|
1
|
Kanazawa S, Tsunoda T, Onuma E, Majima T,
Kagiyama M and Kikuchi K: VEGF, basic-FGF, and TGF-beta in Crohn’s
disease and ulcerative colitis: a novel mechanism of chronic
intestinal inflammation. Am J Gastroenterol. 96:822–828.
2001.PubMed/NCBI
|
|
2
|
Bousvaros A, Leichtner A, Zurakowski D,
Kwon J, Law T, Keough K and Fishman S: Elevated serum vascular
endothelial growth factor in children and young adults with Crohn’s
disease. Dig Dis Sci. 44:424–430. 1999.
|
|
3
|
Danese S, Sans M, de la Motte C, et al:
Angiogenesis as a novel component of inflammatory bowel disease
pathogenesis. Gastroenterology. 130:2060–2073. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Goebel S, Huang M, Davis WC, Jennings M,
Siahaan TJ, Alexander JS and Kevil CG: VEGF-A stimulation of
leukocyte adhesion to colonic microvascular endothelium:
implications for inflammatory bowel disease. Am J Physiol
Gastrointest Liver Physiol. 290:G648–G654. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mori M, Stokes KY, Vowinkel T, et al:
Colonic blood flow responses in experimental colitis: time course
and underlying mechanisms. Am J Physiol Gastrointest Liver Physiol.
289:G1024–G1029. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chidlow JH Jr, Langston W, Greer JJ, et
al: Differential angiogenic regulation of experimental colitis. Am
J Pathol. 169:2014–2030. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Scaldaferri F, Vetrano S, Sans M, et al:
VEGF-A links angiogenesis and inflammation in inflammatory bowel
disease pathogenesis. Gastroenterology. 136:585–595. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chernoguz A, Crawford K, Vandersall A, Rao
M, Willson T, Denson LA and Frischer JS: Pretreatment with
anti-VEGF therapy may exacerbate inflammation in experimental acute
colitis. J Pediatr Surg. 47:347–354. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Palffy R, Behuliak M, Gardlik R, Jáni P,
Kadasi L, Turna J and Celec P: Oral in vivo bactofection in dextran
sulfate sodium treated female Wistar rats. Folia Biol (Krakow).
58:171–176. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Palffy R, Gardlik R, Behuliak M, et al:
Salmonella-mediated gene therapy in experimental colitis in mice.
Exp Biol Med (Maywood). 236:177–183. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gardlik R, Behuliak M, Palffy R, Celec P
and Li CJ: Gene therapy for cancer: bacteria-mediated
anti-angiogenesis therapy. Gene Ther. 18:425–431. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Darji A, Guzman CA, Gerstel B, et al: Oral
somatic transgene vaccination using attenuated S.
typhimurium. Cell. 91:765–775. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dieleman LA, Palmen MJ, Akol H, Bloemena
E, Pena AS, Meuwissen SG and Van Rees EP: Chronic experimental
colitis induced by dextran sulphate sodium (DSS) is characterized
by Th1 and Th2 cytokines. Clin Exp Immunol. 114:385–391. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lowry OH, Rosebrough NJ, Farr AL and
Randall RJ: Protein measurement with the Folin phenol reagent. J
Biol Chem. 193:265–275. 1951.PubMed/NCBI
|
|
15
|
Paglia P, Medina E, Arioli I, Guzman CA
and Colombo MP: Gene transfer in dendritic cells, induced by oral
DNA vaccination with Salmonella typhimurium, results in
protective immunity against a murine fibrosarcoma. Blood.
92:3172–3176. 1998.PubMed/NCBI
|
|
16
|
Tolstanova G, Deng X, Khomenko T, et al:
Role of anti-angiogenic factor endostatin in the pathogenesis of
experimental ulcerative colitis. Life Sci. 88:74–81. 2011.
View Article : Google Scholar : PubMed/NCBI
|