|
1
|
Ronsin C, Muscatelli F, Mattei MG and
Breathnach R: A novel putative receptor protein tyrosine kinase of
the met family. Oncogene. 8:1195–1202. 1993.PubMed/NCBI
|
|
2
|
Gaudino G, Avantaggiato V, Follenzi A,
Acampora D, Simeone A and Comoglio PM: The proto-oncogene RON is
involved in development of epithelial, bone and neuro-endocrine
tissues. Oncogene. 11:2627–2637. 1995.PubMed/NCBI
|
|
3
|
Angeloni D, Danilkovitch-Miagkova A, Ivano
SV, Breathnach R, Johnson BE, Leonard EJ and Lerman MI: Gene
structure of the human receptor tyrosine kinase RON and mutation
analysis in lung cancer samples. Genes Chromosomes Cancer.
29:147–156. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zabarovsky ER, Lerman MI and Minna JD:
Tumor suppressor genes on chromosome 3p involved in the
pathogenesis of lung and other cancers. Oncogene. 21:6915–6935.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gaudino G, Follenzi A, Naldini L, et al:
RON is a heterodimeric tyrosine kinase receptor activated by the
HGF homologue MSP. EMBO J. 13:3524–3532. 1994.PubMed/NCBI
|
|
6
|
Wang MH, Ronsin C, Gesnel MC, Coupey L,
Skeel A, Leonard EJ and Breathnach R: Identification of the ron
gene product as the receptor for the human macrophage stimulating
protein. Science. 266:117–119. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Stella GM, Benvenuti S and Comoglio PM:
Targeting the MET oncogene in cancer and metastases. Expert Opin
Investig Drugs. 19:1381–1394. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Medico E, Mongiovi AM, Huff J, Jelinek MA,
Follenzi A, Gaudino G, Parsons JT and Comoglio PM: The tyrosine
kinase receptors Ron and Sea control ‘scattering’ and morphogenesis
of liver progenitor cells in vitro. Mol Biol Cell. 7:495–504.
1996.
|
|
9
|
Wang MH, Lee W, Luo YL, Weis MT and Yao
HP: Altered expression of the RON receptor tyrosine kinase in
various epithelial cancers and its contribution to tumourigenic
phenotypes in thyroid cancer cells. J Pathol. 213:402–411. 2007.
View Article : Google Scholar
|
|
10
|
Camp ER, Yang A, Gray MJ, Fan F, Hamilton
SR, Evans DB, Hooper AT, Pereira DS, Hicklin DJ and Ellis LM:
Tyrosine kinase receptor RON in human pancreatic cancer:
expression, function, and validation as a target. Cancer.
109:1030–1039. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ghigna C, Giordano S, Shen H, Benvenuto F,
Castiglioni F, Comoglio PM, Green MR, Riva S and Biamonti G: Cell
motility is controlled by SF2/ASF through alternative splicing of
the Ron protooncogene. Mol Cell. 20:881–890. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lu Y, Yao HP and Wang MH: Multiple
variants of the RON receptor tyrosine kinase: biochemical
properties, tumorigenic activities, and potential drug targets.
Cancer Lett. 257:157–164. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Moon H, Cho S, Yang X, Zhou J, Loh TJ,
Zheng X and Shen H: Identification of novel splicing variants from
RON proto-oncogene pre-mRNA. Oncol Rep. 28:2217–2220.
2012.PubMed/NCBI
|
|
14
|
Okino T, Egami H, Ohmachi H, Takai E,
Tamori Y, Nakagawa K, Nakano S, Akagi J, Sakamoto O, Suda T and
Ogawa M: Presence of RON receptor tyrosine kinase and its splicing
variant in malignant and non-malignant human colonic mucosa. Int J
Oncol. 15:709–714. 1999.PubMed/NCBI
|
|
15
|
Yang L, Luo Y and Wei J: Integrative
genomic analyses on Ikaros and its expression related to solid
cancer prognosis. Oncol Rep. 24:571–577. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yang L, Luo Y, Wei J and He S: Integrative
genomic analyses on IL28RA, the common receptor of interferon-λ1,
-λ2 and -λ3. Int J Mol Med. 25:807–812. 2010.PubMed/NCBI
|
|
17
|
Yang L, Wei J and He S: Integrative
genomic analyses on interferon-λs and their roles in cancer
prediction. Int J Mol Med. 25:299–304. 2010.
|
|
18
|
Thompson JD, Gibson TJ, Plewniak F,
Jeanmougin F and Higgins DG: The CLUSTAL_X windows interface:
flexible strategies for multiple sequence alignment aided by
quality analysis tools. Nucleic Acids Res. 15:4876–4882. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guindon S, Lethiec F, Duroux P and Gascuel
O: PHYML Online - a web server for fast maximum likelihood-based
phylogenetic inference. Nucleic Acids Res. 33:W557–W559. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kumar S, Tamura K and Nei M: MEGA3:
Integrated software for Molecular Evolutionary Genetics Analysis
and sequence alignment. Brief Bioinform. 5:150–163. 2004.
View Article : Google Scholar
|
|
21
|
Yang Z: PAML: a program package for
phylogenetic analysis by maximum likelihood. Comput Appl Biosci.
13:555–556. 1997.PubMed/NCBI
|
|
22
|
Yang Z, Nielsen R, Goldman N and Pedersen
AM: Codon-substitution models for heterogeneous selection pressure
at amino acid sites. Genetics. 155:431–449. 2000.PubMed/NCBI
|
|
23
|
Katoh Y and Katoh M: Integrative genomic
analyses on GLI1: Positive regulation of GLI1 by Hedgehog-GLI,
TGFβ-Smads, and RTK-PI3K-AKT signals, and negative regulation of
GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int J Oncol.
35:187–192. 2009.PubMed/NCBI
|
|
24
|
Katoh Y and Katoh M: Integrative genomic
analyses on GLI2: Mechanism of Hedgehog priming through basal GLI2
expression, and interaction map of stem cell signaling network with
P53. Int J Oncol. 33:881–886. 2008.PubMed/NCBI
|
|
25
|
Katoh Y and Katoh M: Integrative genomic
analyses of WNT11: Transcriptional mechanisms based on canonical
WNT signals and GATA transcription factors signaling. Int J Mol
Med. 24:247–251. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Katoh M and Katoh M: Transcriptional
mechanisms of WNT5A based on NF-κB, Hedgehog, TGFβ, and Notch
signaling cascades. Int J Mol Med. 23:763–769. 2009.PubMed/NCBI
|
|
27
|
Katoh M and Katoh M: Integrative genomic
analyses of ZEB2: Transcriptional regulation of ZEB2 based on
SMADs, ETS1, HIF1α, POU/OCT, and NF-κB. Int J Oncol. 34:1737–1742.
2009.PubMed/NCBI
|
|
28
|
Katoh M and Katoh M: Transcriptional
regulation of WNT2B based on the balance of Hedgehog, Notch, BMP
and WNT signals. Int J Oncol. 34:1411–1415. 2009.PubMed/NCBI
|
|
29
|
Chalifa-Caspi V, Yanai I, Ophir R, Rosen
N, Shmoish M, Benjamin-Rodrig H, Shklar M, Stein TI, Shmueli O,
Safran M and Lancet D: GeneAnnot: comprehensive two-way linking
between oligonucleotide array probesets and GeneCards genes.
Bioinformatics. 20:1457–1458. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Parkinson H, Sarkans U, Shojatalab M,
Abeygunawardena N, Contrino S, Coulson R, Farne A, Lara GG,
Holloway E, Kapushesky M, Lilja P, Mukherjee G, Oezcimen A, Rayner
T, Rocca-Serra P, Sharma A, Sansone S and Brazma A: ArrayExpress -
a public repository for microarray gene expression data at the EBI.
Nucleic Acids Res. 33:D553–D555. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mizuno H, Kitada K, Nakai K and Sarai A:
PrognoScan: a new database for meta-analysis of the prognostic
value of genes. BMC Med Genomics. 2:182009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Benvenuti S and Comoglio PM: The MET
receptor tyrosine kinase in invasion and metastasis. J Cell
Physiol. 213:316–325. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wagh PK, Peace BE and Waltz SE:
Met-related receptor tyrosine kinase Ron in tumor growth and
metastasis. Adv Cancer Res. 100:1–33. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Maggiora P, Marchio S, Stella MC, Giai M,
Belfiore A, De Bortoli M, Di Renzo MF, Costantino A, Sismondi P and
Comoglio PM: Overexpression of the RON gene in human breast
carcinoma. Oncogene. 16:2927–2933. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Park JS, Park JH, Lee S, Joo YE and Jung
YD: Small interfering RNA targeting of Recepteur d’Origine Nantais
induces apoptosis via modulation of nuclear factor-κB and Bcl-2
family in gastric cancer cells. Oncol Rep. 24:709–714. 2010.
|
|
36
|
Jiang WG, Ye L, Ablin RJ, Kynaston HG and
Mason MD: The prostate transglutaminase, TGase-4, coordinates with
the HGFL/MSP-RON system in stimulating the migration of prostate
cancer cells. Int J Oncol. 37:413–418. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou YQ, He C, Chen YQ, Wang D and Wang
MH: Altered expression of the RON receptor tyrosine kniase in
primary human colorectal adenocarcinomas: generation of different
splicing variants and their oncogenic potential. Oncogene.
22:186–197. 2003. View Article : Google Scholar
|
|
38
|
Lee WY, Chen HH, Chow NH, Su WC, Lin PW
and Guo HR: Prognostic significance of co-expression of RON and MET
receptors in node-negative breast cancer patients. Clin Cancer Res.
11:2222–2228. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cheng HL, Liu HS, Lin YJ, Chen HH, Hsu PY,
Chang TY, Ho CL, Tzai TS and Chow NH: Co-expression of RON and MET
is a prognostic indicator for patients with transitional-cell
carcinoma of the bladder. Br J Cancer. 92:1906–1914. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Maggiora P, Lorenzato A, Fracchioli S,
Costa B, Castagnaro M, Arisio R, Katsaros D, Massobrio M, Comoglio
PM and Flavia Di Renzo M: The RON and MET oncogenes are
co-expressed in human ovarian carcinomas and cooperate in
activating invasiveness. Exp Cell Res. 288:382–389. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang MH, Padhye SS, Guin S, Ma Q and Zhou
YQ: Potential therapeutics specific to c-MET/RON receptor tyrosine
kinases for molecular targeting in cancer therapy. Acta Pharmacol
Sin. 31:1181–1188. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cho SB, Park YL, Song YA, Kim KY, Lee GH,
Cho DH, Myung DS, Park KJ, Lee WS, Chung IJ, Choi SK, Kim KK and
Joo YE: Small interfering RNA-directed targeting of RON alters
invasive and oncogenic phenotypes of human hepatocellular carcinoma
cells. Oncol Rep. 26:1581–1586. 2011.PubMed/NCBI
|
|
43
|
Saigusa S, Toiyama Y, Tanaka K, Yokoe T,
Fujikawa H, Matsushita K, Okugawa Y, Inoue Y, Uchida K, Mohri Y and
Kusunoki M: Inhibition of HGF/cMET expression prevents distant
recurrence of rectal cancer after preoperative chemoradiotherapy.
Int J Oncol. 40:583–591. 2012.
|
|
44
|
Li Z, Yao H, Guin S, Padhye SS, Zhou YQ
and Wang MH: Monoclonal antibody (mAb)-induced down-regulation of
RON receptor tyrosine kinase diminishes tumorigenic activities of
colon cancer cells. Int J Oncol. 37:473–482. 2010.PubMed/NCBI
|
|
45
|
Ma Q, Zhang K, Yao HP, Zhou YQ, Padhye S
and Wang MH: Inhibition of MSP-RON signaling pathway in cancer
cells by a novel soluble form of RON comprising the entire sema
sequence. Int J Oncol. 36:1551–1561. 2010.PubMed/NCBI
|
|
46
|
Ma Q, Zhang K, Guin S, Zhou YQ and Wang
MH: Deletion or insertion in the first
immunoglobulin-plexin-transcription (IPT) domain differentially
regulates expression and tumorigenic activities of RON receptor
tyrosine kinase. Mol Cancer. 9:3072010. View Article : Google Scholar
|
|
47
|
Parra E, Ferreira J and Saenz L:
Inhibition of Egr-1 by siRNA in prostate carcinoma cell lines is
associated with decreased expression of AP-1 and NF-κB. Int J Mol
Med. 28:847–853. 2011.PubMed/NCBI
|
|
48
|
Hwang JT, Park OJ, Lee YK, Sung MJ, Hur
HJ, Kim MS, Ha JH and Kwon DY: Anti-tumor effect of luteolin is
accompanied by AMP-activated protein kinase and nuclear factor-κB
modulation in HepG2 hepatocarcinoma cells. Int J Mol Med. 28:25–31.
2011.PubMed/NCBI
|
|
49
|
Seol JW, Lee YJ, Jackson CJ, Sambrook PN
and Park SY: Activated protein C inhibits bisphosphonate-induced
endothelial cell death via the endothelial protein C receptor and
nuclear factor-κB pathways. Int J Mol Med. 27:835–840.
2011.PubMed/NCBI
|
|
50
|
Hayashi S, Sakurai H, Hayashi A, Tanaka Y,
Hatashita M and Shioura H: Inhibition of NF-κB by combination
therapy with parthenolide and hyperthermia and kinetics of
apoptosis induction and cell cycle arrest in human lung
adenocarcinoma cells. Int J Mol Med. 25:81–87. 2010.
|
|
51
|
Hou L, Xu B, Mohankumar KM, Goffin V,
Perry JK, Lobie PE and Liu DX: The prolactin receptor mediates
HOXA1-stimulated oncogenicity in mammary carcinoma cells. Int J
Oncol. 41:2285–2295. 2012.PubMed/NCBI
|
|
52
|
Naher L, Kiyoshima T, Kobayashi I, Wada H,
Nagata K, Fujiwara H, Ookuma YF, Ozeki S, Nakamura S and Sakai H:
STAT3 signal transduction through interleukin-22 in oral squamous
cell carcinoma. Int J Oncol. 41:1577–1586. 2012.PubMed/NCBI
|
|
53
|
Umehara S, Fujiwara H, Shiozaki A, Todo M,
Furutani A, Yoneda M, Ikai A, Tada H, Komatsu S, Ichikawa D,
Okamoto K, Ochiai T, Kokuba Y and Otsuji E: PSK induces apoptosis
through the inhibition of activated STAT3 in human esophageal
carcinoma cells. Int J Oncol. 41:61–66. 2012.PubMed/NCBI
|
|
54
|
Kwon CY, Kim KR, Choi HN, Chung MJ, Noh
SJ, Kim DG, Kang MJ, Lee DG and Moon WS: The role of serum response
factor in hepatocellular carcinoma: Implications for disease
progression. Int J Oncol. 37:837–844. 2010.PubMed/NCBI
|
|
55
|
Kim HJ, Kim KR, Park HS, Jang KY, Chung
MJ, Shong M and Moon WS: The expression and role of serum response
factor in papillary carcinoma of the thyroid. Int J Oncol.
35:49–55. 2009.PubMed/NCBI
|
|
56
|
Park MY, Kim KR, Park HS, Park BH, Choi
HN, Jang KY, Chung MJ, Kang MJ, Lee DG and Moon WS: Expression of
the serum response factor in hepatocellular carcinoma: Implications
for epithelial-mesenchymal transition. Int J Oncol. 31:1309–1315.
2007.PubMed/NCBI
|
|
57
|
Collet N, Théoleyre S, Rageul J, Mottier
S, Jouan F, Rioux-Leclercq N, Fergelot P, Patard JJ, Masson D and
Denis MG: PPARγ is functionally expressed in clear cell renal cell
carcinoma. Int J Oncol. 38:851–857. 2011.
|
|
58
|
Koga H, Selvendiran K, Sivakumar R,
Yoshida T, Torimura T, Ueno T and Sata M: PPARγ potentiates
anticancer effects of gemcitabine on human pancreatic cancer cells.
Int J Oncol. 40:679–685. 2012.
|
|
59
|
Mansour M, Schwartz D, Judd R, Akingbemi
B, Braden T, Morrison E, Dennis J, Bartol F, Hazi A, Napier I and
Abdel-Mageed AB: Thiazolidinediones/PPARγ agonists and fatty acid
synthase inhibitors as an experimental combination therapy for
prostate cancer. Int J Oncol. 38:537–546. 2011.
|
|
60
|
Kim WJ, Kim EJ, Kim SK, Kim YJ, Ha YS,
Jeong P, Kim MJ, Yun SJ, Lee KM, Moon SK, Lee SC, Cha EJ and Bae
SC: Predictive value of progression-related gene classifier in
primary non-muscle invasive bladder cancer. Mol Cancer. 9:32010.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lee JS, Leem SH, Lee SY, Kim SC, Park ES,
Kim SB, Kim SK, Kim YJ, Kim WJ and Chu IS: Expression signature of
E2F1 and its associated genes predict superficial to invasive
progression of bladder tumors. J Clin Oncol. 28:2660–2667. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nutt CL, Mani DR, Betensky RA, Tamayo P,
Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor
TT, Black PM, von Deimling A, Pomeroy SL, Golub TR and Louis DN:
Gene expression-based classification of malignant gliomas
correlates better with survival than histological classification.
Cancer Res. 63:1602–1607. 2003.PubMed/NCBI
|
|
63
|
Loi S, Haibe-Kains B, Majjaj S, Lallemand
F, Durbecq V, Larsimont D, Gonzalez-Angulo AM, Pusztai L, Symmans
WF, Bardelli A, Ellis P, Tutt AN, Gillett CE, Hennessy BT, Mills
GB, Phillips WA, Piccart MJ, Speed TP, McArthur GA and Sotiriou C:
PIK3CA mutations associated with gene signature of low mTORC1
signaling and better outcomes in estrogen receptor-positive breast
cancer. Proc Natl Acad Sci USA. 107:10208–10213. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang Y, Sieuwerts AM, McGreevy M, Casey
G, Cufer T, Paradiso A, Harbeck N, Span PN, Hicks DG, Crowe J,
Tubbs RR, Budd GT, Lyons J, Sweep FC, Schmitt M, Schittulli F,
Golouh R, Talantov D, Wang Y and Foekens JA: The 76-gene signature
defines high-risk patients that benefit from adjuvant tamoxifen
therapy. Breast Cancer Res Treat. 116:303–309. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chanrion M, Negre V, Fontaine H, Salvetat
N, Bibeau F, MacGrogan G, Mauriac L, Katsaros D, Molina F, Theillet
C and Darbon JM: A gene expression signature that can predict the
recurrence of tamoxifen-treated primary breast cancer. Clin Cancer
Res. 14:1744–1752. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ivshina AV, George J, Senko O, Mow B,
Putti TC, Smeds J, Lindahl T, Pawitan Y, Hall P, Nordgren H, Wong
JE, Liu ET, Bergh J, Kuznetsov VA and Miller LD: Genetic
reclassification of histologic grade delineates new clinical
subtypes of breast cancer. Cancer Res. 66:10292–10301. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Desmedt C, Piette F, Loi S, Wang Y,
Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y,
d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JG,
Foekens JA, Cardoso F, Piccart MJ, Buyse M and Sotiriou C; TRANSBIG
Consortium. Strong time dependence of the 76-gene prognostic
signature for node-negative breast cancer patients in the TRANSBIG
multicenter independent validation series. Clin Cancer Res.
13:3207–3214. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Laurent C, Valet F, Planque N, Silveri L,
Maacha S, Anezo O, Hupe P, Plancher C, Reyes C, Albaud B, Rapinat
A, Gentien D, Couturier J, Sastre-Garau X, Desjardins L, Thiery JP,
Roman-Roman S, Asselain B, Barillot E, Piperno-Neumann S and Saule
S: High PTP4A3 phosphatase expression correlates with metastatic
risk in uveal melanoma patients. Cancer Res. 71:666–674. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Beer DG, Kardia SL, Huang CC, Giordano TJ,
Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness
ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB and
Hanash S: Gene-expression profiles predict survival of patients
with lung adenocarcinoma. Nat Med. 8:816–824. 2002.PubMed/NCBI
|
|
70
|
Zhu CQ, Ding K, Strumpf D, Weir BA,
Meyerson M, Pennell N, Thomas RK, Naoki K, Ladd-Acosta C, Liu N,
Pintilie M, Der S, Seymour L, Jurisica I, Shepherd FA and Tsao MS:
Prognostic and predictive gene signature for adjuvant chemotherapy
in resected non-small-cell lung cancer. J Clin Oncol. 28:4417–4424.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yoshihara K, Tajima A, Yahata T, Kodama S,
Fujiwara H, Suzuki M, Onishi Y, Hatae M, Sueyoshi K, Fujiwara H,
Kudo Y, Kotera K, Masuzaki H, Tashiro H, Katabuchi H, Inoue I and
Tanaka K: Gene expression profile for predicting survival in
advanced-stage serous ovarian cancer across two independent
datasets. PLoS One. 5:e96152010. View Article : Google Scholar : PubMed/NCBI
|