Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2017 Volume 39 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2017 Volume 39 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells

  • Authors:
    • Kunihiro Ueta
    • Junkoh Yamamoto
    • Tohru Tanaka
    • Yoshiteru Nakano
    • Takehiro Kitagawa
    • Shigeru Nishizawa
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan, SBI Pharmaceuticals Co., Ltd., Minato-ku, Tokyo, Japan
  • Pages: 387-398
    |
    Published online on: December 28, 2016
       https://doi.org/10.3892/ijmm.2016.2841
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

5-Aminolevulinic acid (5-ALA) can accumulate protoporphyrin IX (PpIX) in tumour cell mitochondria and is well known for its utility in fluorescence-guided resection of malignant gliomas as a live molecular marker. Previously, we and other authors demonstrated that 5-ALA has a radiosensitizing effect for tumours. In the present study, we aimed to investigate the mechanism underlying the radiosensitizing effect of 5-ALA by focusing on glioma cell mitochondria. Using an enhancer (ciprofloxacin) of 5-ALA-induced PpIX accumulation, we evaluated the influence of ionizing irradiation (IR) and delayed reactive oxygen species (ROS) production 12 h after IR by colony-forming assay and flow cytometry (FCM) with different amounts of PpIX accumulation. The mitochondrial mass and mitochondrial electron transport chain (mtETC) activity were evaluated by FCM and western blot analysis. Cell death and delayed ROS production after IR in glioma cells were increased in proportion to 5-ALA-induced PpIX accumulation. Delayed ROS production enhanced by 5-ALA localized to the glioma cell mitochondria. Mitochondrial mass and mitochondrial complex III activity, among mtETC factors, were also increased 12 h after IR in glioma cells in proportion to 5-ALA-induced PpIX accumulation with some variation. These results suggest that 5-ALA enhances IR-induced mitochondrial oxidative stress and leads to increased cell death with mitochondrial changes, thereby acting as a targeting mitochondrial drug, and so‑called radiosensitizer in glioma cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Sanai N, Polley MY, McDermott MW, Parsa AT and Berger MS: An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 115:3–8. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Westphal M, Ram Z, Riddle V, Hilt D and Bortey E; Executive Committee of the Gliadel Study Group: Gliadel wafer in initial surgery for malignant glioma: Long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien). 148:269–275. 2006. View Article : Google Scholar

4 

Claes A, Idema AJ and Wesseling P: Diffuse glioma growth: A guerilla war. Acta Neuropathol. 114:443–458. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Minniti G, Amelio D, Amichetti M, Salvati M, Muni R, Bozzao A, Lanzetta G, Scarpino S, Arcella A and Enrici RM: Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol. 97:377–381. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Ishizuka M, Abe F, Sano Y, Takahashi K, Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura S and Tanaka T: Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol. 11:358–365. 2011. View Article : Google Scholar

7 

Yamamoto J: A role of 5-aminolevulinic acid for treating malignant gliomas: Clinical implications and future prospects (Review). ALA-Porphyrin Sci. 4:3–12. 2016.

8 

Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F and Reulen HJ; ALA-Glioma Study Group: Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 7:392–401. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Yamamoto J, Kitagawa T, Akiba D and Nishizawa S: 5-Aminolevulinic acid-induced fluorescence in cerebellar primary central nervous system lymphoma: A case report and literature review. Turk Neurosurg. 25:796–800. 2015.PubMed/NCBI

10 

Yamamoto J, Takahashi M, Idei M, et al: A pitfall of fluorescence-guided surgery with 5-aminolevulinic acid for the treatment of malignant brain tumor -case report-. ALA-Porphyrin Sci. 1:61–66. 2012.

11 

Luksiene Z, Berg K and Moan J: Combination of photodynamic therapy and X-irradiation: A study on 5-ALA radiomodifying properties. SPIE. 2325:306–311. 1994.

12 

Berg K, Luksiene Z, Moan J and Ma L: Combined treatment of ionizing radiation and photosensitization by 5-aminolevulinic acid-induced protoporphyrin IX. Radiat Res. 142:340–346. 1995. View Article : Google Scholar : PubMed/NCBI

13 

Schaffer M, Schaffer PM, Corti L, Gardiman M, Sotti G, Hofstetter A, Jori G and Dühmke E: Photofrin as a specific radiosensitizing agent for tumors: Studies in comparison to other porphyrins, in an experimental in vivo model. J Photochem Photobiol B. 66:157–164. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Yamamoto J, Ogura S, Tanaka T, Kitagawa T, Nakano Y, Saito T, Takahashi M, Akiba D and Nishizawa S: Radiosensitizing effect of 5-aminolevulinic acid-induced protoporphyrin IX in glioma cells in vitro. Oncol Rep. 27:1748–1752. 2012.PubMed/NCBI

15 

Yamamoto J, Ogura S, Shimajiri S, Nakano Y, Akiba D, Kitagawa T, Ueta K, Tanaka T and Nishizawa S: 5-Aminolevulinic acid-induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo. Mol Med Rep. 11:1813–1819. 2015.

16 

Kitagawa T, Yamamoto J, Tanaka T, Nakano Y, Akiba D, Ueta K and Nishizawa S: 5-Aminolevulinic acid strongly enhances delayed intracellular production of reactive oxygen species (ROS) generated by ionizing irradiation: Quantitative analyses and visualization of intracellular ROS production in glioma cells in vitro. Oncol Rep. 33:583–590. 2015.

17 

Takahashi J, Misawa M, Murakami M, Mori T, Nomura K and Iwahashi H: 5-Aminolevulinic acid enhances cancer radiotherapy in a mouse tumor model. Springerplus. 2:6022013. View Article : Google Scholar : PubMed/NCBI

18 

Kamada Y, Murayama Y, Harada K, Nishimura M, Kondo Y, Konishi H, Morimura R, Komatsu S, Shiozaki A, Kuriu Y, et al: Radiosensitizing effect of 5-aminolevulinic acid (5-ALA) in Colon cancer. Gan To Kagaku Ryoho. 41:1608–1610. 2014.In Japanese.

19 

Wang D, Cvetkovic B, Gupta R, Chen L, Ma CMC, Zhang Q and Zeng J: Radiatoin therapy combined with 5-amiolevulinic acid: A preliminary study with an in vivo mouse model implanted with human PC-3 tumor cells. Int J Radiat Oncol Biol Phys. 93:e5222015. View Article : Google Scholar

20 

Takahashi J, Misawa M and Iwahashi H: Transcriptome analysis of porphyrin-accumulated and x-ray-irradiated cell cultures under limited proliferation and non-lethal conditions. Microarrays (Basel). 4:25–40. 2015. View Article : Google Scholar

21 

Riley PA: Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 65:27–33. 1994. View Article : Google Scholar : PubMed/NCBI

22 

Hall E and Giaccia A: Physics and chemistry of radiation absorption. Radiology for the Radiologist Lippipncott. Williams and Wilkins; Philadelphia, PA: pp. 5–15. 2006

23 

Takahashi J and Misawa M: Characterization of reactive oxygen species generated by protoporphyrin IX under X-ray irradiation. Radiat Phys Chem. 78:889–898. 2009. View Article : Google Scholar

24 

Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H and Inanami O: Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med. 53:260–270. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Kam WW and Banati RB: Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 65:607–619. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Azzam EI, Jay-Gerin JP and Pain D: Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327:48–60. 2012. View Article : Google Scholar

27 

Richardson RB and Harper ME: Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy. Oncotarget. Feb 15–2016.Epub ahead of print.

28 

Saenko Y, Cieslar-Pobuda A, Skonieczna M and Rzeszowska- Wolny J: Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation. Radiat Res. 180:360–366. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Sugiyama Y, Hagiya Y, Nakajima M, Ishizuka M, Tanaka T and Ogura S: The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis. Oncol Rep. 31:1282–1286. 2014.

30 

Kiang JG, Garrison BR, Smith JT and Fukumoto R: Ciprofloxacin as a potential radio-sensitizer to tumor cells and a radio-protectant for normal cells: Differential effects on γ-H2AX formation, p53 phosphorylation, Bcl-2 production, and cell death. Mol Cell Biochem. 393:133–143. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Ohgari Y, Miyata Y, Chau TT, Kitajima S, Adachi Y and Taketani S: Quinolone compounds enhance delta-aminolevulinic acid-induced accumulation of protoporphyrin IX and photosensitivity of tumour cells. J Biochem. 149:153–160. 2011. View Article : Google Scholar

32 

Kanzleiter T, Rath M, Penkov D, Puchkov D, Schulz N, Blasi F and Schürmann A: Pknox1/Prep1 regulates mitochondrial oxidative phosphorylation components in skeletal muscle. Mol Cell Biol. 34:290–298. 2014. View Article : Google Scholar :

33 

Thomas MM, Trajcevski KE, Coleman SK, Jiang M, Di Michele J, O'Neill HM, Lally JS, Steinberg GR and Hawke TJ: Early oxidative shifts in mouse skeletal muscle morphology with high-fat diet consumption do not lead to functional improvements. Physiol Rep. 2:22014. View Article : Google Scholar

34 

Wondrak GT: Redox-directed cancer therapeutics: Molecular mechanisms and opportunities. Antioxid Redox Signal. 11:3013–3069. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Lomax ME, Folkes LK and O'Neill P: Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin Oncol (R Coll Radiol). 25:578–585. 2013. View Article : Google Scholar

36 

Barendsen GW: The relationships between RBE and LET for different types of lethal damage in mammalian cells: Biophysical and molecular mechanisms. Radiat Res. 139:257–270. 1994. View Article : Google Scholar : PubMed/NCBI

37 

Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R and Mikkelsen RB: Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 61:3894–3901. 2001.PubMed/NCBI

38 

Clayton DA: Transcription and replication of mitochondrial DNA. Hum Reprod. 15(Suppl 2): 11–17. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, et al: Sequence and organization of the human mitochondrial genome. Nature. 290:457–465. 1981. View Article : Google Scholar : PubMed/NCBI

40 

Richter C, Park JW and Ames BN: Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA. 85:6465–6467. 1988. View Article : Google Scholar : PubMed/NCBI

41 

Larsen NB, Rasmussen M and Rasmussen LJ: Nuclear and mitochondrial DNA repair: Similar pathways? Mitochondrion. 5:89–108. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Cadenas E and Davies KJ: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 29:222–230. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Babior BM: NADPH oxidase: An update. Blood. 93:1464–1476. 1999.PubMed/NCBI

44 

Kloskowski T, Gurtowska N, Nowak M, Joachimiak R, Bajek A, Olkowska J and Drewa T: The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro. Acta Pol Pharm. 68:859–865. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, Pyko IV, Hayashi Y and Hamada JI: Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer. 104:798–807. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Tran TT, Mu A, Adachi Y, Adachi Y and Taketani S: Neurotransmitter transporter family including SLC6A6 and SLC6A13 contributes to the 5-aminolevulinic acid (ALA)-induced accumulation of protoporphyrin IX and photodamage, through uptake of ALA by cancerous cells. Photochem Photobiol. 90:1136–1143. 2014.PubMed/NCBI

47 

Chua C, Zaiden N, Chong KH, See SJ, Wong MC, Ang BT and Tang C: Characterization of a side population of astrocytoma cells in response to temozolomide. J Neurosurg. 109:856–866. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Matsumoto K, Hagiya Y, Endo Y, Nakajima M, Ishizuka M, Tanaka T and Ogura S: Effects of plasma membrane ABCB6 on 5-aminolevulinic acid (ALA)-induced porphyrin accumulation in vitro: Tumor cell response to hypoxia. Photodiagn Photodyn Ther. 12:45–51. 2015. View Article : Google Scholar

49 

Hayashi M, Fukuhara H, Inoue K, Shuin T, Hagiya Y, Nakajima M, Tanaka T and Ogura S: The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid. PLoS One. 10:e01223512015. View Article : Google Scholar : PubMed/NCBI

50 

Sawamoto M, Imai T, Umeda M, Fukuda K, Kataoka T and Taketani S: The p53-dependent expression of frataxin controls 5-aminolevulinic acid-induced accumulation of protoporphyrin IX and photo-damage in cancerous cells. Photochem Photobiol. 89:163–172. 2013. View Article : Google Scholar

51 

Kim JE, Cho HR, Xu WJ, Kim JY, Kim SK, Kim SK, Park SH, Kim H, Lee SH, Choi SH, et al: Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas. Oncotarget. 6:20266–20277. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Uhm JH, Ballman KV, Wu W, Giannini C, Krauss JC, Buckner JC, James CD, Scheithauer BW, Behrens RJ, Flynn PJ, et al: Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. Int J Radiat Oncol Biol Phys. 80:347–353. 2011. View Article : Google Scholar

53 

Curry WT and Lim M: Immunomodulation: checkpoint blockade etc. Neuro Oncol. 17(Suppl 7): vii26–vii31. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Norden AD, Drappatz J and Wen PY: Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol. 7:1152–1160. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Cloughesy T, Finocchiaro G, Belda-Iniesta C, Recht L, Brandes AA, Pineda E, Mikkelsen T, Chinot OL, Balana C, Macdonald DR, et al: Randomized, double-blind, placebo-controlled, multicenter phase II study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: efficacy, safety, and hepatocyte growth factor and O6-methylguanine-DNA methyltransferase biomarker analyses. J Clin Oncol. Dec 5–2016.Epub ahead of print.

56 

Pan JG and Mak TW: Metabolic targeting as an anticancer strategy: Dawn of a new era? Sci STKE. 2007:pe142007.PubMed/NCBI

57 

Fulda S, Galluzzi L and Kroemer G: Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 9:447–464. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Weinberg SE and Chandel NS: Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 11:9–15. 2015. View Article : Google Scholar :

59 

Kostron H, Swartz MR, Miller DC and Martuza RL: The interaction of hematoporphyrin derivative, light, and ionizing radiation in a rat glioma model. Cancer. 57:964–970. 1986. View Article : Google Scholar : PubMed/NCBI

60 

Kulka U, Schaffer M, Siefert A, Schaffer PM, Olsner A, Kasseb K, Hofstetter A, Dühmke E and Jori G: Photofrin as a radiosensitizer in an in vitro cell survival assay. Biochem Biophys Res Commun. 311:98–103. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Schaffer M, Ertl-Wagner B, Schaffer PM, Kulka U, Jori G, Wilkowski R, Hofstetter A and Dühmke E: Feasibility of photofrin II as a radiosensitizing agent in solid tumors - preliminary results. Onkologie. 29:514–519. 2006.PubMed/NCBI

62 

Chen HP, Tung FI, Chen MH and Liu TY: A magnetic vehicle realized tumor cell-targeted radiotherapy using low-dose radiation. J Control Release. 226:182–192. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Yamamoto J, Yamamoto S, Hirano T, Li S, Koide M, Kohno E, Okada M, Inenaga C, Tokuyama T, Yokota N, et al: Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma. Clin Cancer Res. 12:7132–7139. 2006. View Article : Google Scholar : PubMed/NCBI

64 

Yamamoto J, Kakeda S, Yoneda T, et al: Improving contrast enhancement in magnetic resonance imaging using 5-aminolevulinic acid-induced protoporphyrin IX for high-grade gliomas: A prospective case study and clinical implications. Oncol Lett. In press.

65 

Gao Z, Zheng J, Yang B, Wang Z, Fan H, Lv Y, Li H, Jia L and Cao W: Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett. 335:93–99. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Takahashi K, Hasegawa T, Ishii T, Suzuki A, Nakajima M, Uno K, Yasuda I, Kishi A, Sadamoto K, Abe F, et al: Antitumor effect of combination of hyperthermotherapy and 5-aminolevulinic acid (ALA). Anticancer Res. 33:2861–2866. 2013.PubMed/NCBI

67 

Rycaj K and Tang DG: Cancer stem cells and radioresistance. Int J Radiat Biol. 90:615–621. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Krause M, Dubrovska A, Linge A and Baumann M: Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev. Feb 12–2016.Epub ahead of print. PubMed/NCBI

69 

Tannock IF: Cancer: Resistance through repopulation. Nature. 517:152–153. 2015. View Article : Google Scholar

70 

Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Yu CH and Yu CC: Photodynamic therapy with 5-aminolevulinic acid (ALA) impairs tumor initiating and chemo-resistance property in head and neck cancer-derived cancer stem cells. PLoS One. 9:e871292014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ueta K, Yamamoto J, Tanaka T, Nakano Y, Kitagawa T and Nishizawa S: 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells. Int J Mol Med 39: 387-398, 2017.
APA
Ueta, K., Yamamoto, J., Tanaka, T., Nakano, Y., Kitagawa, T., & Nishizawa, S. (2017). 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells. International Journal of Molecular Medicine, 39, 387-398. https://doi.org/10.3892/ijmm.2016.2841
MLA
Ueta, K., Yamamoto, J., Tanaka, T., Nakano, Y., Kitagawa, T., Nishizawa, S."5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells". International Journal of Molecular Medicine 39.2 (2017): 387-398.
Chicago
Ueta, K., Yamamoto, J., Tanaka, T., Nakano, Y., Kitagawa, T., Nishizawa, S."5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells". International Journal of Molecular Medicine 39, no. 2 (2017): 387-398. https://doi.org/10.3892/ijmm.2016.2841
Copy and paste a formatted citation
x
Spandidos Publications style
Ueta K, Yamamoto J, Tanaka T, Nakano Y, Kitagawa T and Nishizawa S: 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells. Int J Mol Med 39: 387-398, 2017.
APA
Ueta, K., Yamamoto, J., Tanaka, T., Nakano, Y., Kitagawa, T., & Nishizawa, S. (2017). 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells. International Journal of Molecular Medicine, 39, 387-398. https://doi.org/10.3892/ijmm.2016.2841
MLA
Ueta, K., Yamamoto, J., Tanaka, T., Nakano, Y., Kitagawa, T., Nishizawa, S."5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells". International Journal of Molecular Medicine 39.2 (2017): 387-398.
Chicago
Ueta, K., Yamamoto, J., Tanaka, T., Nakano, Y., Kitagawa, T., Nishizawa, S."5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells". International Journal of Molecular Medicine 39, no. 2 (2017): 387-398. https://doi.org/10.3892/ijmm.2016.2841
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team