Article : Google Scholar

54 

Cheng Y, Liao S, Xu G, Hu J, Guo D, Du F, Contreras A, Cai KQ, Peri S, Wang Y, et al: NeuroD1 dictates tumor cell differentiation in medulloblastoma. Cell Rep. 31(107782)2020.PubMed/NCBI View Article : Google Scholar

55 

Doussouki M, Gajjar A and Chamdine O: Molecular genetics of medulloblastoma in children: Diagnostic, therapeutic and prognostic implications. Future Neurol. 14:2019.

56 

Guo D, Qu Y, Yang Y and Yang ZJ: Medulloblastoma cells resemble neuronal progenitors in their differentiation. Mol Cell Oncol. 7(1810514)2020.PubMed/NCBI View Article : Google Scholar

57 

Roussel MF and Hatten ME: Cerebellum development and medulloblastoma. Curr Top Dev Biol. 94:235–282. 2011.PubMed/NCBI View Article : Google Scholar

58 

Rawal ZD, Upadhyay VA, Patel DD and Trivedi TI: Medulloblastoma under siege: Genetic and molecular dissection concerning recent advances in therapeutic strategies. J Pediatr Neurosci. 15:175–182. 2020.PubMed/NCBI View Article : Google Scholar

59 

Haltom AR, Toll SA, Cheng D, Maegawa S, Gopalakrishnan V and Khatua S: Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol. 150:35–46. 2020.PubMed/NCBI View Article : Google Scholar

60 

Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, Rutkowski S, Ellison DW, Malkin D, Taylor MD, et al: Medulloblastoma. Nat Rev Dis Primers. 5(11)2019.PubMed/NCBI View Article : Google Scholar

61 

Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, Gröbner S, Segura-Wang M, Zichner T, Rudneva VA, et al: The whole-genome landscape of medulloblastoma subtypes. Nature. 547:311–317. 2017.PubMed/NCBI View Article : Google Scholar

62 

Northcott PA, Dubuc AM, Pfister S and Taylor MD: Molecular subgroups of medulloblastoma. Expert Rev Neurother. 12:871–884. 2012.PubMed/NCBI View Article : Google Scholar

63 

Smoll NR and Drummond KJ: The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci. 19:1541–1544. 2012.PubMed/NCBI View Article : Google Scholar

64 

Tian Z, Yu T, Liu J, Wang T and Higuchi A: Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell. 14:135–145. 2008.PubMed/NCBI View Article : Google Scholar

65 

Ramaswamy V, Nör C and Taylor MD: Taylor, p53 and meduloblastoma. Cold Spring Harb Perspect Med. 6(a026278)2015.PubMed/NCBI View Article : Google Scholar

66 

Shiraishi R and Kawauchi D: Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. Cancer Sci. 112:2948–2957. 2021.PubMed/NCBI View Article : Google Scholar

67 

Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB and Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 96:8681–8686. 1999.PubMed/NCBI View Article : Google Scholar

68 

Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 164:550–563. 2016.PubMed/NCBI View Article : Google Scholar

69 

Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, et al: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 17:510–522. 2010.PubMed/NCBI View Article : Google Scholar

70 

Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, et al: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 483:479–483. 2012.PubMed/NCBI View Article : Google Scholar

71 

He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, et al: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 333:1303–1307. 2011.PubMed/NCBI View Article : Google Scholar

72 

El-Ayadi M, Egervari K, Merkler D, McKee TA, Gumy-Pause F, Stichel D, Capper D, Pietsch T, Ansari M, von Bueren AO, et al: Concurrent IDH1 and SMARCB1 mutations in pediatric medulloblastoma: A case report. Front Neurol. 9(398)2018.PubMed/NCBI View Article : Google Scholar

73 

Kurimoto T, Kondo A, Ogino I, Fujimura J, Arakawa A, Arai H and Shimizu T: Effect of O6-methylguanine-DNA methyltransferase methylation in medulloblastoma. Mol Clin Oncol. 7:1107–1111. 2017.PubMed/NCBI View Article : Google Scholar

74 

von Bueren AO, Bacolod MD, Hagel C, Heinimann K, Fedier A, Kordes U, Pietsch T, Koster J, Grotzer MA, Friedman HS, et al: Mismatch repair deficiency: A temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours. Br J Cancer. 107:1399–1408. 2012.PubMed/NCBI View Article : Google Scholar

75 

Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung D, et al: Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell. 153:1134–1148. 2013.PubMed/NCBI View Article : Google Scholar

76 

Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz HJ, et al: Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature. 510:537–541. 2014.PubMed/NCBI View Article : Google Scholar

77 

Lin CY, Erkek S, Tong Y, Yin L, Federation AJ, Zapatka M, Haldipur P, Kawauchi D, Risch T, Warnatz HJ, et al: Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature. 530:57–62. 2016.PubMed/NCBI View Article : Google Scholar

78 

Batora NV, Sturm D, Jones DT, Kool M, Pfister SM and Northcott PA: Transitioning from genotypes to epigenotypes: Why the time has come for medulloblastoma epigenomics. Neuroscience. 264:171–185. 2014.PubMed/NCBI View Article : Google Scholar

79 

Fraser J, Williamson I, Bickmore WA and Dostie J: An overview of genome organization and how we got there: From FISH to Hi-C. Microbiol Mol Biol Rev. 79:347–372. 2015.PubMed/NCBI View Article : Google Scholar

80 

Tropberger P and Schneider R: Going global: Novel histone modifications in the globular domain of H3. Epigenetics. 5:112–117. 2010.PubMed/NCBI View Article : Google Scholar

81 

Bryant JP, Heiss J and Banasavadi-Siddegowda YK: Arginine methylation in brain tumors: Tumor biology and therapeutic strategies. Cells. 10(124)2021.PubMed/NCBI View Article : Google Scholar

82 

Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K and Zhang Y: Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 12:1052–1058. 2002.PubMed/NCBI View Article : Google Scholar

83 

Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, Samayoa J, Bettegowda C, et al: The genetic landscape of the childhood cancer medulloblastoma. Science. 331:435–439. 2011.PubMed/NCBI View Article : Google Scholar

84 

Chaturvedi NK, Mahapatra S, Kesherwani V, Kling MJ, Shukla M, Ray S, Kanchan R, Perumal N, McGuire TR, Sharp JG, et al: Role of protein arginine methyltransferase 5 in group 3 (MYC-driven) Medulloblastoma. BMC Cancer. 19(1056)2019.PubMed/NCBI View Article : Google Scholar

85 

Dubuc AM, Remke M, Korshunov A, Northcott PA, Zhan SH, Mendez-Lago M, Kool M, Jones DT, Unterberger A, Morrissy AS, et al: Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 125:373–384. 2013.PubMed/NCBI View Article : Google Scholar

86 

Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A, et al: Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet. 41:465–472. 2009.PubMed/NCBI View Article : Google Scholar

87 

Guo D, Wang Y, Cheng Y, Liao S, Hu J, Du F, Xu G, Liu Y, Cai KQ, Cheung M, et al: Tumor cells generate astrocyte-like cells that contribute to SHH-driven medulloblastoma relapse. J Exp Med. 218(e20202350)2021.PubMed/NCBI View Article : Google Scholar

88 

Liu Y, Yuelling LW, Wang Y, Du F, Gordon RE, O'Brien JA, Ng JMY, Robins S, Lee EH, Liu H, et al: Astrocytes promote medulloblastoma progression through hedgehog secretion. Cancer Res. 77:6692–6703. 2017.PubMed/NCBI View Article : Google Scholar

89 

Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011.PubMed/NCBI View Article : Google Scholar

90 

Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119:941–953. 2004.PubMed/NCBI View Article : Google Scholar

91 

Chang B, Chen Y, Zhao Y and Bruick RK: JMJD6 is a histone arginine demethylase. Science. 318:444–447. 2007.PubMed/NCBI View Article : Google Scholar

92 

Van der Meulen J, Speleman F and Van Vlierberghe P: The H3K27me3 demethylase UTX in normal development and disease. Epigenetics. 9:658–668. 2014.PubMed/NCBI View Article : Google Scholar

93 

Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE and Helin K: UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 449:731–734. 2007.PubMed/NCBI View Article : Google Scholar

94 

Yi J, Shi X, Xuan Z and Wu J: Histone demethylase UTX/KDM6A enhances tumor immune cell recruitment, promotes differentiation and suppresses medulloblastoma. Cancer Lett. 499:188–200. 2021.PubMed/NCBI View Article : Google Scholar

95 

Marmorstein R and Zhou MM: Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 6(a018762)2014.PubMed/NCBI View Article : Google Scholar

96 

Sterner DE and Berger SL: Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 64:435–459. 2000.PubMed/NCBI View Article : Google Scholar

97 

Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, Thuerigen O, Sinn HP, Akhtar A and Lichter P: The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer. 122:1207–1213. 2008.PubMed/NCBI View Article : Google Scholar

98 

Malatesta M, Steinhauer C, Mohammad F, Pandey DP, Squatrito M and Helin K: Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res. 73:6323–6333. 2013.PubMed/NCBI View Article : Google Scholar

99 

Biswas S and Rao CM: Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol. 837:8–24. 2018.PubMed/NCBI View Article : Google Scholar

100 

Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6(a018713)2014.PubMed/NCBI View Article : Google Scholar

101 

Ma JX, Li H, Chen XM, Yang XH, Wang Q, Wu ML, Kong QY, Li ZX and Liu J: Expression patterns and potential roles of SIRT1 in human medulloblastoma cells in vivo and in vitro. Neuropathology. 33:7–16. 2013.PubMed/NCBI View Article : Google Scholar

102 

Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M, Northcott P, Deubzer HE, Lodrini M, Taylor MD, von Deimling A, et al: HDAC5 and HDAC9 in Medulloblastoma: Novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res. 16:3240–3252. 2010.PubMed/NCBI View Article : Google Scholar

103 

Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, Kiss J, Selt F, Konrad C, Lodrini M, et al: Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathol Commun. 3(22)2015.PubMed/NCBI View Article : Google Scholar

104 

Wang X, Holgado BL, Ramaswamy V, Mack S, Zayne K, Remke M, Wu X, Garzia L, Daniels C, Kenney AM and Taylor MD: miR miR on the wall, who's the most malignant medulloblastoma miR of them all? Neuro Oncol. 20:313–323. 2018.PubMed/NCBI View Article : Google Scholar

105 

Harris PS, Venkataraman S, Alimova I, Birks DK, Balakrishnan I, Cristiano B, Donson AM, Dubuc AM, Taylor MD, Foreman NK, et al: Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Mol Cancer. 13(72)2014.PubMed/NCBI View Article : Google Scholar

106 

Mahajan K, Fang B, Koomen JM and Mahajan NP: H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol. 19:930–937. 2012.PubMed/NCBI View Article : Google Scholar

107 

Mahajan K and Mahajan NP: WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet. 29:394–402. 2013.PubMed/NCBI View Article : Google Scholar

108 

Wang J, Qiu Z and Wu Y: Ubiquitin regulation: The histone modifying Enzyme's story. Cells. 7(118)2018.PubMed/NCBI View Article : Google Scholar

109 

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012.PubMed/NCBI View Article : Google Scholar

110 

Pennisi E: Genomics. ENCODE project writes eulogy for junk DNA. Science. 337:1159–1161. 2012.PubMed/NCBI View Article : Google Scholar

111 

Butts T, Green MJ and Wingate RJ: Development of the cerebellum: Simple steps to make a ‘little brain’. Development. 141:4031–4041. 2014.PubMed/NCBI View Article : Google Scholar

112 

Jönsson ME, Nelander Wahlestedt J, Åkerblom M, Kirkeby A, Malmevik J, Brattaas PL, Jakobsson J and Parmar M: Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor. Development. 142:3166–3177. 2015.PubMed/NCBI View Article : Google Scholar

113 

Laneve P and Caffarelli E: The Non-coding side of medulloblastoma. Front Cell Dev Biol. 8(275)2020.PubMed/NCBI View Article : Google Scholar

114 

Roussel MF and Stripay JL: Epigenetic drivers in pediatric medulloblastoma. Cerebellum. 17:28–36. 2018.PubMed/NCBI View Article : Google Scholar

115 

Kuang Y, Liu Q, Shu X, Zhang C, Huang N, Li J, Jiang M and Li H: Dicer1 and MiR-9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia. 60:1734–1746. 2012.PubMed/NCBI View Article : Google Scholar

116 

Pieczora L, Stracke L, Vorgerd M, Hahn S, Theiss C and Theis V: Unveiling of miRNA expression patterns in purkinje cells during development. Cerebellum. 16:376–387. 2017.PubMed/NCBI View Article : Google Scholar

117 

Han D, Dong X, Zheng D and Nao J: MiR-124 and the underlying therapeutic promise of neurodegenerative disorders. Front Pharmacol. 10(1555)2019.PubMed/NCBI View Article : Google Scholar

118 

Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, Di Rocco C, Riccardi R, Giangaspero F, Farcomeni A, et al: MicroRNA profiling in human medulloblastoma. Int J Cancer. 124:568–577. 2009.PubMed/NCBI View Article : Google Scholar

119 

Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I and Caffarelli E: The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA. 104:7957–7962. 2007.PubMed/NCBI View Article : Google Scholar

120 

Miele E, Po A, Begalli F, Antonucci L, Mastronuzzi A, Marras CE, Carai A, Cucchi D, Abballe L, Besharat ZM, et al: β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells. BMC Cancer. 17(488)2017.PubMed/NCBI View Article : Google Scholar

121 

Cheng LC, Pastrana E, Tavazoie M and Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 12:399–408. 2009.PubMed/NCBI View Article : Google Scholar

122 

Nowek K, Wiemer EAC and Jongen-Lavrencic M: The versatile nature of miR-9/9* in human cancer. Oncotarget. 9:20838–20854. 2018.PubMed/NCBI View Article : Google Scholar

123 

Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW and Crabtree GR: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 476:228–231. 2011.PubMed/NCBI View Article : Google Scholar

124 

Fiaschetti G, Abela L, Nonoguchi N, Dubuc AM, Remke M, Boro A, Grunder E, Siler U, Ohgaki H, Taylor MD, et al: Epigenetic silencing of miRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma. Br J Cancer. 110:636–647. 2014.PubMed/NCBI View Article : Google Scholar

125 

Ingram WJ, McCue KI, Tran TH, Hallahan AR and Wainwright BJ: Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene. 27:1489–1500. 2008.PubMed/NCBI View Article : Google Scholar

126 

Fénelon K, Mukai J, Xu B, Hsu PK, Drew LJ, Karayiorgou M, Fischbach GD, Macdermott AB and Gogos JA: Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA. 108:4447–4452. 2011.PubMed/NCBI View Article : Google Scholar

127 

Pierson J, Hostager B, Fan R and Vibhakar R: Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol. 90:1–7. 2008.PubMed/NCBI View Article : Google Scholar

128 

Silber J, Hashizume R, Felix T, Hariono S, Yu M, Berger MS, Huse JT, VandenBerg SR, James CD, Hodgson JG and Gupta N: Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro Oncol. 15:83–90. 2013.PubMed/NCBI View Article : Google Scholar

129 

Venkataraman S, Birks DK, Balakrishnan I, Alimova I, Harris PS, Patel PR, Handler MH, Dubuc A, Taylor MD, Foreman NK and Vibhakar R: MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem. 288:1918–1928. 2013.PubMed/NCBI View Article : Google Scholar

130 

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ and Hammond SM: A microRNA polycistron as a potential human oncogene. Nature. 435:828–833. 2005.PubMed/NCBI View Article : Google Scholar

131 

O'Donnell KA, Wentzel EA, Zeller KI, Dang CV and Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 435:839–843. 2005.PubMed/NCBI View Article : Google Scholar

132 

Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC, Krause M, Astrahantseff K, Klein-Hitpass L, Buettner R, et al: MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer. 122:699–704. 2008.PubMed/NCBI View Article : Google Scholar

133 

Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G and Roussel MF: The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA. 106:2812–2817. 2009.PubMed/NCBI View Article : Google Scholar

134 

Mollashahi B, Aghamaleki FS and Movafagh A: The roles of miRNAs in medulloblastoma: A systematic review. J Cancer Prev. 24:79–90. 2019.PubMed/NCBI View Article : Google Scholar

135 

Senfter D, Samadaei M, Mader RM, Gojo J, Peyrl A, Krupitza G, Kool M, Sill M, Haberler C, Ricken G, et al: High impact of miRNA-4521 on FOXM1 expression in medulloblastoma. Cell Death Dis. 10(696)2019.PubMed/NCBI View Article : Google Scholar

136 

Agrawal K, Das V, Vyas P and Hajdúch M: Nucleosidic DNA demethylating epigenetic drugs-A comprehensive review from discovery to clinic. Pharmacol Ther. 188:45–79. 2018.PubMed/NCBI View Article : Google Scholar

137 

Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M and Götze KS: A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 8(71)2016.PubMed/NCBI View Article : Google Scholar

138 

Christman JK: 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene. 21:5483–5495. 2002.PubMed/NCBI View Article : Google Scholar

139 

Zwergel C, Romanelli A, Stazi G, Besharat ZM, Catanzaro G, Tafani M, Valente S and Mai A: Application of small epigenetic modulators in pediatric medulloblastoma. Front Pediatr. 6(370)2018.PubMed/NCBI View Article : Google Scholar

140 

Inoue A and Fujimoto D: Enzymatic deacetylation of histone. Biochem Biophys Res Commun. 36:146–150. 1969.PubMed/NCBI View Article : Google Scholar

141 

Taunton J, Hassig CA and Schreiber SL: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 272:408–411. 1996.PubMed/NCBI View Article : Google Scholar

142 

Kijima M, Yoshida M, Sugita K, Horinouchi S and Beppu T: Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 268:22429–22435. 1993.PubMed/NCBI

143 

Bolden JE, Peart MJ and Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 5:769–784. 2006.PubMed/NCBI View Article : Google Scholar

144 

Tiberi L, Bonnefont J, van den Ameele J, Le Bon SD, Herpoel A, Bilheu A, Baron BW and Vanderhaeghen P: A BCL6/BCOR/SIRT1 complex triggers neurogenesis and suppresses medulloblastoma by repressing Sonic Hedgehog signaling. Cancer Cell. 26:797–812. 2014.PubMed/NCBI View Article : Google Scholar

145 

Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, Bandopadhayay P, Bergthold G, Masoud S, Nguyen B, Vue N, et al: Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med. 20:732–740. 2014.PubMed/NCBI View Article : Google Scholar

146 

Dobson THW, Hatcher RJ, Swaminathan J, Das CM, Shaik S, Tao RH, Milite C, Castellano S, Taylor PH, Sbardella G and Gopalakrishnan V: Regulation of USP37 expression by REST-Associated G9a-Dependent histone methylation. Mol Cancer Res. 5:1073–1084. 2017.PubMed/NCBI View Article : Google Scholar

147 

Inui K, Zhao Z, Yuan J, Jayaprakash S, Le LTM, Drakulic S, Sander B and Golas MM: Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Sci. 26:997–1011. 2017.PubMed/NCBI View Article : Google Scholar

148 

Maier H, Dalianis T and Kostopoulou ON: New approaches in targeted therapy for medulloblastoma in children. Anticancer Res. 41:1715–1726. 2021.PubMed/NCBI View Article : Google Scholar

149 

Gordon RE, Zhang L and Yang ZJ: Restore the brake on tumor progression. Biochem Pharmacol. 138:1–6. 2017.PubMed/NCBI View Article : Google Scholar

150 

Wright JH: Neurocytoma or neuroblastoma, a kind of tumor not generally recognized. J Exp Med. 12:556–561. 1910.PubMed/NCBI View Article : Google Scholar

151 

MacKenzie DJ: A classification of the tumours of the glioma group on a histogenetic basis with a correlated study of prognosis. Can Med Assoc J. 16(872)1926.

152 

Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B, et al: The molecular basis of Turcot's syndrome. N Engl J Med. 332:839–847. 1995.PubMed/NCBI View Article : Google Scholar

153 

Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, et al: Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 29:1408–1414. 2011.PubMed/NCBI View Article : Google Scholar

154 

Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J and McMahon AP: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 322:1247–1250. 2008.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Aneja KK: Mining the epigenetic landscape of medulloblastoma (Review). Int J Epigen 4: 4, 2024.
APA
Aneja, K.K. (2024). Mining the epigenetic landscape of medulloblastoma (Review). International Journal of Epigenetics, 4, 4. https://doi.org/10.3892/ije.2024.23
MLA
Aneja, K. K."Mining the epigenetic landscape of medulloblastoma (Review)". International Journal of Epigenetics 4.1 (2024): 4.
Chicago
Aneja, K. K."Mining the epigenetic landscape of medulloblastoma (Review)". International Journal of Epigenetics 4, no. 1 (2024): 4. https://doi.org/10.3892/ije.2024.23
Copy and paste a formatted citation
x
Spandidos Publications style
Aneja KK: Mining the epigenetic landscape of medulloblastoma (Review). Int J Epigen 4: 4, 2024.
APA
Aneja, K.K. (2024). Mining the epigenetic landscape of medulloblastoma (Review). International Journal of Epigenetics, 4, 4. https://doi.org/10.3892/ije.2024.23
MLA
Aneja, K. K."Mining the epigenetic landscape of medulloblastoma (Review)". International Journal of Epigenetics 4.1 (2024): 4.
Chicago
Aneja, K. K."Mining the epigenetic landscape of medulloblastoma (Review)". International Journal of Epigenetics 4, no. 1 (2024): 4. https://doi.org/10.3892/ije.2024.23
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team