Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2015 Volume 36 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2015 Volume 36 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells

  • Authors:
    • Yong Yang
    • Min Dai
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedics, Xinyu Hospital of Nanchang University, Xinyu, Jiangxi 338025, P.R. China, Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi 330006, P.R. China
  • Pages: 565-570
    |
    Published online on: June 16, 2015
       https://doi.org/10.3892/ijmm.2015.2248
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Peptidyl arginine deiminase, type IV (PADI4) plays an important role in inflammation and in the immune response, and it has been shown to be associated with rheumatoid arthritis, osteoarthritis and ankylosing spondylitis (AS). However, little is known about the precise role of PADI4 in the pathogenic process in vitro. In this study, we aimed to investigate the expression of PADI4 in the synovial tissue of patients with AS and to determine the potential effects of PADI4 on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation under normal and pathological conditions. Synovial tissues were collected from 18 patients with AS and 11 control subjects. The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis revealed that the expression of PADI4 was upregulated in the patients with AS. In the hMSCs, the protein expression of PADI4 was increased following treatment with tumor necrosis factor-α (TNF-α) in a dose- and time-dependent manner. MTT assay revealed that TNF-α promoted hMSC proliferation. In addition, we found that TNF-α promoted the osteogenic differentiation of hMSCs, as demonstrated by an increase in alkaline phosphatase (ALP) activity, as well as an increase in the expression of bone morphogenetic protein 2 (BMP-2), runt-related transcription factor 2 (Runx2) and Osterix. The hMSCs were transfected with PADI4 siRNA to silence PADI4 expression. We found that, under normal conditions, the silencing of PADI4 did not have any effect on hMSC proliferation or osteogenic differentiation. However, in the presence of TNF-α, hMSC proliferation and osteogenic differentiation were induced. These effects were attenuated by the silencing of PADI4. In conclusion, the findings of this study demonstrate that the expression of PADI4 differs between patients with AS and normal subjects. In addition, our data suggest that PADI4 plays a role in hMSC proliferation and differentiation, which are induced by TNF-α.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

McHugh K and Bowness P: The link between HLA-B27 and SpA - new ideas on an old problem. Rheumatology (Oxford). 51:1529–1539. 2012. View Article : Google Scholar

2 

Zhang X, Aubin JE and Inman RD: Molecular and cellular biology of new bone formation: insights into the ankylosis of ankylosing spondylitis. Curr Opin Rheumatol. 15:387–393. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Schett G: Bone formation versus bone resorption in ankylosing spondylitis. Adv Exp Med Biol. 649:114–121. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Grisar J, Bernecker PM, Aringer M, Redlich K, Sedlak M, Wolozcszuk W, Spitzauer S, Grampp S, Kainberger F, Ebner W, et al: Ankylosing spondylitis, psoriatic arthritis, and reactive arthritis show increased bone resorption, but differ with regard to bone formation. J Rheumatol. 29:1430–1436. 2002.PubMed/NCBI

5 

Miossec P: IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect. 11:625–630. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Koenders MI, Marijnissen RJ, Devesa I, Lubberts E, Joosten LA, Roth J, van Lent PL, van de Loo FA and van den Berg WB: Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: rationale for combination treatment during arthritis. Arthritis Rheum. 63:2329–2339. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, et al: IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 103:1345–1352. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Lubberts E, Joosten LA, van de Loo FA, Schwarzenberger P, Kolls J and van den Berg WB: Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm Res. 51:102–104. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Nakashima K, Hagiwara T, Ishigami A, Nagata S, Asaga H, Kuramoto M, Senshu T and Yamada M: Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1alpha,25-dihydroxyvitamin D(3). J Biol Chem. 274:27786–27792. 1999. View Article : Google Scholar : PubMed/NCBI

10 

Asaga H, Nakashima K, Senshu T, Ishigami A and Yamada M: Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol. 70:46–51. 2001.PubMed/NCBI

11 

Chang X, Yamada R, Suzuki A, Sawada T, Yoshino S, Tokuhiro S and Yamamoto K: Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology (Oxford). 44:40–50. 2005. View Article : Google Scholar

12 

György B, Tóth E, Tarcsa E, Falus A and Buzás EI: Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol. 38:1662–1677. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Anzilotti C, Pratesi F, Tommasi C and Migliorini P: Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev. 9:158–160. 2010. View Article : Google Scholar

14 

Chang X, Zhao Y, Sun S, Zhang Y and Zhu Y: The expression of PADI4 in synovium of rheumatoid arthritis. Rheumatol Int. 29:1411–1416. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Vossenaar ER, Nijenhuis S, Helsen MM, van der Heijden A, Senshu T, van den Berg WB, van Venrooij WJ and Joosten LA: Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis Rheum. 48:2489–2500. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M, et al: Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet. 34:395–402. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW, Wolfe F, Kastner DL, Alfredsson L, Altshuler D, et al: Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet. 77:1044–1060. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Kang CP, Lee HS, Ju H, Cho H, Kang C and Bae SC: A functional haplotype of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans. Arthritis Rheum. 54:90–96. 2006. View Article : Google Scholar

19 

Klein-Nulend J, Bacabac RG and Bakker AD: Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 24:278–291. 2012.PubMed/NCBI

20 

Onal M, Xiong J, Chen X, Thostenson JD, Almeida M, Manolagas SC and O’Brien CA: Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem. 287:29851–29860. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Vezeridis PS, Semeins CM, Chen Q and Klein-Nulend J: Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun. 348:1082–1088. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Walkley CR, Shea JM, Sims NA, Purton LE and Orkin SH: Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell. 129:1081–1095. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Schaffler MB and Kennedy OD: Osteocyte signaling in bone. Curr Osteoporos Rep. 10:118–125. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Taylan A, Sari I, Akinci B, Bilge S, Kozaci D, Akar S, Colak A, Yalcin H, Gunay N and Akkoc N: Biomarkers and cytokines of bone turnover: extensive evaluation in a cohort of patients with ankylosing spondylitis. BMC Musculoskelet Disord. 13:1912012. View Article : Google Scholar : PubMed/NCBI

25 

Aggarwal BB: Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 3:745–756. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Osta B, Benedetti G and Miossec P: Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol. 5:482014. View Article : Google Scholar

27 

Pacifici R: Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res. 11:1043–1051. 1996. View Article : Google Scholar : PubMed/NCBI

28 

Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T and Athanasou NA: Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol. 198:220–227. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Mucci JM, Scian R, De Francesco PN, García FS, Ceci R, Fossati CA, Delpino MV and Rozenfeld PA: Induction of osteoclastogenesis in an in vitro model of Gaucher disease is mediated by T cells via TNF-α. Gene. 509:51–59. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Matsubara R, Kukita T, Ichigi Y, Takigawa I, Qu PF, Funakubo N, Miyamoto H, Nonaka K and Kukita A: Characterization and identification of subpopulations of mononuclear preosteoclasts induced by TNF-α in combination with TGF-β in rats. PLoS One. 7:e479302012. View Article : Google Scholar

31 

Kagiya T and Nakamura S: Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation. J Periodontal Res. 48:373–385. 2013. View Article : Google Scholar

32 

Abbas S, Zhang YH, Clohisy JC and Abu-Amer Y: Tumor necrosis factor-alpha inhibits pre-osteoblast differentiation through its type-1 receptor. Cytokine. 22:33–41. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J and Nanes MS: Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 141:3956–3964. 2000.PubMed/NCBI

34 

Gilbert LC, Rubin J and Nanes MS: The p55 TNF receptor mediates TNF inhibition of osteoblast differentiation independently of apoptosis. Am J Physiol Endocrinol Metab. 288:E1011–E1018. 2005. View Article : Google Scholar

35 

Mukai T, Otsuka F, Otani H, Yamashita M, Takasugi K, Inagaki K, Yamamura M and Makino H: TNF-alpha inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling. Biochem Biophys Res Commun. 356:1004–1010. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Lee HL, Yi T, Baek K, Kwon A, Hwang HR, Qadir AS, Park HJ, Woo KM, Ryoo HM, Kim GS and Baek JH: Tumor necrosis factor-α enhances the transcription of Smad ubiquitination regulatory factor 1 in an activating protein-1- and Runx2-dependent manner. J Cell Physiol. 228:1076–1086. 2013. View Article : Google Scholar

37 

Hess K, Ushmorov A, Fiedler J, Brenner RE and Wirth T: TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone. 45:367–376. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Feng X1, Feng G, Xing J, Shen B, Li L, Tan W, Xu Y, Liu S, Liu H, Jiang J, et al: TNF-α triggers osteogenic differentiation of human dental pulp stem cells via the NF-κB signalling pathway. Cell Biol Int. 37:1267–1275. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Jaiswal N, Haynesworth SE, Caplan AI and Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 64:295–312. 1997. View Article : Google Scholar : PubMed/NCBI

40 

Böcker W, Docheva D, Prall WC, Egea V, Pappou E, Rossmann O, Popov C, Mutschler W, Ries C and Schieker M: IKK-2 is required for TNF-alpha-induced invasion and proliferation of human mesenchymal stem cells. J Mol Med (Berl). 86:1183–1192. 2008. View Article : Google Scholar

41 

Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch HM, Probert L, Casaccia-Bonnefil P and Moscarello MA: Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci. 26:11387–11396. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang Y and Dai M: Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells. Int J Mol Med 36: 565-570, 2015.
APA
Yang, Y., & Dai, M. (2015). Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells. International Journal of Molecular Medicine, 36, 565-570. https://doi.org/10.3892/ijmm.2015.2248
MLA
Yang, Y., Dai, M."Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells". International Journal of Molecular Medicine 36.2 (2015): 565-570.
Chicago
Yang, Y., Dai, M."Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells". International Journal of Molecular Medicine 36, no. 2 (2015): 565-570. https://doi.org/10.3892/ijmm.2015.2248
Copy and paste a formatted citation
x
Spandidos Publications style
Yang Y and Dai M: Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells. Int J Mol Med 36: 565-570, 2015.
APA
Yang, Y., & Dai, M. (2015). Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells. International Journal of Molecular Medicine, 36, 565-570. https://doi.org/10.3892/ijmm.2015.2248
MLA
Yang, Y., Dai, M."Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells". International Journal of Molecular Medicine 36.2 (2015): 565-570.
Chicago
Yang, Y., Dai, M."Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells". International Journal of Molecular Medicine 36, no. 2 (2015): 565-570. https://doi.org/10.3892/ijmm.2015.2248
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team