|
1
|
Goto M and Miller R: From Premature Gray
Hair to Helicase - Werner Syndrome: Implications for Aging and
Cancer. Gann Monograph on Cancer Research No 49. Japan Scientific
Societies Press & Karger; Tokyo: 2001
|
|
2
|
Nishimura F, Arakawa M and Goto M: Letter
to the editor: periodontal conditions in Werner syndrome. J
Periodontol. 81:32010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Goto M, Rubenstein M, Weber J, Woods K and
Drayna D: Genetic linkage of Werner’s syndrome to five markers on
chromosome 8. Nature. 355:735–738. 1992.
|
|
4
|
Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama
F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM,
Mulligan J and Schellenberg GD: Positional cloning of the Werner’s
syndrome gene. Science. 272:258–262. 1996.
|
|
5
|
Suzuki N, Shimamoto A, Imamura O,
Kuromitsu J, Kitao S, Goto M and Furuichi Y: DNA helicase activity
in Werner’s syndrome gene product synthesized in a baculovirus
system. Nucleic Acids Res. 25:2973–2978. 1997.
|
|
6
|
Suzuki N, Shiratori M, Goto M and Furuichi
Y: Werner syndrome helicase contains a 5′→3′ exonuclease activity
that digests DNA and RNA strands in DNA/DNA and RNA/DNA duplexes
dependent on unwinding. Nucleic Acids Res. 27:2361–2368. 1999.
|
|
7
|
Huang S, Li B, Gray MD, Oshima J, Mian IS
and Campisi J: The premature ageing syndrome protein, WRN, is a
3′→5′ exonuclease. Nat Genet. 20:114–116. 1998.
|
|
8
|
Seki M, Miyazawa H, Tada S, Yanagisawa J,
Yamaoka T, Hoshino S, Ozawa K, Eki T, Nogami M and Okumura K:
Molecular cloning of cDNA encoding human DNA helicase Q1 which has
homology to Escherichia coli Rec Q helicase and localization
of the gene at chromosome 12p12. Nucleic Acids Res. 22:4566–4573.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ellis NA, Groden J, Ye TZ, Straughen J,
Lennon DJ, Ciocci S, Proytcheva M and German J: The Bloom’s
syndrome gene product is homologous to RecQ helicases. Cell.
83:655–666. 1995.
|
|
10
|
Kitao S, Shimamoto A, Goto M, Miller RW,
Smithson WA, Lindor NM and Furuichi Y: Mutations in RECQL4 cause a
subset of cases of Rothmund-Thomson syndrome. Nat Genet. 22:82–84.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Shimamoto A, Nishikawa K, Kitao S and
Furuichi Y: Human RecQ5beta, a large isomer of RecQ5 DNA helicase,
localizes in the nucleoplasm and interacts with topoisomerases
3alpha and 3beta. Nucleic Acids Res. 28:1647–1655. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Shimamoto A, Sugimoto M and Furuichi Y:
Molecular biology of Werner syndrome. Int J Clin Oncol. 9:288–298.
2004. View Article : Google Scholar
|
|
13
|
Bohr VA: Rising from the RecQ-age: the
role of human RecQ helicases in genome maintenance. Trends Biochem
Sci. 33:609–620. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Goto M: Syndrome-causing mutations in
Werner syndrome. Biosci Trends. 2:147–150. 2008.
|
|
15
|
Goto M, Imamura O, Kuromitsu J, Matsumoto
T, Yamabe Y, Tokutake Y, Suzuki N, Mason B, Drayna D, Sugawara M,
Sugimoto M and Furuichi Y: Analysis of helicase gene mutations in
Japanese Werner’s syndrome patients. Hum Genet. 99:191–193.
1997.
|
|
16
|
Goto M, Yamabe M, Shiratori M, Okada M,
Kawabe T, Matsumoto T, Sugimoto M and Furuichi Y: Immunological
diagnosis of Werner syndrome by down-regulated and truncated gene
products. Hum Genet. 105:301–307. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Matsumoto T, Shimamoto A, Goto M and
Furuichi Y: Impaired nuclear localization of defective DNA
helicases in Werner’s syndrome. Nat Genet. 16:335–336.
1997.PubMed/NCBI
|
|
18
|
Matsumoto T, Imamura O, Goto M and
Furuichi Y: Characterization of the nuclear localization signal in
the DNA helicase involved in Werner’s syndrome. Int J Mol Med.
1:71–76. 1998.PubMed/NCBI
|
|
19
|
Salk D, Au K, Hoehn H and Martin GM:
Cytogenetics of Werner’s syndrome cultured skin fibroblasts:
variegated translocation mosaicism. Cytogenet Cell Genet.
30:92–107. 1981.
|
|
20
|
Fukuchi K, Martin GM and Monnat RJ Jr:
Mutator phenotype of Werner syndrome is characterized by extensive
deletions. Proc Natl Acad Sci USA. 86:5893–5897. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gebhart E, Bauer R, Raub U, Schinzel M,
Ruprecht KW and Jonas JB: Spontaneous and induced chromosomal
instability in Werner syndrome. Hum Genet. 80:135–139. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Schulz VP, Zakian VA, Ogburn CE, McKay J,
Jarzebowicz AA, Edland SD and Martin GM: Accelerated loss of
telomeric repeats may not explain accelerated replicative decline
of Werner syndrome cells. Hum Genet. 97:750–754. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ishikawa N, Nakamura K,
Izumiyama-Shimomura N, Aida J, Ishii A, Goto M, Ishikawa Y, Asaka
R, Matsuura M, Hatamochi A, Kuroiwa M and Takubo K: Accelerated in
vivo epidermal telomere loss in Werner syndrome. Aging (Albany NY).
3:417–429. 2011.PubMed/NCBI
|
|
24
|
Tahara H, Tokutake Y, Maeda S, Kataoka H,
Watanabe T, Satoh M, Matsumoto T, Sugawara M, Ide T, Goto M,
Furuichi Y and Sugimoto M: Abnormal telomere dynamics of
B-lymphoblastoid cell strains from Werner’s syndrome patients
transformed by Epstein-Barr virus. Oncogene. 15:1911–1920.
1997.PubMed/NCBI
|
|
25
|
Counter CM, Botelho FM, Wang P, Harley CB
and Bacchetti S: Stabilization of short telomeres and telomerase
activity accompany immortalization of Epstein-Barr
virus-transformed human B lymphocytes. J Virol. 68:3410–3414.
1994.PubMed/NCBI
|
|
26
|
Sugimoto M, Tahara H, Ide T and Furuichi
Y: Steps involved in immortalization and tumorigenesis in human
B-lymphoblastoid cell lines transformed by Epstein-Barr virus.
Cancer Res. 64:3361–3364. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sugimoto M, Ide T, Goto M and Furuichi Y:
Incorrect use of ‘immortalization’ for B-lymphoblastoid cell lines
transformed by Epstein-Barr virus. J Virol. 73:9690–9691. 1999.
|
|
28
|
Sugimoto M, Ide T, Goto M and Furuichi Y:
Reconsideration of senescence, immortalization and telomere
maintenance of Epstein-Barr virus-transformed human
B-lymphoblastoid cell lines. Mech Ageing Dev. 107:51–60. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bryan TM, Englezou A, Dalla-Pozza L,
Dunham MA and Reddel RR: Evidence for an alternative mechanism for
maintaining telomere length in human tumors and tumor-derived cell
lines. Nat Med. 3:1271–1274. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hayflick L: The limited in vitro lifetime
of human diploid cell strains. Exp Cell Res. 37:614–636. 1965.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Fry M and Loeb LA: Human werner syndrome
DNA helicase unwinds tetrahelical structures of the fragile X
syndrome repeat sequence d(CGG)n. J Biol Chem. 274:12797–12802.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Crabbe L, Verdun RE, Haggblom CI and
Karlseder J: Defective telomere lagging strand synthesis in cells
lacking WRN helicase activity. Science. 306:1951–1953. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Crabbe L, Jauch A, Naeger CM,
Holtgreve-Grez H and Karlseder J: Telomere dysfunction as a cause
of genomic instability in Werner syndrome. Proc Natl Acad Sci USA.
104:2205–2210. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Damerla RR, Knickelbein KE, Strutt S, Liu
FJ, Wang H and Opresko PL: Werner syndrome protein suppresses the
formation of large deletions during the replication of human
telomeric sequences. Cell Cycle. 11:3036–3044. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
de Lange T: Shelterin: the protein complex
that shapes and safeguards human telomeres. Genes Dev.
19:2100–2110. 2005.PubMed/NCBI
|
|
36
|
Palm W and de Lange T: How shelterin
protects mammalian telomeres. Annu Rev Genet. 42:301–334. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Diotti R and Loayza D: Shelterin complex
and associated factors at human telomeres. Nucleus. 2:119–135.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ozgenc A and Loeb LA: Current advances in
unraveling the function of the Werner syndrome protein. Mutat Res.
577:237–251. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fujiwara Y, Higashikawa T and Tatsumi M: A
retarded rate of DNA replication and normal level of DNA repair in
Werner’s syndrome fibroblasts in culture. J Cell Physiol.
92:365–374. 1977.PubMed/NCBI
|
|
40
|
Hanaoka F, Yamada M, Takeuchi F, Goto M,
Miyamoto T and Hori T: Autoradiographic studies of DNA replication
in Werner’s syndrome cells. Adv Exp Med Biol. 190:439–457.
1985.PubMed/NCBI
|
|
41
|
Poot M, Hoehn H, Runger TM and Martin GM:
Impaired S-phase transit of Werner syndrome cells expressed in
lymphoblastoid cell lines. Exp Cell Res. 202:267–273. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sahin E and DePinho RA: Axis of ageing:
telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol. 13:397–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sharpless NE and DePinho RA: Telomeres,
stem cells, senescence, and cancer. J Clin Invest. 113:160–168.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Davis T, Faragher RG, Jones CJ and Kipling
D: Investigation of the signaling pathways involved in the
proliferative life span barriers in werner syndrome fibroblasts.
Ann NY Acad Sci. 1019:274–277. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chang S, Multani AS, Cabrera NG, Naylor
ML, Laud P, Lombard D, Pathak S, Guarente L and DePinho RA:
Essential role of limiting telomeres in the pathogenesis of Werner
syndrome. Nat Genet. 36:877–882. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sahin E, Colla S, Liesa M, et al: Telomere
dysfunction induces metabolic and mitochondrial compromise. Nature.
470:359–365. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Labbe A, Lafleur VN, Patten DA, Robitaille
GA, Garand C, Lamalice L, Lebel M and Richard DE: The Werner
syndrome gene product (WRN): a repressor of hypoxia-inducible
factor-1 activity. Exp Cell Res. 318:1620–1632. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Croteau DL, Rossi ML, Canugovi C, Tian J,
Sykora P, Ramamoorthy M, Wang ZM, Singh DK, Akbari M,
Kasiviswanathan R, Copeland WC and Bohr VA: RECQL4 localizes to
mitochondria and preserves mitochondrial DNA integrity. Aging Cell.
11:456–466. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
De S, Kumari J, Mudgal R, Modi P, Gupta S,
Futami K, Goto H, Lindor NM, Furuichi Y, Mohanty D and Sengupta S:
RECQL4 is essential for the transport of p53 to mitochondria in
normal human cells in the absence of exogenous stress. J Cell Sci.
125(Pt 10): 2509–2522. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pagano G, Zatterale A, Degan P, d’Ischia
M, Kelly FJ, Pallardo FV and Kodama S: Multiple involvement of
oxidative stress in Werner syndrome phenotype. Biogerontology.
6:233–243. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pagano G, Zatterale A, Degan P, d’Ischia
M, Kelly FJ, Pallardo FV, Calzone R, Castello G, Dunster C, Giudice
A, Kilinc Y, Lloret A, Manini P, Masella R, Vuttariello E and
Warnau M: In vivo prooxidant state in Werner syndrome (WS): results
from three WS patients and two WS heterozygotes. Free Radic Res.
39:529–533. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Goto M, Takeuchi F, Tanimoto K and
Miyamoto T: Clinical, demographic, and genetic aspects of the
Werner syndrome in Japan. Werner’s Syndrome and Human Aging.
Advances in Experimental Medicine and Biology. 190. Salk D,
Fujiwara Y and Martin GM: Plenum Press; New York: pp. 245–261.
1985, PubMed/NCBI
|
|
53
|
Takeuchi F, Kamatani N, Goto M, Matsuta K,
Nishida Y, Sasaki S, Nishioka K, Mikanagi K, Tanimoto K, Muranaka M
and Miyamoto T: Gout-like arthritis in patients with Werner’s
syndrome. Jap J Rheumatol. 1:215–220. 1987.
|
|
54
|
Massip L, Garand C, Paquet ER, Cogger VC,
O’Reilly JN, Tworek L, Hatherell A, Taylor CG, Thorin E, Zahradka
P, Le Couteur DG and Lebel M: Vitamin C restores healthy aging in a
mouse model for Werner syndrome. FASEB J. 24:158–172. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Goto M: Inflammaging (inflammation +
aging): a driving force for human aging based on an evolutionarily
antagonistic pleiotropy theory? Biosci Trends. 2:218–230. 2008.
|
|
56
|
Goto M, Sugimoto K, Hayashi S, Ogino T,
Sugimoto M, Furuichi Y, Matsuura M, Ishikawa Y, Iwaki-Egawa S and
Watanabe Y: Aging-associated inflammation in healthy Japanese
individuals and patients with Werner syndrome. Exp Gerontol.
47:936–939. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Davis T, Wyllie FS, Rokicki MJ, Bagley MC
and Kipling D: The role of cellular senescence in Werner syndrome:
toward therapeutic intervention in human premature aging. Ann NY
Acad Sci. 1100:455–469. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Goto M, Iwaki-Egawa S and Watanabe Y:
Ageing in Werner syndrome. Biosci Trends. 6:33–37. 2012.
|
|
59
|
Kaplan M and Aviram M: Oxidized low
density lipoprotein: atherogenic and proinflammatory
characteristics during macrophage foam cell formation. An
inhibitory role for nutritional antioxidants and serum paraoxonase.
Clin Chem Lab Med. 37:777–787. 1999. View Article : Google Scholar
|
|
60
|
Lebel M and Leder P: A deletion within the
murine Werner syndrome helicase induces sensitivity to inhibitors
of topoisomerase and loss of cellular proliferative capacity. Proc
Natl Acad Sci USA. 95:13097–13102. 1998. View Article : Google Scholar
|
|
61
|
Okada M, Goto M, Furuichi Y and Sugimoto
M: Differential effects of cytotoxic drugs on mortal and
immortalized B- lymphoblastoid cell lines from normal and Werner’s
syndrome patients. Biol Pharm Bull. 21:235–239. 1998.PubMed/NCBI
|
|
62
|
Futami K, Ishikawa Y, Goto M, Furuichi Y
and Sugimoto M: Role of Werner syndrome gene product helicase in
carcinogenesis and in resistance to genotoxins by cancer cells.
Cancer Sci. 99:843–848. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shiratori M, Suzuki T, Itoh C, Goto M,
Furuichi Y and Matsumoto T: WRN helicase accelerates the
transcription of ribosomal RNA as a component of an RNA polymerase
I-associated complex. Oncogene. 21:2447–2454. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wullschleger S, Loewith R and Hall MN: TOR
signaling in growth and metabolism. Cell. 124:471–484. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Blagosklonny MV and Hall MN: Growth and
aging: a common molecular mechanism. Aging (Albany NY). 1:357–362.
2009.PubMed/NCBI
|
|
66
|
Harrison DE, Strong R, Sharp ZD, Nelson
JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter
CS, Pahor M, Javors MA, Fernandez E and Miller RA: Rapamycin fed
late in life extends lifespan in genetically heterogeneous mice.
Nature. 460:392–395. 2009.PubMed/NCBI
|
|
67
|
Sharp ZD: Aging and TOR: interwoven in the
fabric of life. Cell Mol Life Sci. 68:587–597. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Galluzzi L, Kepp O and Kroemer G: TP53 and
MTOR crosstalk to regulate cellular senescence. Aging (Albany NY).
2:535–537. 2010.PubMed/NCBI
|
|
69
|
Talaei F, van Praag VM and Henning RH:
Hydrogen sulfide restores a normal morphological phenotype in
Werner syndrome fibroblasts, attenuates oxidative damage and
modulates mTOR pathway. Pharmacol Res. 74:34–44. 2013. View Article : Google Scholar
|
|
70
|
Goto M, Miller RW, Ishikawa Y and Sugano
H: Excess of rare cancers in Werner syndrome (adult progeria).
Cancer Epidemiol Biomarkers Prev. 5:239–246. 1996.PubMed/NCBI
|
|
71
|
Goto M, Ishikawa Y, Sugimoto M and
Furuichi Y: Werner syndrome: a changing pattern of clinical
manifestations in Japan (1917–2008). Biosci Trends. 7:13–22.
2013.PubMed/NCBI
|
|
72
|
Monnat RJ Jr: Cancer pathogenesis in the
human RecQ helicase deficiency syndromes. From Premature Gray Hair
to Heicase - Werner Syndrome: Implications from Aging and Cancer.
Goto M and Miller RW: Basel: pp. 83–94. 2001
|
|
73
|
Sugimoto M, Tahara H, Okubo M, Kobayashi
T, Goto M, Ide T and Furuichi Y: WRN gene and other genetic factors
affecting immortalization of human B-lymphoblastoid cell lines
transformed by Epstein-Barr virus. Cancer Genet Cytogenet.
152:95–100. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Greenberg RA: Telomeres, crisis and
cancer. Curr Mol Med. 5:213–218. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Castro-Vega LJ, Jouravleva K, Liu WY,
Martinez C, Gestraud P, Hupe P, Servant N, Albaud B, Gentien D, Gad
S, Richard S, Bacchetti S and Londono-Vallejo A: Telomere crisis in
kidney epithelial cells promotes the acquisition of a microRNA
signature retrieved in aggressive renal cell carcinomas.
Carcinogenesis. 34:1173–1180. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ishikawa F: Telomere crisis, the driving
force in cancer cell evolution. Biochem Biophys Res Commun.
230:1–6. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sugimoto M, Furuichi Y, Ide T and Goto M:
Involvement of WRN helicase in immortalization and tumorigenesis by
the telomeric crisis pathway (Review). Oncol Lett. 2:609–611.
2011.PubMed/NCBI
|
|
78
|
Zhu J, Zhao Y and Wang S: Chromatin and
epigenetic regulation of the telomerase reverse transcriptase gene.
Protein Cell. 1:22–32. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang H and Blackburn EH: De novo telomere
addition by Tetrahymena telomerase in vitro. EMBO J. 16:866–879.
1997. View Article : Google Scholar : PubMed/NCBI
|