You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
|
Nahin RL, Feinberg T, Kapos FP and Terman GW: Estimated rates of incident and persistent chronic pain among US adults, 2019-2020. JAMA Netw Open. 6(e2313563)2023.PubMed/NCBI View Article : Google Scholar | |
|
Mansfield KE, Sim J, Jordan JL and Jordan KP: A systematic review and meta-analysis of the prevalence of chronic widespread pain in the general population. Pain. 157:55–64. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Zimmer Z, Fraser K, Grol-Prokopczyk H and Zajacova A: A global study of pain prevalence across 52 countries: examining the role of country-level contextual factors. Pain. 163:1740–1750. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Armstrong SA and Herr MJ: Physiology, Nociception. In: StatPearls. StatPearls Publishing, Treasure Island, FL, 2025. | |
|
Willis WD and Coggeshall RE: Sensory mechanisms of the spinal cord. 3rd Edition. Springer, New York, NY, 2004. | |
|
Bliss TV and Cooke SF: Long-term potentiation and long-term depression: A clinical perspective. Clinics (Sao Paulo). 66 (Suppl 1):S3–S17. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Aneja K and Aneja K: Can we still save our goldilocks zone from climate change catastrophes? Acta Sci Microbiol. 6:70–81. 2023. | |
|
Gräff J and Mansuy IM: Epigenetic codes in cognition and behaviour. Behav Brain Res. 192:70–87. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Zovkic IB, Guzman-Karlsson MC and Sweatt JD: Epigenetic regulation of memory formation and maintenance. Learn Mem. 20:61–74. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Woolf CJ and Salter MW: Neuronal plasticity: Increasing the gain in pain. Science. 288:1765–1769. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Géranton SM and Tochiki KK: Regulation of gene expression and pain states by epigenetic mechanisms. Prog Mol Biol Transl Sci. 131:147–183. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Denk F, McMahon SB and Tracey I: Pain vulnerability: A neurobiological perspective. Nat Neurosci. 17:192–200. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Abzianidze E, Kvaratskhelia E, Tkemaladze T, Kankava K, Gurtskaia G and Tsagareli M: Epigenetic regulation of acute inflammatory pain. Georgian Med News (235): pp78-81, 2014. | |
|
Luo D, Li X, Tang S, Song F, Li W, Xie G, Liang J and Zhou J: Epigenetic modifications in neuropathic pain. Mol Pain. 17(17448069211056767)2021.PubMed/NCBI View Article : Google Scholar | |
|
Denk F and McMahon SB: Chronic pain: Emerging evidence for the involvement of epigenetics. Neuron. 73:435–444. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Crossman A and Neary D: Neuroanatomy: an illustrated colour text. 6th Edition. Churchill Livingstone, Edinburgh, 2019. | |
|
Gupta NK, Vaisnani H, Gupta P and Gandotra A: Morphometric analysis of spinal cord and its termination within the vertebral canal: An observational study in the fetuses of third trimester gestational age. Cureus. 14(e30438)2022.PubMed/NCBI View Article : Google Scholar | |
|
Deng S, Gan L, Liu C, Xu T, Zhou S, Guo Y, Zhang Z, Yang GY, Tian H and Tang Y: Roles of ependymal cells in the physiology and pathology of the central nervous system. Aging Dis. 14:468–483. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Czarniak N, Kamińska J, Matowicka-Karna J and Koper-Lenkiewicz OM: Cerebrospinal fluid-basic concepts review. Biomedicines. 11(1461)2023.PubMed/NCBI View Article : Google Scholar | |
|
Byrne JHe: Neuroscience Online: An Electronic Textbook for the Neurosciences. Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 1997. https://nba.uth.tmc.edu/neuroscience/. | |
|
Haberberger RV, Barry C, Dominguez N and Matusica D: Human dorsal root ganglia. Front Cell Neurosci. 13(271)2019.PubMed/NCBI View Article : Google Scholar | |
|
Devor M: Unexplained peculiarities of the dorsal root ganglion. Pain Suppl. 6:S27–S35. 1999.PubMed/NCBI View Article : Google Scholar | |
|
Todd AJ: Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 11:823–836. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Wercberger R and Basbaum AI: Spinal cord projection neurons: A superficial, and also deep, analysis. Curr Opin Physiol. 11:109–115. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Browne TJ, Hughes DI, Dayas CV, Callister RJ and Graham BA: Projection neuron axon collaterals in the dorsal horn: Placing a new player in spinal cord pain processing. Front Physiol. 11(560802)2020.PubMed/NCBI View Article : Google Scholar | |
|
Yadav A, Matson KJE, Li L, Hua I, Petrescu J, Kang K, Alkaslasi MR, Lee DI, Hasan S, Galuta A, et al: A cellular taxonomy of the adult human spinal cord. Neuron. 111:328–344.e7. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Jiang MC, Liu L and Gebhart GF: Cellular properties of lateral spinal nucleus neurons in the rat L6-S1 spinal cord. J Neurophysiol. 81:3078–3086. 1999.PubMed/NCBI View Article : Google Scholar | |
|
Zholudeva LV, Abraira VE, Satkunendrarajah K, McDevitt TC, Goulding MD, Magnuson DSK and Lane MA: Spinal interneurons as gatekeepers to neuroplasticity after injury or disease. J Neurosci. 41:845–854. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Rexed B: The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol. 96:414–495. 1952.PubMed/NCBI View Article : Google Scholar | |
|
Rexed B: A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol. 100:297–379. 1954.PubMed/NCBI View Article : Google Scholar | |
|
Schoenen J: The dendritic organization of the human spinal cord: The dorsal horn. Neuroscience. 7:2057–2087. 1982.PubMed/NCBI View Article : Google Scholar | |
|
Todd AJ: Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol Pain. 13(1744806917693003)2017.PubMed/NCBI View Article : Google Scholar | |
|
Santos SF, Rebelo S, Derkach VA and Safronov BV: Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol. 581 (Pt 1):241–254. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Zhang H, Cang CL, Kawasaki Y, Liang LL, Zhang YQ, Ji RR and Zhao ZQ: Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCε: A novel pathway for heat hyperalgesia. J Neurosci. 27:12067–12077. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Perry MJ and Lawson SN: Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience. 85:293–310. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Lawson SN, Crepps BA and Perl ER: Relationship of substance P. to afferent characteristics of dorsal root ganglion neurones in guinea-pig. J Physiol. 505 (Pt 1):177–191. 1997.PubMed/NCBI View Article : Google Scholar | |
|
Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskár Z and Todd AJ: Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain. 104:229–239. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Keller AF, Coull JA, Chery N, Poisbeau P and De Koninck Y: Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J Neurosci. 21:7871–7880. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Yasaka T, Kato G, Furue H, Rashid MH, Sonohata M, Tamae A, Murata Y, Masuko S and Yoshimura M: Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J Physiol. 581 (Pt 2):603–618. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Zylka MJ, Rice FL and Anderson DJ: Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron. 45:17–25. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI and Anderson DJ: Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci USA. 106:9075–9080. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Taylor AM, Peleshok JC and Ribeiro-da-Silva A: Distribution of P2X(3)-immunoreactive fibers in hairy and glabrous skin of the rat. J Comp Neurol. 514:555–566. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Bennett DL, Dmietrieva N, Priestley JV, Clary D and McMahon SB: trkA, CGRP and IB4 expression in retrogradely labelled cutaneous and visceral primary sensory neurones in the rat. Neurosci Lett. 206:33–36. 1996.PubMed/NCBI View Article : Google Scholar | |
|
Albuquerque C, Lee CJ, Jackson AC and MacDermott AB: Subpopulations of GABAergic and non-GABAergic rat dorsal horn neurons express Ca2+-permeable AMPA receptors. Eur J Neurosci. 11:2758–2766. 1999.PubMed/NCBI View Article : Google Scholar | |
|
Antal M, Polgár E, Chalmers J, Minson JB, Llewellyn-Smith I, Heizmann CW and Somogyi P: Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord. J Comp Neurol. 314:114–124. 1991.PubMed/NCBI View Article : Google Scholar | |
|
Laing I, Todd AJ, Heizmann CW and Schmidt HH: Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience. 61:123–132. 1994.PubMed/NCBI View Article : Google Scholar | |
|
Melzack R and Wall PD: Pain mechanisms: A new theory. Science. 150:971–979. 1965.PubMed/NCBI View Article : Google Scholar | |
|
Pearce JM: Von Frey's pain spots. J Neurol Neurosurg Psychiatry. 77(1317)2006.PubMed/NCBI View Article : Google Scholar | |
|
Sherrington CS: The integrative action of the nervous system. Yale University Press, New Haven, CT, 1906. | |
|
Rudomin P: Selectivity of the central control of sensory information in the mammalian spinal cord. Adv Exp Med Biol. 508:157–170. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Berta T, Qadri Y, Tan PH and Ji RR: Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin Ther Targets. 21:695–703. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Z, Zheng H, Yu Q and Jing X: Understanding of spinal wide dynamic range neurons and their modulation on pathological pain. J Pain Res. 17:441–457. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Bester H, Chapman V, Besson JM and Bernard JF: Physiological properties of the lamina I spinoparabrachial neurons in the rat. J Neurophysiol. 83:2239–2259. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Davidson S, Zhang X, Khasabov SG, Moser HR, Honda CN, Simone DA and Giesler GJ Jr: Pruriceptive spinothalamic tract neurons: Physiological properties and projection targets in the primate. J Neurophysiol. 108:1711–1723. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Craig AD and Kniffki KD: Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol. 365:197–221. 1985.PubMed/NCBI View Article : Google Scholar | |
|
Hylden JL, Hayashi H, Dubner R and Bennett GJ: Physiology and morphology of the lamina I spinomesencephalic projection. J Comp Neurol. 247:505–515. 1986.PubMed/NCBI View Article : Google Scholar | |
|
Moser HR and Giesler GJ Jr: Itch and analgesia resulting from intrathecal application of morphine: Contrasting effects on different populations of trigeminothalamic tract neurons. J Neurosci. 33:6093–6101. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Sola RG and Pulido P: Neurosurgical treatment of pain. Brain Sci. 12(1584)2022.PubMed/NCBI View Article : Google Scholar | |
|
Mokhtar M and Singh P: Neuroanatomy, Periaqueductal Gray. In: StatPearls. StatPearls Publishing, Treasure Island, FL, 2025. | |
|
Al-Khater KM and Todd AJ: Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol. 515:629–646. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Spike RC, Puskár Z, Andrew D and Todd AJ: A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci. 18:2433–2448. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Al-Khater KM, Kerr R and Todd AJ: A quantitative study of spinothalamic neurons in laminae I, III, and IV in lumbar and cervical segments of the rat spinal cord. J Comp Neurol. 511:1–18. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Polgár E, Wright LL and Todd AJ: A quantitative study of brainstem projections from lamina I neurons in the cervical and lumbar enlargement of the rat. Brain Res. 1308:58–67. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Albe-Fessard D: Electrophysiological methods for the identification of thalamic nuclei. Z Neurol. 205:15–28. 1973.PubMed/NCBI View Article : Google Scholar | |
|
Mendoza JE: Anterolateral System. In: Encyclopedia of Clinical Neuropsychology. Kreutzer JS, DeLuca J and Caplan B (eds). 2011, Springer, New York, NY, pp194-195. | |
|
Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AC, McNamara JO and Williams SM: Central Pain Pathways: The Spinothalamic Tract. Sinauer Associates, Sunderland, MA, 2001. | |
|
Cervero F, Iggo A and Molony V: Responses of spinocervical tract neurones to noxious stimulation of the skin. J Physiol. 267:537–558. 1977.PubMed/NCBI View Article : Google Scholar | |
|
Giesler GJ Jr, Nahin RL and Madsen AM: Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. J Neurophysiol. 51:260–275. 1984.PubMed/NCBI View Article : Google Scholar | |
|
Fields HL, Malick A and Burstein R: Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J Neurophysiol. 74:1742–1759. 1995.PubMed/NCBI View Article : Google Scholar | |
|
Molinari HH: The cutaneous sensitivity of units in laminae VII and VIII of the cat. Brain Res. 234:165–169. 1982.PubMed/NCBI View Article : Google Scholar | |
|
Fields HL, Clanton CH and Anderson SD: Somatosensory properties of spinoreticular neurons in the cat. Brain Res. 120:49–66. 1977.PubMed/NCBI View Article : Google Scholar | |
|
Ghanty I and Schraag S: The quantification and monitoring of intraoperative nociception levels in thoracic surgery: A review. J Thorac Dis. 11:4059–4071. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Zhang ET and Craig AD: Morphology and distribution of spinothalamic lamina I neurons in the monkey. J Neurosci. 17:3274–3284. 1997.PubMed/NCBI View Article : Google Scholar | |
|
Craig AD, Krout K and Andrew D: Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol. 86:1459–1480. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Dostrovsky JO and Craig AD: Cooling-specific spinothalamic neurons in the monkey. J Neurophysiol. 76:3656–3665. 1996.PubMed/NCBI View Article : Google Scholar | |
|
Alberts BJ, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Ion Channels and the Electrical Properties of Membranes. In: Molecular Biology of the Cell. 4th Edition. Garland Science, New York, NY, 2002. | |
|
Häusser M, Spruston N and Stuart GJ: Diversity and dynamics of dendritic signaling. Science. 290:739–744. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Benarroch EE: Ion channels in nociceptors: Recent developments. Neurology. 84:1153–1164. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Fincham JRS: Epigenetic Mechanisms of Gene Regulation. Russo VEA, Martienssen RA and Riggs AD (eds). Cold Spring Harbor Laboratory Press, 1996. 693+xii pages. Price $125. ISBN 0 87969 490 4. Genet Res 69: 159–162, 1997. | |
|
Aneja KK: Mining the epigenetic landscape of medulloblastoma (Review). IJE. 4(4)2024. | |
|
Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49(e324)2017.PubMed/NCBI View Article : Google Scholar | |
|
Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Aneja K, Dixit N and Kumar A: Can RNAi be used as a weapon against COVID-19/SARSCoV-2? Microbiol Disc. 8(1)2020. | |
|
Carthew RW and Sontheimer EJ: Origins and Mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Palade GE: A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1:59–68. 1955.PubMed/NCBI View Article : Google Scholar | |
|
Hoagland MB, Stephenson ML, Scott JF, Hecht LI and Zamecnik PC: A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem. 231:241–257. 1958.PubMed/NCBI | |
|
Mizuno T, Chou MY and Inouye M: A unique mechanism regulating gene expression: Translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA. 81:1966–1970. 1984.PubMed/NCBI View Article : Google Scholar | |
|
Hindley J: Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J Mol Biol. 30:125–136. 1967.PubMed/NCBI View Article : Google Scholar | |
|
Wassarman KM and Storz G: 6S RNA regulates E. coli RNA polymerase activity. Cell. 101:613–623. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Brannan CI, Dees EC, Ingram RS and Tilghman SM: The product of the H19 gene may function as an RNA. Mol Cell Biol. 10:28–36. 1990.PubMed/NCBI View Article : Google Scholar | |
|
Lutz BM, Bekker A and Tao YX: Noncoding RNAs: New players in chronic pain. Anesthesiology. 121:409–417. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Bali KK and Kuner R: Noncoding RNAs: Key molecules in understanding and treating pain. Trends Mol Med. 20:437–448. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Zhang K, Li P, Jia Y, Liu M and Jiang J: Non-coding RNA and n6-methyladenosine modification play crucial roles in neuropathic pain. Front Mol Neurosci. 15(1002018)2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhao LY, Song J, Liu Y, Song CX and Yi C: Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 11:792–808. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Genes Dev. 29:2037–2053. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Fan Y, Lv X, Chen Z, Peng Y and Zhang M: m6A methylation: Critical roles in aging and neurological diseases. Front Mol Neurosci. 16(1102147)2023.PubMed/NCBI View Article : Google Scholar | |
|
Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Yu J, She Y and Ji SJ: m(6)A modification in mammalian nervous system development, functions, disorders, and injuries. Front Cell Dev Biol. 9(679662)2021.PubMed/NCBI View Article : Google Scholar | |
|
Rottman F, Shatkin AJ and Perry RP: Sequences containing methylated nucleotides at the 5' termini of messenger RNAs: Possible implications for processing. Cell. 3:197–199. 1974.PubMed/NCBI View Article : Google Scholar | |
|
Pan Z, Zhang Q, Liu X, Zhou H, Jin T, Hao LY, Xie L, Zhang M, Yang XX, Sun ML, et al: Methyltransferase-like 3 contributes to inflammatory pain by targeting TET1 in YTHDF2-dependent manner. Pain. 162:1960–1976. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Li Y, Guo X, Sun L, Xiao J, Su S, Du S, Li Z, Wu S, Liu W, Mo K, et al: N(6)-methyladenosine demethylase FTO contributes to neuropathic pain by stabilizing G9a expression in primary sensory neurons. Adv Sci (Weinh). 7(1902402)2020.PubMed/NCBI View Article : Google Scholar | |
|
Pan Z, Xue ZY, Li GF, Sun ML, Zhang M, Hao LY, Tang QQ, Zhu LJ and Cao JL: DNA hydroxymethylation by ten-eleven translocation methylcytosine dioxygenase 1 and 3 regulates nociceptive sensitization in a chronic inflammatory pain model. Anesthesiology. 127:147–163. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Hsieh MC, Ho YC, Lai CY, Chou D, Wang HH, Chen GD, Lin TB and Peng HY: Melatonin impedes Tet1-dependent mGluR5 promoter demethylation to relieve pain. J Pineal Res. 63:2017.PubMed/NCBI View Article : Google Scholar | |
|
Hsieh MC, Lai CY, Ho YC, Wang HH, Cheng JK, Chau YP and Peng HY: Tet1-dependent epigenetic modification of BDNF expression in dorsal horn neurons mediates neuropathic pain in rats. Sci Rep. 6(37411)2016.PubMed/NCBI View Article : Google Scholar | |
|
Hernandez CM and Richards JR: Physiology, Sodium Channels. In: StatPearls. StatPearls Publishing, Treasure Island, FL, 2025. | |
|
Catterall WA: From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron. 26:13–25. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Black JA, Liu S, Tanaka M, Cummins TR and Waxman SG: Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain. 108:237–247. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Dib-Hajj SD, Geha P and Waxman SG: Sodium channels in pain disorders: Pathophysiology and prospects for treatment. Pain. 158 (Suppl 1):S97–S107. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Waxman SG, Kocsis JD and Black JA: Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol. 72:466–470. 1994.PubMed/NCBI View Article : Google Scholar | |
|
Baron R: Mechanisms of disease: Neuropathic pain-a clinical perspective. Nat Clin Pract Neurol. 2:95–106. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Cummins TR, Dib-Hajj SD and Waxman SG: Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci. 24:8232–8236. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, Fan J, Bu D, Liu B, Fan Z, et al: Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. 41:171–174. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Ørstavik K, Mørk C, Kvernebo K and Jørum E: Pain in primary erythromelalgia-a neuropathic component? Pain. 110:531–538. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Legroux-Crespel E, Sassolas B, Guillet G, Kupfer I, Dupre D and Misery L: Treatment of familial erythermalgia with the association of lidocaine and mexiletine. Ann Dermatol Venereol. 130:429–433. 2003.PubMed/NCBI(In French). | |
|
Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, et al: The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci. 2:541–548. 1999.PubMed/NCBI View Article : Google Scholar | |
|
Djouhri L, Fang X, Okuse K, Wood JN, Berry CM and Lawson SN: The TTX-resistant sodium channel Nav1.8 (SNS/PN3): Expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol. 550 (Pt 3):739–752. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Fang X, Djouhri L, Black JA, Dib-Hajj SD, Waxman SG and Lawson SN: The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci. 22:7425–7433. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Fjell J, Hjelmström P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman SG and Black JA: Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Neuroreport. 11:199–202. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Dib-Hajj SD, Tyrrell L, Black JA and Waxman SG: NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci USA. 95:8963–8968. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Thompson R and Chan C: NRSF and its epigenetic effectors: New treatments for neurological disease. Brain Sci. 8(226)2018.PubMed/NCBI View Article : Google Scholar | |
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX and Zhu C: Roles of the neuron-restrictive silencer factor in the pathophysiological process of the central nervous system. Front Cell Dev Biol. 10(834620)2022.PubMed/NCBI View Article : Google Scholar | |
|
Uchida H, Ma L and Ueda H: Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. J Neurosci. 30:4806–4814. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Ding HH, Zhang SB, Lv YY, Ma C, Liu M, Zhang KB, Ruan XC, Wei JY, Xin WJ and Wu SL: TNF-α/STAT3 pathway epigenetically upregulates Nav1.6 expression in DRG and contributes to neuropathic pain induced by L5-VRT. J Neuroinflammation. 16(29)2019.PubMed/NCBI View Article : Google Scholar | |
|
Chen HP, Zhou W, Kang LM, Yan H, Zhang L, Xu BH and Cai WH: Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury. Neurochem Res. 39:76–83. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Ye G, Zhang Y, Zhao J, Chen Y, Kong L, Sheng C and Yuan L: miR-384-5p ameliorates neuropathic pain by targeting SCN3A in a rat model of chronic constriction injury. Neurol Res. 42:299–307. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Cai W, Zhao Q, Shao J, Zhang J, Li L, Ren X, Su S, Bai Q, Li M, Chen X, et al: MicroRNA-182 alleviates neuropathic pain by regulating Nav1.7 following spared nerve injury in rats. Sci Rep. 8(16750)2018.PubMed/NCBI View Article : Google Scholar | |
|
Shao J, Cao J, Wang J, Ren X, Su S, Li M, Li Z, Zhao Q and Zang W: MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat. Mol Pain. 12(1744806916671523)2016.PubMed/NCBI View Article : Google Scholar | |
|
Su H, Xiaohui X, He X, Liu C, Wang G and Zhou C: The miR-455-5p/ERα36 axis regulates mammalian neuronal viability and axonal regeneration. Neurosci Lett. 735(135159)2020.PubMed/NCBI View Article : Google Scholar | |
|
Li L, Shao J, Wang J, Liu Y, Zhang Y, Zhang M, Zhang J, Ren X, Su S, Li Y, et al: MiR-30b-5p attenuates oxaliplatin-induced peripheral neuropathic pain through the voltage-gated sodium channel Na(v)1.6 in rats. Neuropharmacology. 153:111–120. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Tao Z, Zhou Y, Zeng B, Yang X and Su M: MicroRNA-183 attenuates osteoarthritic pain by inhibiting the TGFα-mediated CCL2/CCR2 signalling axis. Bone Joint Res. 10:548–557. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Sakai A, Saitow F, Miyake N, Miyake K, Shimada T and Suzuki H: miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain. 136 (Pt 9):2738–2750. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Hille B: Ionic channels in nerve membranes, 50 years on. Prog Biophys Mol Biol. 169-170:12–20. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Heginbotham L, Lu Z, Abramson T and MacKinnon R: Mutations in the K+ channel signature sequence. Biophys J. 66:1061–1067. 1994.PubMed/NCBI View Article : Google Scholar | |
|
MacKinnon R: Potassium channels. FEBS Lett. 555:62–65. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, et al: International union of pharmacology. XLI. Compendium of voltage-gated ion channels: Potassium channels. Pharmacol Rev. 55:583–586. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Ocaña M, Cendán CM, Cobos EJ, Entrena JM and Baeyens JM: Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol. 500:203–219. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Takeda M, Tanimoto T, Ikeda M, Kadoi J, Nasu M and Matsumoto S: Opioidergic modulation of excitability of rat trigeminal root ganglion neuron projections to the superficial layer of cervical dorsal horn. Neuroscience. 125:995–1008. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Clark JD and Tempel BL: Hyperalgesia in mice lacking the Kv1.1 potassium channel gene. Neurosci Lett. 251:121–124. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Pereira V, Lamoine S, Cuménal M, Lolignier S, Aissouni Y, Pizzoccaro A, Prival L, Balayssac D, Eschalier A, Bourinet E and Busserolles J: Epigenetics involvement in oxaliplatin-induced potassium channel transcriptional downregulation and hypersensitivity. Mol Neurobiol. 58:3575–3587. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Shi DN, Yuan YT, Ye D, Kang LM, Wen J and Chen HP: MiR-183-5p alleviates chronic constriction injury-induced neuropathic pain through inhibition of TREK-1. Neurochem Res. 43:1143–1149. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhang J, Rong L, Shao J, Zhang Y, Liu Y, Zhao S, Li L, Yu W, Zhang M, Ren X, et al: Epigenetic restoration of voltage-gated potassium channel Kv1.2 alleviates nerve injury-induced neuropathic pain. J Neurochem. 156:367–378. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Sakai A, Saitow F, Maruyama M, Miyake N, Miyake K, Shimada T, Okada T and Suzuki H: MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain. Nat Commun. 8(16079)2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhao X, Tang Z, Zhang H, Atianjoh FE, Zhao JY, Liang L, Wang W, Guan X, Kao SC, Tiwari V, et al: A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci. 16:1024–1031. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Catterall WA: Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 3(a003947)2011.PubMed/NCBI View Article : Google Scholar | |
|
Zamponi GW, Striessnig J, Koschak A and Dolphin AC: The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 67:821–870. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Shields K and van den Maagdenberg A: Ion Channels Relevant to Pain. International Headche Society, 2005. | |
|
Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, et al: Nomenclature of voltage-gated calcium channels. Neuron. 25:533–535. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP and Catterall WA: Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci. 15:6403–6418. 1995.PubMed/NCBI View Article : Google Scholar | |
|
Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP and Catterall WA: Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron. 9:1099–1115. 1992.PubMed/NCBI View Article : Google Scholar | |
|
Westenbroek RE, Ahlijanian MK and Catterall WA: Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature. 347:281–284. 1990.PubMed/NCBI View Article : Google Scholar | |
|
Craig PJ, Beattie RE, Folly EA, Banerjee MD, Reeves MB, Priestley JV, Carney SL, Sher E, Perez-Reyes E and Volsen SG: Distribution of the voltage-dependent calcium channel alpha1G subunit mRNA and protein throughout the mature rat brain. Eur J Neurosci. 11:2949–2964. 1999.PubMed/NCBI View Article : Google Scholar | |
|
Huang LY: Calcium channels in isolated rat dorsal horn neurones, including labelled spinothalamic and trigeminothalamic cells. J Physiol. 411:161–177. 1989.PubMed/NCBI View Article : Google Scholar | |
|
Ryu PD and Randic M: Low- and high-voltage-activated calcium currents in rat spinal dorsal horn neurons. J Neurophysiol. 63:273–285. 1990.PubMed/NCBI View Article : Google Scholar | |
|
Voisin DL and Nagy F: Sustained L-type calcium currents in dissociated deep dorsal horn neurons of the rat: Characteristics and modulation. Neuroscience. 102:461–472. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Morisset V and Nagy F: Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cord. J Neurosci. 19:7309–7316. 1999.PubMed/NCBI View Article : Google Scholar | |
|
Morisset V and Nagy F: Nociceptive integration in the rat spinal cord: Role of non-linear membrane properties of deep dorsal horn neurons. Eur J Neurosci. 10:3642–3652. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M and Morelli C: From HDAC to voltage-gated ion channels: What's next? The long road of antiepileptic drugs repositioning in cancer. Cancers (Basel). 14(4401)2022.PubMed/NCBI View Article : Google Scholar | |
|
Clapham DE: Calcium signaling. Cell. 131:1047–1058. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Chawla S, Hardingham GE, Quinn DR and Bading H: CBP: A signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science. 281:1505–1509. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Gräff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, et al: An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 483:222–226. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Hernández-Oliveras A and Zarain-Herzberg A: The role of Ca(2+)-signaling in the regulation of epigenetic mechanisms. Cell Calcium. 117(102836)2024.PubMed/NCBI View Article : Google Scholar | |
|
Tiwari VK, Stadler MB, Wirbelauer C, Paro R, Schübeler D and Beisel C: A chromatin-modifying function of JNK during stem cell differentiation. Nat Genet. 44:94–100. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Glass CK and Rosenfeld MG: The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14:121–141. 2000.PubMed/NCBI | |
|
Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Müller JM, Greschik H, Kirfel J, Ji S, et al: Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature. 464:792–796. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AH, Günther T, Buettner R and Schüle R: LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 437:436–439. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Lavoie G and St-Pierre Y: Phosphorylation of human DNMT1: Implication of cyclin-dependent kinases. Biochem Biophys Res Commun. 409:187–192. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Estève PO, Chang Y, Samaranayake M, Upadhyay AK, Horton JR, Feehery GR, Cheng X and Pradhan S: A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol. 18:42–48. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Sugiyama Y, Hatano N, Sueyoshi N, Suetake I, Tajima S, Kinoshita E, Kinoshita-Kikuta E, Koike T and Kameshita I: The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1delta/epsilon. Biochem J. 427:489–497. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Deplus R, Blanchon L, Rajavelu A, Boukaba A, Defrance M, Luciani J, Rothé F, Dedeurwaerder S, Denis H, Brinkman AB, et al: Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a. Cell Rep. 8:743–753. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Lipscombe D and Lopez-Soto EJ: Epigenetic control of ion channel expression and cell-specific splicing in nociceptors: Chronic pain mechanisms and potential therapeutic targets. Channels (Austin). 15:156–164. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y and Zhang Y: Regulation of TET protein stability by calpains. Cell Rep. 6:278–284. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Luchsinger LL, Strikoudis A, Danzl NM, Bush EC, Finlayson MO, Satwani P, Sykes M, Yazawa M and Snoeck HW: Harnessing hematopoietic stem cell low intracellular calcium improves their maintenance in vitro. Cell Stem Cell. 25:225–240.e7. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, et al: Widespread transcription at neuronal activity-regulated enhancers. Nature. 465:182–187. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R and Greenberg ME: Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science. 302:885–889. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, et al: Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 52:255–269. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Kolski-Andreaco A, Balut CM, Bertuccio CA, Wilson AS, Rivers WM, Liu X, Gandley RE, Straub AC, Butterworth MB, Binion D and Devor DC: Histone deacetylase inhibitors (HDACi) increase expression of KCa2.3 (SK3) in primary microvascular endothelial cells. Am J Physiol Cell Physiol. 322:C338–C353. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA, Drutel G, Léger C, Calas A, Nagy F and Landry M: Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: Role in pain. EMBO J. 30:3830–3841. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Qi R, Cao J, Sun Y, Li Y, Huang Z, Jiang D, Jiang XH, Snutch TP, Zhang Y and Tao J: Histone methylation-mediated microRNA-32-5p down-regulation in sensory neurons regulates pain behaviors via targeting Cav3.2 channels. Proc Natl Acad Sci USA. 119(e2117209119)2022.PubMed/NCBI View Article : Google Scholar | |
|
Kynast KL, Russe OQ, Möser CV, Geisslinger G and Niederberger E: Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain. 154:368–376. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Zhao YY, Wu ZJ, Zhu LJ, Niu TX, Liu B and Li J: Emerging roles of miRNAs in neuropathic pain: From new findings to novel mechanisms. Front Mol Neurosci. 16(1110975)2023.PubMed/NCBI View Article : Google Scholar | |
|
Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ, Caron MG, Sales N, Willoughby D, Elmen J, Hansen HF, et al: MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA. 106:3507–3512. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Pan Z, Zhu LJ, Li YQ, Hao LY, Yin C, Yang JX, Guo Y, Zhang S, Hua L, Xue ZY, et al: Epigenetic modification of spinal miR-219 expression regulates chronic inflammation pain by targeting CaMKIIγ. J Neurosci. 34:9476–9483. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Almén MS, Nordström KJ, Fredriksson R and Schiöth HB: Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 7(50)2009.PubMed/NCBI View Article : Google Scholar | |
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L and Wang B: TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther. 8(261)2023.PubMed/NCBI View Article : Google Scholar | |
|
Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G and Voets T: Gating of TRP channels: A voltage connection? J Physiol. 567 (Pt 1):35–44. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Minke B and Selinger Z: Chapter 5 Inositol lipid pathway in fly photoreceptors: Excitation, calcium mobilization and retinal degeneration. Prog Ret Res. 11:99–124. 1991. | |
|
Transient Receptor Potential channels (TRP) in GtoPdb v.2023.1. IUPHAR/BPS Guide to Pharmacology CITE, 2023. 2023(1). | |
|
Kanta Acharya T, Kumar A, Kumar Majhi R, Kumar S, Chakraborty R, Tiwari A, Smalla KH, Liu X, Chang YT, Gundelfinger ED and Goswami C: TRPV4 acts as a mitochondrial Ca(2+)-importer and regulates mitochondrial temperature and metabolism. Mitochondrion. 67:38–58. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Perálvarez-Marín A, Doñate-Macian P and Gaudet R: What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel? FEBS J. 280:5471–5487. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B and Bindels RJ: Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem. 275:3963–3969. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G and Bindels RJ: The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem. 276:1020–1025. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Yue L, Peng JB, Hediger MA and Clapham DE: CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature. 410:705–709. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH and Bindels RJ: Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem. 274:8375–8378. 1999.PubMed/NCBI View Article : Google Scholar | |
|
Hsu WL and Yoshioka T: Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin. Biophysics (Nagoya-shi). 11:25–32. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Zitt C, Halaszovich CR and Lückhoff A: The TRP family of cation channels: Probing and advancing the concepts on receptor-activated calcium entry. Prog Neurobiol. 66:243–264. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Wang Y and Wang DH: Protective effect of TRPV1 against renal fibrosis via inhibition of TGF-β/Smad signaling in DOCA-salt hypertension. Mol Med. 17:1204–1212. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Yuan J, Liang X, Zhou W, Feng J, Wang Z, Shen S, Guan X, Zhao L and Deng F: TRPA1 promotes cisplatin-induced nephrotoxicity through inflammation mediated by the MAPK/NF-κB signaling pathway. Ann Transl Med. 9(1578)2021.PubMed/NCBI View Article : Google Scholar | |
|
Cao S, Li Q, Hou J, Li Z, Cao X, Liu X and Qin B: Intrathecal TRPM8 blocking attenuates cold hyperalgesia via PKC and NF-κB signaling in the dorsal root ganglion of rats with neuropathic pain. J Pain Res. 12:1287–1296. 2019.PubMed/NCBI View Article : Google Scholar | |
|
An D, Qi X, Li K, Xu W, Wang Y, Chen X, Sha S, Wu C, Du Y and Chen L: Blockage of TRPV4 downregulates the nuclear factor-Kappa B signaling pathway to inhibit inflammatory responses and neuronal death in mice with pilocarpine-induced status epilepticus. Cell Mol Neurobiol. 43:1283–1300. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Chen M, Dong X, Deng H, Ye F, Zhao Y, Cheng J, Dan G, Zhao J, Sai Y, Bian X and Zou Z: Targeting TRPV1-mediated autophagy attenuates nitrogen mustard-induced dermal toxicity. Signal Transduct Target Ther. 6(29)2021.PubMed/NCBI View Article : Google Scholar | |
|
Zou Y, Chen M, Zhang S, Miao Z, Wang J, Lu X and Zhao X: TRPC5-induced autophagy promotes the TMZ-resistance of glioma cells via the CAMMKβ/AMPKα/mTOR pathway. Oncol Rep. 41:3413–3423. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Szrejder M, Rachubik P, Rogacka D, Audzeyenka I, Rychłowski M, Kreft E, Angielski S and Piwkowska A: Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions. Biochim Biophys Acta Mol Basis Dis. 1866(165610)2020.PubMed/NCBI View Article : Google Scholar | |
|
Levine JD and Alessandri-Haber N: TRP channels: Targets for the relief of pain. Biochim Biophys Acta. 1772:989–1003. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI and Julius D: The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 21:531–543. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM and Patapoutian A: Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science. 307:1468–1472. 2005.PubMed/NCBI View Article : Google Scholar | |
|
McKemy DD, Neuhausser WM and Julius D: Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 416:52–58. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, et al: A heat-sensitive TRP channel expressed in keratinocytes. Science. 296:2046–2049. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID and Julius D: Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 427:260–265. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ and Patapoutian A: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 41:849–857. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Iannone LF, De Logu F, Geppetti P and De Cesaris F: The role of TRP ion channels in migraine and headache. Neurosci Lett. 768(136380)2022.PubMed/NCBI View Article : Google Scholar | |
|
Clapham DE, Runnels LW and Strübing C: The TRP ion channel family. Nat Rev Neurosci. 2:387–396. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Lightman SL: The neuroendocrinology of stress: A never ending story. J Neuroendocrinol. 20:880–884. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Storr MA and Sharkey KA: The endocannabinoid system and gut-brain signalling. Curr Opin Pharmacol. 7:575–582. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Hong S, Fan J, Kemmerer ES, Evans S, Li Y and Wiley JW: Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut. 58:202–210. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Hong S, Zheng G, Wu X, Snider NT, Owyang C and Wiley JW: Corticosterone mediates reciprocal changes in CB 1 and TRPV1 receptors in primary sensory neurons in the chronically stressed rat. Gastroenterology. 140:627–637.e4. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Hong S, Zheng G and Wiley JW: Epigenetic regulation of genes that modulate chronic stress-induced visceral pain in the peripheral nervous system. Gastroenterology. 148:148–157.e7. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Malcangio M, Ramer MS, Boucher TJ and McMahon SB: Intrathecally injected neurotrophins and the release of substance P. from the rat isolated spinal cord. Eur J Neurosci. 12:139–144. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Fukuoka T, Kondo E, Dai Y, Hashimoto N and Noguchi K: Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci. 21:4891–4900. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P, Donà G, Fossati G, Sozzani S, Azam T, et al: The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA. 99:2995–3000. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Chung YL, Lee MY, Wang AJ and Yao LF: A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther. 8:707–717. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, Mascagni P, Fantuzzi G, Dinarello CA and Siegmund B: Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol. 176:5015–5022. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Leoni F, Fossati G, Lewis EC, Lee JK, Porro G, Pagani P, Modena D, Moras ML, Pozzi P, Reznikov LL, et al: The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med. 11:1–15. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Ito K, Barnes PJ and Adcock IM: Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 20:6891–6903. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Rahman I, Gilmour PS, Jimenez LA and MacNee W: Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: Potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem. 234-235:239–248. 2002.PubMed/NCBI | |
|
Chiechio S, Zammataro M, Morales ME, Busceti CL, Drago F, Gereau RW IV, Copani A and Nicoletti F: Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol. 75:1014–1020. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, Ren B and Natarajan R: Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem. 283:26771–26781. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Li J, Zhang H, Du Q, Gu J, Wu J, Liu Q, Li Z, Zhang T, Xu J and Xie R: Research progress on TRPA1 in diseases. J Membr Biol. 256:301–316. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Wang Q, Chen K, Zhang F, Peng K, Wang Z, Yang D and Yang Y: TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression. Atherosclerosis. 301:44–53. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Wang Z, Ye D, Ye J, Wang M, Liu J, Jiang H, Xu Y, Zhang J, Chen J and Wan J: The TRPA1 channel in the cardiovascular system: Promising features and challenges. Front Pharmacol. 10(1253)2019.PubMed/NCBI View Article : Google Scholar | |
|
Tajerian M, Alvarado S, Millecamps M, Dashwood T, Anderson KM, Haglund L, Ouellet J, Szyf M and Stone LS: DNA methylation of SPARC and chronic low back pain. Mol Pain. 7(65)2011.PubMed/NCBI View Article : Google Scholar | |
|
Viet CT, Ye Y, Dang D, Lam DK, Achdjian S, Zhang J and Schmidt BL: Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain. Pain. 152:2323–2332. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Gombert S, Rhein M, Eberhardt M, Münster T, Bleich S, Leffler A and Frieling H: Epigenetic divergence in the TRPA1 promoter correlates with pressure pain thresholds in healthy individuals. Pain. 158:698–704. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Hwang HW and Mendell JT: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 94:776–780. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Qureshi RA, Tian Y, McDonald MK, Capasso KE, Douglas SR, Gao R, Orlova IA, Barrett JE, Ajit SK and Sacan A: Circulating microRNA signatures in rodent models of pain. Mol Neurobiol. 53:3416–3427. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D and Nair S: New Vistas in microRNA regulatory interactome in neuropathic pain. Front Pharmacol. 12(778014)2021.PubMed/NCBI View Article : Google Scholar | |
|
Wu Y, Gu Y and Shi B: miR-590-3p Alleviates diabetic peripheral neuropathic pain by targeting RAP1A and suppressing infiltration by the T cells. Acta Biochim Pol. 67:587–593. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Liu L, Xu D, Wang T, Zhang Y, Yang X, Wang X and Tang Y: Epigenetic reduction of miR-214-3p upregulates astrocytic colony-stimulating factor-1 and contributes to neuropathic pain induced by nerve injury. Pain. 161:96–108. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Wang Z, Liu F, Wei M, Qiu Y, Ma C, Shen L and Huang Y: Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway. J Neuroinflammation. 15(179)2018.PubMed/NCBI View Article : Google Scholar | |
|
Hou J, Deng Q, Deng X, Zhong W, Liu S and Zhong Z: MicroRNA-146a-5p alleviates lipopolysaccharide-induced NLRP3 inflammasome injury and pro-inflammatory cytokine production via the regulation of TRAF6 and IRAK1 in human umbilical vein endothelial cells (HUVECs). Ann Transl Med. 9(1433)2021.PubMed/NCBI View Article : Google Scholar | |
|
Xia LX, Ke C and Lu JM: NEAT1 contributes to neuropathic pain development through targeting miR-381/HMGB1 axis in CCI rat models. J Cell Physiol. 233:7103–7111. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhan LY, Lei SQ, Zhang BH, Li WL, Wang HX, Zhao B, Cui SS, Ding H and Huang QM: Overexpression of miR-381 relieves neuropathic pain development via targeting HMGB1 and CXCR4. Biomed Pharmacother. 107:818–823. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Tan Y, Yang J, Xiang K, Tan Q and Guo Q: Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res. 40:550–560. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Xia L, Zhang Y and Dong T: Inhibition of MicroRNA-221 alleviates neuropathic pain through targeting suppressor of cytokine signaling 1. J Mol Neurosci. 59:411–420. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Liu Y, Wan X, Yuan Y, Huang J, Jiang Y, Zhao K, Wang Y, Liu Y, Wang Q and Jin H: Opposite effects of miR-155 in the initial and later stages of lipopolysaccharide (LPS)-induced inflammatory response. J Zhejiang Univ Sci B. 22:590–598. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Fila M, Pawlowska E, Szczepanska J and Blasiak J: Epigenetic connections of the TRPA1 ion channel in pain transmission and neurogenic inflammation-a therapeutic perspective in migraine? Mol Neurobiol. 60:5578–5591. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Hao LY, Zhang M, Tao Y, Xu H, Liu Q, Yang K, Wei R, Zhou H, Jin T, Liu XD, et al: miRNA-22 Upregulates Mtf1 in dorsal horn neurons and is essential for inflammatory pain. Oxid Med Cell Longev. 2022(8622388)2022.PubMed/NCBI View Article : Google Scholar | |
|
Bao Y, Wang S, Xie Y, Jin K, Bai Y and Shan S: MiR-28-5p relieves neuropathic pain by targeting Zeb1 in CCI rat models. J Cell Biochem. 119:8555–8563. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Yan XT, Lu JM, Wang Y, Cheng XL, He XH, Zheng WZ, Chen H and Wang YL: XIST accelerates neuropathic pain progression through regulation of miR-150 and ZEB1 in CCI rat models. J Cell Physiol. 233:6098–6106. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Yan XT, Zhao Y, Cheng XL, He XH, Wang Y, Zheng WZ, Chen H and Wang YL: Inhibition of miR-200b/miR-429 contributes to neuropathic pain development through targeting zinc finger E box binding protein-1. J Cell Physiol. 233:4815–4824. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Shen F, Zheng H, Zhou L, Li W, Zhang Y and Xu X: LINC00657 expedites neuropathic pain development by modulating miR-136/ZEB1 axis in a rat model. J Cell Biochem. 120:1000–1010. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Pan Z, Shan Q, Gu P, Wang XM, Tai LW, Sun M, Luo X, Sun L and Cheung CW: miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis. J Neuroinflammation. 15(29)2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhang N, Lin J, Lin VPH, Milbreta U, Chin JS, Chew EGY, Lian MM, Foo JN, Zhang K, Wu W and Chew SY: A 3D fiber-hydrogel based non-viral gene delivery platform reveals that microRNAs promote axon regeneration and enhance functional recovery following spinal cord injury. Adv Sci (Weinh). 8(e2100805)2021.PubMed/NCBI View Article : Google Scholar | |
|
Li J, Zhu Y, Ma Z, Liu Y, Sun Z and Wu Y: miR-140 ameliorates neuropathic pain in CCI rats by targeting S1PR1. J Recept Signal Transduct Res. 41:401–407. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Wang W and Li R: MiR-216a-5p alleviates chronic constriction injury-induced neuropathic pain in rats by targeting KDM3A and inactivating Wnt/β-catenin signaling pathway. Neurosci Res. 170:255–264. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Miao F, Wang R, Cui G and Li X, Wang T and Li X: Engagement of MicroRNA-155 in exaggerated oxidative stress signal and TRPA1 in the dorsal horn of the spinal cord and neuropathic pain during chemotherapeutic oxaliplatin. Neurotox Res. 36:712–723. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Zhang H and Chen H: TRPA1 involved in miR-141-5p-alleviated neuropathic pain induced by oxaliplatin. Neuroreport. 32:284–290. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Duan Z, Zhang J, Li J, Pang X and Wang H: Inhibition of microRNA-155 reduces neuropathic pain during chemotherapeutic bortezomib via engagement of neuroinflammation. Front Oncol. 10(416)2020.PubMed/NCBI View Article : Google Scholar | |
|
Winkler CW, Taylor KG and Peterson KE: Location is everything: let-7b microRNA and TLR7 signaling results in a painful TRP. Sci Signal. 7(pe14)2014.PubMed/NCBI View Article : Google Scholar | |
|
Ji RR: Neuroimmune interactions in itch: Do chronic itch, chronic pain, and chronic cough share similar mechanisms? Pulm Pharmacol Ther. 35:81–86. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Sakai A and Suzuki H: Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats. Biochem Biophys Res Commun. 435:176–181. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Ni J, Gao Y, Gong S, Guo S, Hisamitsu T and Jiang X: Regulation of µ-opioid type 1 receptors by microRNA134 in dorsal root ganglion neurons following peripheral inflammation. Eur J Pain. 17:313–323. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Kress M, Hüttenhofer A, Landry M, Kuner R, Favereaux A, Greenberg D, Bednarik J, Heppenstall P, Kronenberg F, Malcangio M, et al: microRNAs in nociceptive circuits as predictors of future clinical applications. Front Mol Neurosci. 6(33)2013.PubMed/NCBI View Article : Google Scholar | |
|
Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR, et al: Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci. 30:10860–10871. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Tam Tam S, Bastian I, Zhou XF, Vander Hoek M, Michael MZ, Gibbins IL and Haberberger RV: MicroRNA-143 expression in dorsal root ganglion neurons. Cell Tissue Res. 346:163–173. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Xie S, Jin L, He J, Fu J, Yin T, Ren J and Liu W: Analysis of mRNA m6A modification and mRNA expression profiles in middle ear cholesteatoma. Front Genet. 14(1188048)2023.PubMed/NCBI View Article : Google Scholar | |
|
Turgambayeva A, Duisekova S, Tashenova G, Tulebayeva A, Kapanova G, Akhenbekova A and Farooqi AA: Role of TRP channels in carcinogenesis and metastasis: Pathophysiology and regulation by non-coding RNAs. Noncoding RNA Res. 9:359–366. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Guo S, King P, Liang E, Guo AA and Liu M: LncRNA HOTAIR sponges miR-301a-3p to promote glioblastoma proliferation and invasion through upregulating FOSL1. Cell Signal. 94(110306)2022.PubMed/NCBI View Article : Google Scholar | |
|
Wei CW, Luo T, Zou SS and Wu AS: The role of long noncoding RNAs in central nervous system and neurodegenerative diseases. Front Behav Neurosci. 12(175)2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Tian K, Zhou E, Xue X, Yan S, Chen Y, Qiao P, Yang L and Chen X: hsa_circ_0023305 enhances laryngeal squamous cell carcinoma progression and modulates TRPM7 via miR-218-5p sponging. Biomed Res Int. 2021(9968499)2021.PubMed/NCBI View Article : Google Scholar | |
|
Cummins TR, Sheets PL and Waxman SG: The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain. 131:243–257. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Cardenas CA, Cardenas CG, de Armendi AJ and Scroggs RS: Carbamazepine interacts with a slow inactivation state of NaV1.8-like sodium channels. Neurosci Lett. 408:129–134. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Ekberg J, Jayamanne A, Vaughan CW, Aslan S, Thomas L, Mould J, Drinkwater R, Baker MD, Abrahamsen B, Wood JN, et al: muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci USA. 103:17030–17035. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Bulaj G, Zhang MM, Green BR, Fiedler B, Layer RT, Wei S, Nielsen JS, Low SJ, Klein BD, Wagstaff JD, et al: Synthetic muO-conotoxin MrVIB blocks TTX-resistant sodium channel NaV1.8 and has a long-lasting analgesic activity. Biochemistry. 45:7404–7414. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao YD, Garsky VM, et al: Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry. 41:14734–14747. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Hwang JY and Zukin RS: REST, a master transcriptional regulator in neurodegenerative disease. Curr Opin Neurobiol. 48:193–200. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Noland CL, Chua HC, Kschonsak M, Heusser SA, Braun N, Chang T, Tam C, Tang J, Arthur CP, Ciferri C, et al: Structure-guided unlocking of Na(X) reveals a non-selective tetrodotoxin-sensitive cation channel. Nat Commun. 13(1416)2022.PubMed/NCBI View Article : Google Scholar | |
|
Kim CS, Hwang CK, Choi HS, Song KY, Law PY, Wei LN and Loh HH: Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the mu opioid receptor gene. J Biol Chem. 279:46464–46473. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Kim CS, Choi HS, Hwang CK, Song KY, Lee BK, Law PY, Wei LN and Loh HH: Evidence of the neuron-restrictive silencer factor (NRSF) interaction with Sp3 and its synergic repression to the mu opioid receptor (MOR) gene. Nucleic Acids Res. 34:6392–6403. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Laumet G, Garriga J, Chen SR, Zhang Y, Li DP, Smith TM, Dong Y, Jelinek J, Cesaroni M, Issa JP and Pan HL: G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. Nat Neurosci. 18:1746–1755. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Ueda H, Kurita JI, Neyama H, Hirao Y, Kouji H, Mishina T, Kasai M, Nakano H, Yoshimori A and Nishimura Y: A mimetic of the mSin3-binding helix of NRSF/REST ameliorates abnormal pain behavior in chronic pain models. Bioorg Med Chem Lett. 27:4705–4709. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Conforti P, Zuccato C, Gaudenzi G, Ieraci A, Camnasio S, Buckley NJ, Mutti C, Cotelli F, Contini A and Cattaneo E: Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington's disease models. J Neurochem. 127:22–35. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6(a018713)2014.PubMed/NCBI View Article : Google Scholar | |
|
Matsushita Y, Araki K, Omotuyi Oi, Mukae T and Ueda H: HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model. Br J Pharmacol. 170:991–998. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Uchida H, Matsushita Y, Araki K, Mukae T and Ueda H: Histone deacetylase inhibitors relieve morphine resistance in neuropathic pain after peripheral nerve injury. J Pharmacol Sci. 128:208–211. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Shao C, Gao Y, Jin D, Xu X, Tan S, Yu H, Zhao Q, Zhao L, Wang W and Wang D: DNMT3a methylation in neuropathic pain. J Pain Res. 10:2253–2262. 2017.PubMed/NCBI View Article : Google Scholar |