|
1
|
Chauhan W and Zennadi R: Keap1-Nrf2
heterodimer: A therapeutic target to ameliorate sickle cell
disease. Antioxidants (Basel). 12(740)2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Acharya B, Mishra DP, Barik B, Mohapatra
RK and Sarangi AK: Recent progress in the treatment of sickle cell
disease: An up-to-date review. Beni-Suef Univ J Basic Appl Sci.
12(38)2023.
|
|
3
|
Demers M, Sturtevant S, Guertin KR, Gupta
D, Desai K, Vieira BF, Li W, Hicks A, Ismail A, Gonçalves BP, et
al: MetAP2 inhibition modifies hemoglobin S to delay polymerization
and improves blood flow in sickle cell disease. Blood Adv.
5:1388–1402. 2021.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Fontana L, Alahouzou Z, Miccio A and
Antoniou P: Epigenetic regulation of β-globin genes and the
potential to treat hemoglobinopathies through epigenome editing.
Genes (Basel). 14(577)2023.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Costa D, Capuano M, Sommese L and Napoli
C: Impact of epigenetic mechanisms on therapeutic approaches of
hemoglobinopathies. Blood Cells Mol Dis. 55:95–100. 2015.PubMed/NCBI View Article : Google Scholar
|
|
6
|
El Hoss S, Cochet S, Godard A, Yan H,
Dussiot M, Frati G, Boutonnat-Faucher B, Laurance S, Renaud O,
Joseph L, et al: Fetal hemoglobin rescues ineffective
erythropoiesis in sickle cell disease. Hematologica. 106:2707–2719.
2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Hara Y, Kawabata E, Lemgart VT, Bronson
PG, Hicks A, Peters R, Krishnamoorthy S, Ribeil JA, Schmunk LJ,
Eglinton J, et al: Genomic discovery and functional validation of
MRP1 as a novel fetal hemoglobin modulator and potential
therapeutic target in sickle cell disease. medRxiv, 2023.
|
|
8
|
Bao X, Zuo Y, Chen D and Zhao C: DNA
methylation patterns of β-globin cluster in β-thalassemia patients.
Clin Epigenetics. 12(187)2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Gilmartin AG, Groy A, Gore ER, Atkins C,
Long ER, Montoute MN, Wu Z, Halsey W, McNulty DE, Ennulat D, et al:
In vitro and in vivo induction of fetal hemoglobin with a
reversible and selective DNMT1 inhibitor. Hematologica.
106:1979–1987. 2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Shvedunova M and Akhtar A: Modulation of
cellular processes by histone and non-histone protein acetylation.
Nat Rev Mol Cell Biol. 23:329–349. 2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Pavan AR, Lopes JR and Dos Santos JL: The
state of the art of fetal hemoglobin-inducing agents. Expert Opin
Drug Discov. 17:1279–1293. 2022.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhao Q, Rank G, Tan YT, Li H, Moritz RL,
Simpson RJ, Cerruti L, Curtis DJ, Patel DJ, Allis CD, et al:
PRMT5-mediated methylation of histone H4R3 recruits DNMT3A,
coupling histone and DNA methylation in gene silencing. Nat Struct
Mol Biol. 16:304–311. 2009.PubMed/NCBI View Article : Google Scholar
|
|
13
|
He Y, Rank G, Zhang M, Ju J, Liu R, Xu Z,
Brown F, Cerruti L, Ma C, Tan R, et al: Induction of human fetal
hemoglobin expression by adenosine-2',3'-dialdehyde. J Transl Med.
11(14)2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Wu X, Xu H, Xia E, Gao L, Hou Y, Sun L,
Zhang H and Cheng Y: Histone modifications in the regulation of
erythropoiesis. Ann Med. 57(2490824)2025.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Masuda T, Wang X, Maeda M, Canver MC, Sher
F, Funnell APW, Fisher C, Suciu M, Martyn GE, Norton LJ, et al:
Transcription factors LRF and BCL11A independently repress
expression of fetal hemoglobin. Science. 351:285–289.
2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Huang P, Peslak SA, Ren R, Khandros E, Qin
K, Keller CA, Giardine B, Bell HW, Lan X, Sharma M, et al: HIC2
controls developmental hemoglobin switching by repressing BCL11A
transcription. Nat Genet. 54:1417–1426. 2022.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo
B, Zheng MH, Li F, Yuan LQ and Li ZH: Epigenetic regulation in
metabolic diseases: Mechanisms and advances in clinical study.
Signal Transduct Target Ther. 8(98)2023.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Fathallah H, Weinberg RS, Galperin Y,
Sutton M and Atweh GF: Role of epigenetic modifications in normal
globin gene regulation and butyrate-mediated induction of fetal
hemoglobin. Blood. 110:3391–3397. 2007.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Charnigo RJ, Beidler D, Rybin D, Pittman
DD, Tan B, Howard J, Michelson AD, Frelinger AL III and Clarke N:
PF-04447943, a phosphodiesterase 9A inhibitor, in stable sickle
cell disease patients: A phase Ib randomized, placebo-controlled
study. Clin Transl Sci. 12:180–188. 2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zuccato C, Cosenza LC, Zurlo M, Gasparello
J, Papi C, D'Aversa E, Breveglieri G, Lampronti I, Finotti A,
Borgatti M, et al: Expression of γ-globin genes in β-thalassemia
patients treated with sirolimus: Results from a pilot clinical
trial (sirthalaclin). Ther Adv Hematol.
13(20406207221100648)2022.PubMed/NCBI View Article : Google Scholar
|
|
21
|
National Library of Medicine: The BENeFiTS
Trial in Beta Thalassemia Intermedia (PB04-001). Clinicaltrials.gov
identifier: NCT04432623. https://clinicaltrials.gov/study/NCT04432623?cond=%22Beta%20thalassemia%22&rank=5.
Accessed November 1, 2025.
|
|
22
|
Xu J, Peng C, Sankaran VG, Shao Z, Esrick
EB, Chong BG, Ippolito GC, Fujiwara Y, Ebert BL, Tucker PW and
Orkin SH: Correction of sickle cell disease in adult mice by
interference with fetal hemoglobin silencing. Science. 334:993–996.
2011.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Esrick EB, Lehmann L, Biffi A, Achebe M,
Brendel C, Ciuculescu MF, Daley H, MacKinnon B, Morris E, Federico
A, et al: Post-transcriptional genetic silencing of BCL11A to treat
sickle cell disease. N Engl J Med. 384:205–215. 2021.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Fu B, Liao S, Chen S, Li W, Wang Q, Hu J,
Yang F, Hsiao S, Jiang Y, Wang L, et al: CRISPR-Cas9-mediated gene
editing of the BCL11A enhancer for pediatric
β0/β0 transfusion-dependent β-thalassemia.
Nat Med. 28:1573–1580. 2022.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Stamatoyannopoulos G: Control of globin
gene expression during development and erythroid differentiation.
Exp Hematol. 33:259–271. 2005.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Liu B, Brendel C, Vinjamur DS, Zhou Y,
Harris C, McGuinness M, Manis JP, Bauer DE, Xu H and Williams DA:
Development of a double shmiR lentivirus effectively targeting both
BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to
treat β-hemoglobinopathies. Mol Ther. 30:2693–2708. 2022.
|
|
27
|
Ting PY, Borika S, Kerrigan J, Thomsen NM,
Aghania E, Hinman AE, Reyes A, Pizzato N, Fodor BD, Wu F, et al: A
molecular glue degrader of the WIZ transcription factor for fetal
hemoglobin induction. Science. 385:91–99. 2024.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Bou-Fakhredin R, De Franceschi L, Motta I,
Cappellini MD and Taher AT: Pharmacological induction of fetal
hemoglobin in β-thalassemia and sickle cell disease: An updated
perspective. Pharmaceuticals (Basel). 15(753)2022.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Ginder GD: Epigenetic regulation of fetal
globin gene expression in adult erythroid cells. Transl Res.
165:115–125. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Lavelle D, Engel JD and Saunthararajah Y:
Fetal hemoglobin induction by epigenetic drugs. Semin Hematol.
55:60–67. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Charache S, Dover G, Smith K, Talbot CC
Jr, Moyer M and Boyer S: Treatment of sickle cell anemia with
5-azacytidine results in increased fetal hemoglobin production and
is associated with nonrandom hypomethylation of DNA around the
gamma-delta-beta-globin gene complex. Proc Natl Acad Sci USA.
80:4842–4846. 1983.PubMed/NCBI View Article : Google Scholar
|
|
32
|
López Rubio M and Argüello Marina M: The
current role of hydroxyurea in the treatment of sickle cell anemia.
J Clin Med. 13(6404)2024.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Pule GD, Mowla S, Novitzky N, Wiysonge CS
and Wonkam A: A systematic review of known mechanisms of
hydroxyurea-induced fetal hemoglobin for treatment of sickle cell
disease. Expert Rev Hematol. 8:669–679. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Weinberg RS, Ji X, Sutton M, Perrine S,
Galperin Y, Li Q, Liebhaber SA, Stamatoyannopoulos G and Atweh GF:
Butyrate increases the efficiency of translation of gamma-globin
mRNA. Blood. 105:1807–1809. 2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Bradner JE, Mak R, Tanguturi SK,
Mazitschek R, Haggarty SJ, Ross K, Chang CY, Bosco J, West N, Morse
E, et al: Chemical genetic strategy identifies histone deacetylase
1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease.
Proc Natl Acad Sci USA. 107:12617–12622. 2010.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Lohani N, Bhargava N, Munshi A and
Ramalingam S: Pharmacological and molecular approaches for the
treatment of β-hemoglobin disorders. J Cell Physiol. 233:4563–4577.
2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Di Micco S, Chini MG, Terracciano S, Bruno
I, Riccio R and Bifulco G: Structural basis for the design and
synthesis of selective HDAC inhibitors. Bioorg Med Chem.
21:3795–3807. 2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Shearstone JR, Golonzhka O, Chonkar A,
Tamang D, VanDuzer JH, Jones SS and Jarpe MB: Chemical inhibition
of histone deacetylases 1 and 2 induces fetal hemoglobin through
activation of GATA2. PLoS One. 11(e0153767)2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Esrick EB, McConkey M, Lin K, Frisbee A
and Ebert BL: Inactivation of HDAC1 or HDAC2 induces gamma globin
expression without altering cell cycle or proliferation. Am J
Hematol. 90:624–628. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Habibi H, Atashi A, Abroun S and Noruzinia
M: Synergistic effect of simvastatin and romidepsin on gamma-globin
gene induction. Cell J. 20:576–583. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Dai Y, Sangerman J, Luo HY, Fucharoen S,
Chui DHK, Faller DV and Perrine SP: Therapeutic fetal-globin
inducers reduce transcriptional repression in hemoglobinopathy
erythroid progenitors through distinct mechanisms. Blood Cell Mol
Dis. 56:62–69. 2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ronzoni L, Sonzogni L, Fossati G, Modena
D, Trombetta E, Porretti L and Cappellini MD: Modulation of gamma
globin genes expression by histone deacetylase inhibitors: An in
vitro study. Br J Hematol. 165:714–721. 2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Cisneros GS and Thein SL: Recent advances
in the treatment of sickle cell disease. Front Physiol.
11(435)2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Takezaki M, Li B, Xu H, Patel N, Lucas R,
Cerbone RE, Koti S, Hendrick CL, Junker LH and Pace BS: The histone
deacetylase inhibitor CT-101 flips the switch to fetal hemoglobin
expression in sickle cell disease mice. PLoS One.
20(e0323550)2025.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Traxler EA, Yao Y, Wang YD, Woodard KJ,
Kurita R, Nakamura Y, Hughes JR, Hardison RC, Blobel GA, Li C and
Weiss MJ: A genome-editing strategy to treat β-hemoglobinopathies
that recapitulates a mutation associated with a benign genetic
condition. Nat Med. 22:987–990. 2016.PubMed/NCBI View
Article : Google Scholar
|
|
46
|
Dever DP, Bak RO, Reinisch A, Camarena J,
Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB,
Mantri S, et al: CRISPR/Cas9 β-globin gene targeting in human
haematopoietic stem cells. Nature. 539:384–389. 2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Xu L, Lahiri P, Skowronski J, Bhatia N,
Lattanzi A and Porteus MH: Molecular dynamics of genome editing
with CRISPR-Cas9 and rAAV6 virus in human HSPCs to treat sickle
cell disease. Mol Ther Methods Clin Dev. 30:317–331.
2023.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Qin K, Huang P, Feng R, Keller CA, Peslak
SA, Khandros E, Saari MS, Lan X, Mayuranathan T, Doerfler PA, et
al: Dual function NFI factors control fetal hemoglobin silencing in
adult erythroid cells. Nat Genet. 54:874–884. 2022.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Feng R, Mayuranathan T, Huang P, Doerfler
PA, Li Y, Yao Y, Zhang J, Palmer LE, Mayberry K, Christakopoulos
GE, et al: Activation of γ-globin expression by hypoxia-inducible
factor 1α. Nature. 610:783–790. 2022.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Frati G, Brusson M, Sartre G, Mlayah B,
Felix T, Chalumeau A, Antoniou P, Hardouin G, Concordet JP, Romano
O, et al: Safety and efficacy studies of CRISPR-Cas9 treatment of
sickle cell disease highlights disease-specific responses. Mol
Ther. 32:4337–4352. 2024.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Song X, Liu J, Chen T, Zheng T, Wang X and
Guo X: Gene therapy and gene editing strategies in inherited blood
disorders. J Genet Genomics. 51:1162–1172. 2024.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Singh A, Irfan H, Fatima E, Nazir Z, Verma
A and Akilimali A: Revolutionary breakthrough: FDA approves
CASGEVY, the first CRISPR/Cas9 gene therapy for sickle cell
disease. Ann Med Surg (Lond). 86:4555–4559. 2024.PubMed/NCBI View Article : Google Scholar
|