Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2015 Volume 35 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2015 Volume 35 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review)

  • Authors:
    • Yonghui Yu
    • Jiake Chai
  • View Affiliations / Copyright

    Affiliations: Department of Burn and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
  • Pages: 305-310
    |
    Published online on: December 5, 2014
       https://doi.org/10.3892/ijmm.2014.2023
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Burns are common accidental injuries. The main clinical manifestations of severe burn injury are insulin resistance and high metabolism. Insulin resistance results in hyperglycemia, which may lead to skeletal muscle wasting and suspended wound healing. It also elevates the risk of infection and sepsis. Studies have indicated that insulin receptor (IR) and insulin receptor substrate 1 (IRS1) are essential factors involved in the regulation of blood glucose levels. Moreover, the suppression of the IR/IRS1 signaling pathway results in insulin resistance. Recent studies have also indicated that miRNAs, which are small non-coding RNAs consisting of 20-23 nucleotides, target the 3'-untranslated region (3'-UTR) of IRS1 mRNA and attenuate protein translation. miRNAs also play an important role in the development of type II diabetes (T2D) and obesity-induced insulin resistance. In the present review, we discuss the involvement of miRNAs in burn-induced insulin resistance through the targeting of the IR/IRS1 signaling pathway. We also discuss the possibility of miRNAs a novel therapeutic target in insulin resistance in burn patients.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

2 

Bentwich I, Avniel A, Karov Y, et al: Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 37:766–770. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Lee Y, Kim M, Han J, et al: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Zeng Y and Cullen BR: Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem. 280:27595–27603. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Andl T, Murchison EP, Liu F, et al: The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol. 16:1041–1049. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Visone R and Croce CM: MiRNAs and cancer. Am J Pathol. 174:1131–1138. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Argyropoulos C, Wang K, McClarty S, et al: Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One. 8:e546622013. View Article : Google Scholar : PubMed/NCBI

9 

van de Bunt M, Gaulton KJ, Parts L, et al: The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One. 8:e552722013. View Article : Google Scholar : PubMed/NCBI

10 

McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N and Haynes BF: The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol. 10:11–23. 2010. View Article : Google Scholar

11 

Ono K, Kuwabara Y and Han J: MicroRNAs and cardiovascular diseases. FEBS J. 278:1619–1633. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Evers LH, Bhavsar D and Mailander P: The biology of burn injury. Exp Dermatol. 19:777–783. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Duan H, Chai J, Sheng Z, et al: Effect of burn injury on apoptosis and expression of apoptosis-related genes/proteins in skeletal muscles of rats. Apoptosis. 14:52–65. 2009. View Article : Google Scholar

14 

Nishimura T, Nishiura T, deSerres S, Nakagawa T, Brenner DA and Meyer AA: Impact of burn injury on hepatic TGF-beta1 expression and plasma TGF-beta1 levels. J Trauma. 48:39–44. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Kowal-Vern A, Walenga JM, Hoppensteadt D, Sharp-Pucci M and Gamelli RL: Interleukin-2 and interleukin-6 in relation to burn wound size in the acute phase of thermal injury. J Am Coll Surg. 178:357–362. 1994.PubMed/NCBI

16 

Soejima K, Traber LD, Schmalstieg FC, et al: Role of nitric oxide in vascular permeability after combined burns and smoke inhalation injury. Am J Respir Crit Care Med. 163:745–752. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Cree MG, Zwetsloot JJ, Herndon DN, et al: Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate. Ann Surg. 245:214–221. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Cree MG, Aarsland A, Herndon DN and Wolfe RR: Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance. Crit Care Med. 35:S476–S483. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Sharp A and Clark J: Diabetes and its effects on wound healing. Nurs Stand. 25:41–47. 2010. View Article : Google Scholar

20 

Lima MH, Caricilli AM, de Abreu LL, et al: Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial. PLoS One. 7:e369742012. View Article : Google Scholar : PubMed/NCBI

21 

Ryu HS, Park SY, Ma D, Zhang J and Lee W: The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One. 6:e173432011. View Article : Google Scholar : PubMed/NCBI

22 

Karolina DS, Armugam A, Tavintharan S, et al: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 6:e228392011. View Article : Google Scholar : PubMed/NCBI

23 

Frayn KN: Effects of burn injury on insulin secretion and on sensitivity to insulin in the rat in vivo. Eur J Clin Invest. 5:331–337. 1975. View Article : Google Scholar : PubMed/NCBI

24 

Jeschke MG, Kulp GA, Kraft R, et al: Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med. 182:351–359. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Gauglitz GG, Herndon DN, Kulp GA, Meyer WJ III and Jeschke MG: Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metab. 94:1656–1664. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Kokubun E, Hirabara SM, Fiamoncini J, Curi R and Haebisch H: Changes of glycogen content in liver, skeletal muscle, and heart from fasted rats. Cell Biochem Funct. 27:488–495. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Chari-Bitron A, Lepkovsky S, Lemmon RM and Dimick MK: Conversion of glucose to glycogen after ingestion of a high-carbohydrate diet. Am J Physiol. 198:787–792. 1960.PubMed/NCBI

28 

Bell GI, Kayano T, Buse JB, et al: Molecular biology of mammalian glucose transporters. Diabetes Care. 13:198–208. 1990. View Article : Google Scholar : PubMed/NCBI

29 

Kasuga M, Zick Y, Blithe DL, Crettaz M and Kahn CR: Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature. 298:667–669. 1982. View Article : Google Scholar : PubMed/NCBI

30 

Boura-Halfon S and Zick Y: Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab. 296:E581–E591. 2009. View Article : Google Scholar

31 

Metz HE and Houghton AM: Insulin receptor substrate regulation of phosphoinositide 3-kinase. Clin Cancer Res. 17:206–211. 2011. View Article : Google Scholar

32 

Bhaskar PT and Hay N: The two TORCs and Akt. Dev Cell. 12:487–502. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Thorell A, Hirshman MF, Nygren J, et al: Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol. 277:E733–E741. 1999.PubMed/NCBI

34 

Browner MF, Nakano K, Bang AG and Fletterick RJ: Human muscle glycogen synthase cDNA sequence: a negatively charged protein with an asymmetric charge distribution. Proc Natl Acad Sci USA. 86:1443–1447. 1989. View Article : Google Scholar : PubMed/NCBI

35 

Bai G, Zhang ZJ, Werner R, Nuttall FQ, Tan AW and Lee EY: The primary structure of rat liver glycogen synthase deduced by cDNA cloning. Absence of phosphorylation sites 1a and 1b. J Biol Chem. 265:7843–7848. 1990.PubMed/NCBI

36 

Hojlund K, Birk JB, Klein DK, et al: Dysregulation of glycogen synthase COOH- and NH2-terminal phosphorylation by insulin in obesity and type 2 diabetes mellitus. J Clin Endocrinol Metab. 94:4547–4556. 2009. View Article : Google Scholar

37 

Cross DA, Alessi DR, Cohen P, Andjelkovich M and Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378:785–789. 1995. View Article : Google Scholar : PubMed/NCBI

38 

Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR and Mills GB: Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA. 97:11960–11965. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Bouskila M, Hirshman MF, Jensen J, Goodyear LJ and Sakamoto K: Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle. Am J Physiol Endocrinol Metab. 294:E28–E35. 2008. View Article : Google Scholar

40 

Villar-Palasi C and Guinovart JJ: The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 11:544–558. 1997.PubMed/NCBI

41 

Ikezu T, Okamoto T, Yonezawa K, Tompkins RG and Martyn JA: Analysis of thermal injury-induced insulin resistance in rodents. Implication of postreceptor mechanisms. J Biol Chem. 272:25289–25295. 1997. View Article : Google Scholar : PubMed/NCBI

42 

Pilon G, Charbonneau A, White PJ, et al: Endotoxin mediated-iNOS induction causes insulin resistance via ONOO− induced tyrosine nitration of IRS-1 in skeletal muscle. PLoS One. 5:e159122010. View Article : Google Scholar

43 

Sugita H, Kaneki M, Tokunaga E, et al: Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am J Physiol Endocrinol Metab. 282:E386–E394. 2002.PubMed/NCBI

44 

Sugita H, Fujimoto M, Yasukawa T, et al: Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J Biol Chem. 280:14203–14211. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Sugita M, Sugita H, Kim M, et al: Inducible nitric oxide synthase deficiency ameliorates skeletal muscle insulin resistance but does not alter unexpected lower blood glucose levels after burn injury in C57BL/6 mice. Metabolism. 61:127–136. 2012. View Article : Google Scholar :

46 

Hotamisligil GS, Murray DL, Choy LN and Spiegelman BM: Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA. 91:4854–4858. 1994. View Article : Google Scholar : PubMed/NCBI

47 

Pederson TM, Kramer DL and Rondinone CM: Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes. 50:24–31. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Zhang Q, Carter EA, Ma BY, White M, Fischman AJ and Tompkins RG: Molecular mechanism(s) of burn-induced insulin resistance in murine skeletal muscle: role of IRS phosphorylation. Life Sci. 77:3068–3077. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Rui L, Aguirre V, Kim JK, et al: Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest. 107:181–189. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Senn JJ, Klover PJ, Nowak IA and Mooney RA: Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 51:3391–3399. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Rotter V, Nagaev I and Smith U: Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 278:45777–45784. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Zhang L, Du J, Hu Z, et al: IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol. 20:604–612. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Jager J, Gremeaux T, Cormont M, Le Marchand-Brustel Y and Tanti JF: Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology. 148:241–251. 2007. View Article : Google Scholar :

54 

Sugita H, Kaneki M, Sugita M, Yasukawa T, Yasuhara S and Martyn JA: Burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle. Am J Physiol Endocrinol Metab. 288:E585–E591. 2005. View Article : Google Scholar

55 

Fang CH, Li B, James JH, et al: GSK-3β activity is increased in skeletal muscle after burn injury in rats. Am J Physiol Regul Integr Comp Physiol. 293:R1545–R1551. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Beilharz TH, Humphreys DT, Clancy JL, et al: microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One. 4:e67832009. View Article : Google Scholar : PubMed/NCBI

57 

Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P and Izaurralde E: mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20:1885–1898. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Mathonnet G, Fabian MR, Svitkin YV, et al: MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science. 317:1764–1767. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Jordan SD, Kruger M, Willmes DM, et al: Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol. 13:434–446. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Frost RJ and Olson EN: Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA. 108:21075–21080. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Yang YM, Seo SY, Kim TH and Kim SG: Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology. 56:2209–2220. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Trajkovski M, Hausser J, Soutschek J, et al: MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 474:649–653. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K and Yang GH: MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 411:846–852. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Ling HY, Hu B, Hu XB, et al: MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp Clin Endocrinol Diabetes. 120:553–559. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Horie T, Ono K, Nishi H, et al: MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun. 389:315–320. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Lu H, Buchan RJ and Cook SA: MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 86:410–420. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Chen YH, Heneidi S, Lee JM, et al: miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 62:2278–2286. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Liang P, Lv C, Jiang B, et al: MicroRNA profiling in denatured dermis of deep burn patients. Burns. 38:534–540. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Liu C, Kelnar K, Liu B, et al: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Wiggins JF, Ruffino L, Kelnar K, et al: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 70:5923–5930. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Callis TE, Pandya K, Seok HY, et al: MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 119:2772–2786. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Henke JI, Goergen D, Zheng J, et al: microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 27:3300–3310. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Janssen HL, Reesink HW, Lawitz EJ, et al: Treatment of HCV infection by targeting microRNA. N Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu Y and Chai J: The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review). Int J Mol Med 35: 305-310, 2015.
APA
Yu, Y., & Chai, J. (2015). The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review). International Journal of Molecular Medicine, 35, 305-310. https://doi.org/10.3892/ijmm.2014.2023
MLA
Yu, Y., Chai, J."The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review)". International Journal of Molecular Medicine 35.2 (2015): 305-310.
Chicago
Yu, Y., Chai, J."The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review)". International Journal of Molecular Medicine 35, no. 2 (2015): 305-310. https://doi.org/10.3892/ijmm.2014.2023
Copy and paste a formatted citation
x
Spandidos Publications style
Yu Y and Chai J: The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review). Int J Mol Med 35: 305-310, 2015.
APA
Yu, Y., & Chai, J. (2015). The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review). International Journal of Molecular Medicine, 35, 305-310. https://doi.org/10.3892/ijmm.2014.2023
MLA
Yu, Y., Chai, J."The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review)". International Journal of Molecular Medicine 35.2 (2015): 305-310.
Chicago
Yu, Y., Chai, J."The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (Review)". International Journal of Molecular Medicine 35, no. 2 (2015): 305-310. https://doi.org/10.3892/ijmm.2014.2023
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team