|
1
|
Danaei G, Finucane MM, Lu Y, Singh GM,
Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA,
et al: Global Burden of Metabolic Risk Factors of Chronic Diseases
Collaborating Group (Blood Glucose): National, regional, and global
trends in fasting plasma glucose and diabetes prevalence since
1980: Systematic analysis of health examination surveys and
epidemiological studies with 370 country-years and 2·7 million
participants. Lancet. 378:31–40. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Expert Committee on the Diagnosis and
Classification of Diabetes Mellitus: Report of the expert committee
on the diagnosis and classification of diabetes mellitus. Diabetes
Care. 26(Suppl 1): S5–S20. 2003. View Article : Google Scholar
|
|
3
|
Shao S, Yang Y, Yuan G, Zhang M and Yu X:
Signaling molecules involved in lipid-induced pancreatic beta-cell
dysfunction. DNA Cell Biol. 32:41–49. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Newsholme P, Keane D, Welters HJ and
Morgan NG: Life and death decisions of the pancreatic beta-cell:
The role of fatty acids. Clin Sci (Lond). 112:27–42. 2007.
View Article : Google Scholar
|
|
5
|
Alemany R, van Koppen CJ, Danneberg K, Ter
Braak M and Meyer zu Heringdorf D: Regulation and functional roles
of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol.
374:413–428. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Van Brocklyn JR, Lee MJ, Menzeleev R,
Olivera A, Edsall L, Cuvillier O, Thomas DM, Coopman PJ, Thangada
S, Liu CH, et al: Dual actions of sphingosine-1-phosphate:
Extracellular through the Gi-coupled receptor Edg-1 and
intracellular to regulate proliferation and survival. J Cell Biol.
142:229–240. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Olivera A and Spiegel S:
Sphingosine-1-phosphate as second messenger in cell proliferation
induced by PDGF and FCS mitogens. Nature. 365:557–560. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cuvillier O, Pirianov G, Kleuser B, Vanek
PG, Coso OA, Gutkind S and Spiegel S: Suppression of
ceramide-mediated programmed cell death by sphingosine-1-phosphate.
Nature. 381:800–803. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pyne S, Chapman J, Steele L and Pyne NJ:
Sphingomyelin-derived lipids differentially regulate the
extracellular signal-regulated kinase 2 (ERK-2) and c-Jun
N-terminal kinase (JNK) signal cascades in airway smooth muscle.
Eur J Biochem. 237:819–826. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Qi Y, Chen J, Lay A, Don A, Vadas M and
Xia P: Loss of sphingosine kinase 1 predisposes to the onset of
diabetes via promoting pancreatic β-cell death in diet-induced
obese mice. FASEB J. 27:4294–4304. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Holland WL, Brozinick JT, Wang LP, Hawkins
ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, et
al: Inhibition of ceramide synthesis ameliorates glucocorticoid-,
saturated-fat-, and obesity-induced insulin resistance. Cell Metab.
5:167–179. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bruce CR, Risis S, Babb JR, Yang C,
Kowalski GM, Selathurai A, Lee-Young RS, Weir JM, Yoshioka K,
Takuwa Y, et al: Overexpression of sphingosine kinase 1 prevents
ceramide accumulation and ameliorates muscle insulin resistance in
high-fat diet-fed mice. Diabetes. 61:3148–3155. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Spiegel S and Milstien S: The outs and the
ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol.
11:403–415. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pyne S and Pyne NJ: Translational aspects
of sphingosine 1-phosphate biology. Trends Mol Med. 17:463–472.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Maceyka M and Spiegel S: Sphingolipid
metabolites in inflammatory disease. Nature. 510:58–67. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mendelson K, Evans T and Hla T:
Sphingosine 1-phosphate signalling. Development. 141:5–9. 2014.
View Article : Google Scholar :
|
|
17
|
Hla T and Dannenberg AJ: Sphingolipid
signaling in metabolic disorders. Cell Metab. 16:420–434. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pitson SM: Regulation of sphingosine
kinase and sphingolipid signaling. Trends Biochem Sci. 36:97–107.
2011. View Article : Google Scholar
|
|
19
|
Don AS and Rosen H: A lipid binding domain
in sphingosine kinase 2. Biochem Biophys Res Commun. 380:87–92.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Barr RK, Lynn HE, Moretti PA, Khew-Goodall
Y and Pitson SM: Deactivation of sphingosine kinase 1 by protein
phosphatase 2A. J Biol Chem. 283:34994–35002. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sutherland CM, Moretti PA, Hewitt NM,
Bagley CJ, Vadas MA and Pitson SM: The calmodulin-binding site of
sphingosine kinase and its role in agonist-dependent translocation
of sphingosine kinase 1 to the plasma membrane. J Biol Chem.
281:11693–11701. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hait NC, Allegood J, Maceyka M, Strub GM,
Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S
and Spiegel S: Regulation of histone acetylation in the nucleus by
sphingosine-1-phosphate. Science. 325:1254–1257. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wattenberg BW, Pitson SM and Raben DM: The
sphingosine and diacylglycerol kinase superfamily of signaling
kinases: Localization as a key to signaling function. J Lipid Res.
47:1128–1139. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Leclercq TM and Pitson SM: Cellular
signalling by sphingosine kinase and sphingosine 1-phosphate. IUBMB
Life. 58:467–472. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Giussani P, Maceyka M, Le Stunff H, Mikami
A, Lépine S, Wang E, Kelly S, Merrill AH Jr, Milstien S and Spiegel
S: Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic
reticulum-to-golgi trafficking of ceramide. Mol Cell Biol.
26:5055–5069. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pitson SM, Moretti PA, Zebol JR, Lynn HE,
Xia P, Vadas MA and Wattenberg BW: Activation of sphingosine kinase
1 by ERK1/2-mediated phosphorylation. EMBO J. 22:5491–5500. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Stahelin RV, Hwang JH, Kim JH, Park ZY,
Johnson KR, Obeid LM and Cho W: The mechanism of membrane targeting
of human sphingosine kinase 1. J Biol Chem. 280:43030–43038. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Siow D and Wattenberg B: The
compartmentalization and trans-location of the sphingosine kinases:
Mechanisms and functions in cell signaling and sphingolipid
metabolism. Crit Rev Biochem Mol Biol. 46:365–375. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Maceyka M, Sankala H, Hait NC, Le Stunff
H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH Jr, et
al: SphK1 and SphK2, sphingosine kinase isoenzymes with opposing
functions in sphingolipid metabolism. J Biol Chem. 280:37118–37129.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ding G, Sonoda H, Yu H, Kajimoto T,
Goparaju SK, Jahangeer S, Okada T and Nakamura S: Protein kinase
D-mediated phosphorylation and nuclear export of sphingosine kinase
2. J Biol Chem. 282:27493–27502. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Igarashi N, Okada T, Hayashi S, Fujita T,
Jahangeer S and Nakamura S: Sphingosine kinase 2 is a nuclear
protein and inhibits DNA synthesis. J Biol Chem. 278:46832–46839.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hait NC, Bellamy A, Milstien S, Kordula T
and Spiegel S: Sphingosine kinase type 2 activation by ERK-mediated
phosphorylation. J Biol Chem. 282:12058–12065. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Alvarez SE, Milstien S and Spiegel S:
Autocrine and paracrine roles of sphingosine-1-phosphate. Trends
Endocrinol Metab. 18:300–307. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Strub GM, Maceyka M, Hait NC, Milstien S
and Spiegel S: Extracellular and intracellular actions of
sphingosine-1-phosphate. Adv Exp Med Biol. 688:141–155. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Venkataraman K, Thangada S, Michaud J, Oo
ML, Ai Y, Lee YM, Wu M, Parikh NS, Khan F, Proia RL and Hla T:
Extracellular export of sphingosine kinase-1a contributes to the
vascular S1P gradient. Biochem J. 397:461–471. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Maceyka M, Harikumar KB, Milstien S and
Spiegel S: Sphingosine-1-phosphate signaling and its role in
disease. Trends Cell Biol. 22:50–60. 2012. View Article : Google Scholar :
|
|
37
|
Xia P, Wang L, Moretti PA, Albanese N,
Chai F, Pitson SM, D'Andrea RJ, Gamble JR and Vadas MA: Sphingosine
kinase interacts with TRAF2 and dissects tumor necrosis
factor-alpha signaling. J Biol Chem. 277:7996–8003. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Artal-Sanz M and Tavernarakis N:
Prohibitin and mitochondrial biology. Trends Endocrinol Metab.
20:394–401. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Parham KA, Zebol JR, Tooley KL, Sun WY,
Moldenhauer LM, Cockshell MP, Gliddon BL, Moretti PA, Tigyi G,
Pitson SM and Bonder CS: Sphingosine 1-phosphate is a ligand for
peroxisome proliferator-activated receptor-γ that regulates
neoangiogenesis. FASEB J. 29:3638–3653. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Panneer Selvam S, De Palma RM, Oaks JJ,
Oleinik N, Peterson YK, Stahelin RV, Skordalakes E, Ponnusamy S,
Garrett-Mayer E, Smith CD and Ogretmen B: Binding of the
sphingolipid S1P to hTERT stabilizes telomerase at the nuclear
periphery by allosterically mimicking protein phosphorylation. Sci
Signal. 8:ra582015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Takasugi N, Sasaki T, Suzuki K, Osawa S,
Isshiki H, Hori Y, Shimada N, Higo T, Yokoshima S, Fukuyama T, et
al: BACE1 activity is modulated by cell-associated
sphingosine-1-phosphate. J Neurosci. 31:6850–6857. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pyne S, Adams DR and Pyne NJ: Sphingosine
1-phosphate and sphingosine kinases in health and disease: Recent
advances. Prog Lipid Res. 62:93–106. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fox TE, Bewley MC, Unrath KA, Pedersen MM,
Anderson RE, Jung DY, Jefferson LS, Kim JK, Bronson SK, Flanagan
JM, et al: Circulating sphingolipid biomarkers in models of type 1
diabetes. J Lipid Res. 52:509–517. 2011. View Article : Google Scholar :
|
|
44
|
Tao C, Sifuentes A and Holland WL:
Regulation of glucose and lipid homeostasis by adiponectin: Effects
on hepatocytes, pancreatic β cells and adipocytes. Best Pract Res
Clin Endocrinol Metab. 28:43–58. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Osawa Y, Seki E, Kodama Y, Suetsugu A,
Miura K, Adachi M, Ito H, Shiratori Y, Banno Y, Olefsky JM, et al:
Acid sphingomyelinase regulates glucose and lipid metabolism in
hepatocytes through AKT activation and AMP-activated protein kinase
suppression. FASEB J. 25:1133–1144. 2011. View Article : Google Scholar :
|
|
46
|
Kowalski GM, Kloehn J, Burch ML,
Selathurai A, Hamley S, Bayol SA, Lamon S, Watt MJ, Lee-Young RS,
McConville MJ and Bruce CR: Overexpression of sphingosine kinase 1
in liver reduces triglyceride content in mice fed a low but not
high-fat diet. Biochim Biophys Acta. 1851:210–219. 2015. View Article : Google Scholar
|
|
47
|
Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee
J, Lee HY, Soo Choi C, Kim BK and Park TS: Activation of
sphingosine kinase 2 by endoplasmic reticulum stress ameliorates
hepatic steatosis and insulin resistance in mice. Hepatology.
62:135–146. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Boden G: Endoplasmic reticulum stress:
Another link between obesity and insulin resistance/inflammation?
Diabetes. 58:518–519. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Boslem E, Meikle PJ and Biden TJ: Roles of
ceramide and sphingolipids in pancreatic β-cell function and
dysfunction. Islets. 4:177–187. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhu Q, Shan X, Miao H, Lu Y, Xu J, You N,
Liu C, Liao DF and Jin J: Acute activation of acid ceramidase
affects cytokine-induced cytotoxicity in rat islet beta-cells. FEBS
Lett. 583:2136–2141. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Maedler K, Oberholzer J, Bucher P, Spinas
GA and Donath MY: Monounsaturated fatty acids prevent the
deleterious effects of palmitate and high glucose on human
pancreatic beta-cell turnover and function. Diabetes. 52:726–733.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Veluthakal R, Palanivel R, Zhao Y,
McDonald P, Gruber S and Kowluru A: Ceramide induces mitochondrial
abnormalities in insulin-secreting INS-1 cells: Potential
mechanisms underlying ceramide-mediated metabolic dysfunction of
the beta cell. Apoptosis. 10:841–850. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lupi R, Dotta F, Marselli L, Del Guerra S,
Masini M, Santangelo C, Patané G, Boggi U, Piro S, Anello M, et al:
Prolonged exposure to free fatty acids has cytostatic and
pro-apoptotic effects on human pancreatic islets: Evidence that
beta-cell death is caspase mediated, partially dependent on
ceramide pathway, and Bcl-2 regulated. Diabetes. 51:1437–1442.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Boslem E, MacIntosh G, Preston AM, Bartley
C, Busch AK, Fuller M, Laybutt DR, Meikle PJ and Biden TJ: A
lipidomic screen of palmitate-treated MIN6 β-cells links
sphingolipid metabolites with endoplasmic reticulum (ER) stress and
impaired protein trafficking. Biochem J. 435:267–276. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Véret J, Coant N, Berdyshev EV, Skobeleva
A, Therville N, Bailbé D, Gorshkova I, Natarajan V, Portha B and Le
Stunff H: Ceramide synthase 4 and de novo production of ceramides
with specific N-acyl chain lengths are involved in
glucolipotoxicity-induced apoptosis of INS-1 β-cells. Biochem J.
438:177–189. 2011. View Article : Google Scholar
|
|
56
|
Kelpe CL, Moore PC, Parazzoli SD,
Wicksteed B, Rhodes CJ and Poitout V: Palmitate inhibition of
insulin gene expression is mediated at the transcriptional level
via ceramide synthesis. J Biol Chem. 278:30015–30021. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guo J, Qian Y, Xi X, Hu X, Zhu J and Han
X: Blockage of ceramide metabolism exacerbates palmitate inhibition
of pro-insulin gene expression in pancreatic beta-cells. Mol Cell
Biochem. 338:283–290. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Jessup CF, Bonder CS, Pitson SM and Coates
PT: The sphingolipid rheostat: A potential target for improving
pancreatic islet survival and function. Endocr Metab Immune Disord
Drug Targets. 11:262–272. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shimizu H, Okajima F, Kimura T, Ohtani K,
Tsuchiya T, Takahashi H, Kuwabara A, Tomura H, Sato K and Mori M:
Sphingosine 1-phosphate stimulates insulin secretion in HIT-T 15
cells and mouse islets. Endocr J. 47:261–269. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rütti S, Ehses JA, Sibler RA, Prazak R,
Rohrer L, Georgopoulos S, Meier DT, Niclauss N, Berney T, Donath
MY, et al: Low- and high-density lipoproteins modulate function,
apoptosis, and proliferation of primary human and murine pancreatic
beta-cells. Endocrinology. 150:4521–4530. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mastrandrea LD, Sessanna SM and Laychock
SG: Sphingosine kinase activity and sphingosine-1 phosphate
production in rat pancreatic islets and INS-1 cells: Response to
cytokines. Diabetes. 54:1429–1436. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Véret J, Coant N, Gorshkova IA, Giussani
P, Fradet M, Riccitelli E, Skobeleva A, Goya J, Kassis N, Natarajan
V, et al: Role of palmitate-induced sphingoid base-1-phosphate
biosynthesis in INS-1 β-cell survival. Biochim Biophys Acta.
1831:251–262. 2013. View Article : Google Scholar
|
|
63
|
Zhao Z, Choi J, Zhao C and Ma ZA: FTY720
normalizes hyperglycemia by stimulating β-cell in vivo
re-generation in db/db mice through regulation of cyclin D3 and p57
(KIP2). J Biol Chem. 287:5562–5573. 2012. View Article : Google Scholar
|
|
64
|
Cantrell Stanford J, Morris AJ, Sunkara M,
Popa GJ, Larson KL and Özcan S: Sphingosine 1-phosphate (S1P)
regulates glucose-stimulated insulin secretion in pancreatic beta
cells. J Biol Chem. 287:13457–13464. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Holland WL, Miller RA, Wang ZV, Sun K,
Barth BM, Bui HH, Davis KE, Bikman BT, Halberg N, Rutkowski JM, et
al: Receptor-mediated activation of ceramidase activity initiates
the pleiotropic actions of adiponectin. Nat Med. 17:55–63. 2011.
View Article : Google Scholar
|
|
66
|
Imasawa T, Koike K, Ishii I, Chun J and
Yatomi Y: Blockade of sphingosine 1-phosphate receptor 2 signaling
attenuates streptozotocin-induced apoptosis of pancreatic
beta-cells. Biochem Biophys Res Commun. 392:207–211. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ma MM, Chen JL, Wang GG, Wang H, Lu Y, Li
JF, Yi J, Yuan YJ, Zhang QW, et al: Sphingosine kinase 1
participates in insulin signalling and regulates glucose metabolism
and homeostasis in KK/Ay diabetic mice. Diabetologia. 50:891–900.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang J, Badeanlou L, Bielawski J, Ciaraldi
TP and Samad F: Sphingosine kinase 1 regulates adipose
proinflammatory responses and insulin resistance. Am J Physiol
Endocrinol Metab. 306:E756–E768. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mikłosz A, Łukaszuk B, Baranowski M,
Górski J and Chabowski A: Effects of inhibition of serine
palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on
palmitate induced insulin resistance in L6 myotubes. PLoS One.
8:e855472013. View Article : Google Scholar
|
|
70
|
Rapizzi E, Taddei ML, Fiaschi T, Donati C,
Bruni P and Chiarugi P: Sphingosine 1-phosphate increases glucose
uptake through trans-activation of insulin receptor. Cell Mol Life
Sci. 66:3207–3218. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rapizzi E, Donati C, Cencetti F, Nincheri
P and Bruni P: Sphingosine 1-phosphate differentially regulates
proliferation of C2C12 reserve cells and myoblasts. Mol Cell
Biochem. 314:193–199. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Takuwa N, Ohkura S, Takashima S, Ohtani K,
Okamoto Y, Tanaka T, Hirano K, Usui S, Wang F, Du W, et al:
S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic
mice involves reactive oxygen species. Cardiovasc Res. 85:484–493.
2010. View Article : Google Scholar :
|
|
73
|
Patel SA, Hoehn KL, Lawrence RT, Sawbridge
L, Talbot NA, Tomsig JL, Turner N, Cooney GJ, Whitehead JP, Kraegen
EW and Cleasby ME: Overexpression of the adiponectin receptor
AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity.
Endocrinology. 153:5231–5246. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhang W, Mottillo EP, Zhao J, Gartung A,
VanHecke GC, Lee JF, Maddipati KR, Xu H, Ahn YH, Proia RL, et al:
Adipocyte lipolysis-stimulated interleukin-6 production requires
sphingosine kinase 1 activity. J Biol Chem. 289:32178–32185. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tous M, Ferrer-Lorente R and Badimon L:
Selective inhibition of sphingosine kinase-1 protects adipose
tissue against LPS-induced inflammatory response in Zucker diabetic
fatty rats. Am J Physiol Endocrinol Metab. 307:E437–E446. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Janes K, Little JW, Li C, Bryant L, Chen
C, Chen Z, Kamocki K, Doyle T, Snider A, Esposito E, et al: The
development and maintenance of paclitaxel-induced neuropathic pain
require activation of the sphingosine 1-phosphate receptor subtype
1. J Biol Chem. 289:21082–21097. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Guan H, Song L, Cai J, Huang Y, Wu J, Yuan
J, Li J and Li M: Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim
pathway and contributes to apoptosis resistance in glioma cells.
PLoS One. 6:e199462011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Abuhusain HJ, Matin A, Qiao Q, Shen H,
Kain N, Day BW, Stringer BW, Daniels B, Laaksonen MA, Teo C, et al:
A metabolic shift favoring sphingosine 1-phosphate at the expense
of ceramide controls glioblastoma angiogenesis. J Biol Chem.
288:37355–37364. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xie B, Shen J, Dong A, Rashid A, Stoller G
and Campochiaro PA: Blockade of sphingosine-1-phosphate reduces
macrophage influx and retinal and choroidal neovascularization. J
Cell Physiol. 218:192–198. 2009. View Article : Google Scholar
|
|
80
|
Maines LW, French KJ, Wolpert EB,
Antonetti DA and Smith CD: Pharmacologic manipulation of
sphingosine kinase in retinal endothelial cells: Implications for
angiogenic ocular diseases. Invest Ophthalmol Vis Sci.
47:5022–5031. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lan T, Liu W, Xie X, Xu S, Huang K, Peng
J, Shen X, Liu P, Wang L, Xia P and Huang H: Sphingosine kinase-1
pathway mediates high glucose-induced fibronectin expression in
glomerular mesangial cells. Mol Endocrinol. 25:2094–2105. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Liu Y: Renal fibrosis: New insights into
the pathogenesis and therapeutics. Kidney Int. 69:213–217. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Katsuma S, Hada Y, Ueda T, Shiojima S,
Hirasawa A, Tanoue A, Takagaki K, Ohgi T, Yano J and Tsujimoto G:
Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial
cell proliferation. Genes Cells. 7:1217–1230. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Klawitter S, Hofmann LP, Pfeilschifter J
and Huwiler A: Extracellular nucleotides induce migration of renal
mesangial cells by upregulating sphingosine kinase-1 expression and
activity. Br J Pharmacol. 150:271–280. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xin C, Ren S, Kleuser B, Shabahang S,
Eberhardt W, Radeke H, Schäfer-Korting M, Pfeilschifter J and
Huwiler A: Sphingosine 1-phosphate cross-activates the Smad
signaling cascade and mimics transforming growth
factor-beta-induced cell responses. J Biol Chem. 279:35255–35262.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yaghobian D, Don AS, Yaghobian S, Chen X,
Pollock CA and Saad S: Increased sphingosine 1-phosphate mediates
inflammation and fibrosis in tubular injury in diabetic
nephropathy. Clin Exp Pharmacol Physiol. 43:56–66. 2016. View Article : Google Scholar
|
|
87
|
Spiegel S and Milstien S:
Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol
Cell Biol. 4:397–407. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Geoffroy K, Troncy L, Wiernsperger N,
Lagarde M and El Bawab S: Glomerular proliferation during early
stages of diabetic nephropathy is associated with local increase of
sphingosine-1-phosphate levels. FEBS Lett. 579:1249–1254. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lan T, Shen X, Liu P, Liu W, Xu S, Xie X,
Jiang Q, Li W and Huang H: Berberine ameliorates renal injury in
diabetic C57BL/6 mice: Involvement of suppression of SphK-S1P
signaling pathway. Arch Biochem Biophys. 502:112–120. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Huang K, Huang J, Chen C, Hao J, Wang S,
Huang J, Liu P and Huang H: AP-1 regulates sphingosine kinase 1
expression in a positive feedback manner in glomerular mesangial
cells exposed to high glucose. Cell Signal. 26:629–638. 2014.
View Article : Google Scholar
|
|
91
|
Liu W, Lan T, Xie X, Huang K, Peng J,
Huang J, Shen X, Liu P and Huang H: S1P2 receptor mediates
sphingosine-1-phosphate-induced fibronectin expression via MAPK
signaling pathway in mesangial cells under high glucose condition.
Exp Cell Res. 318:936–943. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Imasawa T, Kitamura H, Ohkawa R, Satoh Y,
Miyashita A and Yatomi Y: Unbalanced expression of sphingosine
1-phosphate receptors in diabetic nephropathy. Exp Toxicol Pathol.
62:53–60. 2010. View Article : Google Scholar
|
|
93
|
Xia P, Wang L, Gamble JR and Vadas MA:
Activation of sphingosine kinase by tumor necrosis factor-alpha
inhibits apoptosis in human endothelial cells. J Biol Chem.
274:34499–34505. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Vessey DA, Kelley M, Li L, Huang Y, Zhou
HZ, Zhu BQ and Karliner JS: Role of sphingosine kinase activity in
protection of heart against ischemia reperfusion injury. Med Sci
Monit. 12:BR318–BR324. 2006.PubMed/NCBI
|
|
95
|
Jin ZQ and Karliner JS: Low dose N,
N-dimethylsphingosine is cardioprotective and activates cytosolic
sphingosine kinase by a PKCepsilon dependent mechanism. Cardiovasc
Res. 71:725–734. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Jin ZQ, Goetzl EJ and Karliner JS:
Sphingosine kinase activation mediates ischemic preconditioning in
murine heart. Circulation. 110:1980–1989. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Besler C, Heinrich K, Rohrer L, Doerries
C, Riwanto M, Shih DM, Chroni A, Yonekawa K, Stein S, Schaefer N,
et al: Mechanisms underlying adverse effects of HDL on
eNOS-activating pathways in patients with coronary artery disease.
J Clin Invest. 121:2693–2708. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Park SW, Kim M, Kim JY, Brown KM, Haase
VH, D'Agati VD and Lee HT: Proximal tubule sphingosine kinase-1 has
a critical role in A1 adenosine receptor-mediated renal protection
from ischemia. Kidney Int. 82:878–891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Paneni F, Beckman JA, Creager MA and
Cosentino F: Diabetes and vascular disease: Pathophysiology,
clinical consequences, and medical therapy: Part I. Eur Heart J.
34:2436–2443. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Grundy SM, Benjamin IJ, Burke GL, Chait A,
Eckel RH, Howard BV, Mitch W, Smith SC Jr and Sowers JR: Diabetes
and cardiovascular disease: A statement for healthcare
professionals from the American Heart Association. Circulation.
100:1134–1146. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Schnell O, Cappuccio F, Genovese S, Standl
E, Valensi P and Ceriello A: Type 1 diabetes and cardiovascular
disease. Cardiovasc Diabetol. 12:1562013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fioretto P, Dodson PM, Ziegler D and
Rosenson RS: Residual microvascular risk in diabetes: Unmet needs
and future directions. Nat Rev Endocrinol. 6:19–25. 2010.
View Article : Google Scholar
|
|
103
|
Rosenberg DE, Jabbour SA and Goldstein BJ:
Insulin resistance, diabetes and cardiovascular risk: Approaches to
treatment. Diabetes Obes Metab. 7:642–653. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li H, Horke S and Förstermann U: Vascular
oxidative stress, nitric oxide and atherosclerosis.
Atherosclerosis. 237:208–219. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Keul P, Sattler K and Levkau B: HDL and
its sphingosine-1-phosphate content in cardioprotection. Heart Fail
Rev. 12:301–306. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Karliner JS: Sphingosine kinase regulation
and cardioprotection. Cardiovasc Res. 82:184–192. 2009. View Article : Google Scholar :
|
|
107
|
Karliner JS: Sphingosine kinase and
sphingosine 1-phosphate in the heart: A decade of progress. Biochim
Biophys Acta. 1831:203–212. 2013. View Article : Google Scholar
|
|
108
|
Whetzel AM, Bolick DT and Hedrick CC:
Sphingosine-1-phosphate inhibits high glucose-mediated ERK1/2
action in endothelium through induction of MAP kinase
phosphatase-3. Am J Physiol Cell Physiol. 296:C339–C345. 2009.
View Article : Google Scholar :
|
|
109
|
Whetzel AM, Bolick DT, Srinivasan S,
Macdonald TL, Morris MA, Ley K and Hedrick CC: Sphingosine-1
phosphate prevents monocyte/endothelial interactions in type 1
diabetic NOD mice through activation of the S1P1 receptor. Circ
Res. 99:731–739. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Khafaji HA and Suwaidi JM: Atypical
presentation of acute and chronic coronary artery disease in
diabetics. World J Cardiol. 6:802–813. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Jin ZQ, Karliner JS and Vessey DA:
Ischaemic postconditioning protects isolated mouse hearts against
ischaemia/reperfusion injury via sphingosine kinase isoform-1
activation. Cardiovasc Res. 79:134–140. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Vessey DA, Kelley M, Li L and Huang Y:
Sphingosine protects aging hearts from ischemia/reperfusion injury:
Superiority to sphingosine 1-phosphate and ischemic pre- and
post-conditioning. Oxid Med Cell Longev. 2:146–151. 2009.
View Article : Google Scholar :
|
|
113
|
Bonder CS, Sun WY, Matthews T, Cassano C,
Li X, Ramshaw HS, Pitson SM, Lopez AF, Coates PT, Proia RL, et al:
Sphingosine kinase regulates the rate of endothelial progenitor
cell differentiation. Blood. 113:2108–2117. 2009. View Article : Google Scholar :
|
|
114
|
Yu H, Yuan L, Xu M, Zhang Z and Duan H:
Sphingosine kinase 1 improves cutaneous wound healing in diabetic
rats. Injury. 45:1054–1058. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Furuya H, Wada M, Shimizu Y, Yamada PM,
Hannun YA, Obeid LM and Kawamori T: Effect of sphingosine kinase 1
inhibition on blood pressure. FASEB J. 27:656–664. 2013. View Article : Google Scholar :
|
|
116
|
Igarashi J and Michel T: Sphingosine
1-phosphate and isoform-specific activation of phosphoinositide
3-kinase beta. Evidence for divergence and convergence of
receptor-regulated endothelial nitric-oxide synthase signaling
pathways. J Biol Chem. 276:36281–36288. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
De Palma C, Meacci E, Perrotta C, Bruni P
and Clementi E: Endothelial nitric oxide synthase activation by
tumor necrosis factor alpha through neutral sphingomyelinase 2,
sphingosine kinase 1, and sphingosine 1 phosphate receptors: A
novel pathway relevant to the pathophysiology of endothelium.
Arterioscler Thromb Vasc Biol. 26:99–105. 2006. View Article : Google Scholar
|
|
118
|
Yin Z, Fan L, Wei L, Gao H, Zhang R, Tao
L, Cao F and Wang H: FTY720 protects cardiac microvessels of
diabetes: A critical role of S1P1/3 in diabetic heart disease. PLoS
One. 7:e429002012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sukocheva O, Wadham C, Gamble J and Xia P:
Sphingosine-1-phosphate receptor 1 transmits estrogens' effects in
endothelial cells. Steroids. 104:237–245. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Margolis KL, Bonds DE, Rodabough RJ,
Tinker L, Phillips LS, Allen C, Bassford T, Burke G, Torrens J and
Howard BV; Women's Health Initiative Investigators: Effect of
oestrogen plus progestin on the incidence of diabetes in
postmenopausal women: Results from the Women's Health Initiative
Hormone Trial. Diabetologia. 47:1175–1187. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Russo SB, Ross JS and Cowart LA:
Sphingolipids in obesity, type 2 diabetes, and metabolic disease.
Handb Exp Pharmacol. 216:373–401. 2013. View Article : Google Scholar
|
|
122
|
Kontush A and Chapman MJ: Functionally
defective high-density lipoprotein: A new therapeutic target at the
crossroads of dyslipidemia, inflammation, and atherosclerosis.
Pharmacol Rev. 58:342–374. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Barter PJ, Puranik R and Rye KA: New
insights into the role of HDL as an anti-inflammatory agent in the
prevention of cardiovascular disease. Curr Cardiol Rep. 9:493–498.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
deGoma EM, deGoma RL and Rader DJ: Beyond
high-density lipoprotein cholesterol levels evaluating high-density
lipoprotein function as influenced by novel therapeutic approaches.
J Am Coll Cardiol. 51:2199–2211. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Levkau B: HDL-S1P: Cardiovascular
functions, disease-associated alterations, and therapeutic
applications. Front Pharmacol. 6:2432015. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Tong X, Peng H, Liu D, Ji L, Niu C, Ren J,
Pan B, Hu J, Zheng L and Huang Y: High-density lipoprotein of
patients with type 2 diabetes mellitus upregulates cyclooxgenase-2
expression and prostacyclin I-2 release in endothelial cells:
Relationship with HDL-associated sphingosine-1-phosphate.
Cardiovasc Diabetol. 12:272013. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tong X, Lv P, Mathew AV, Liu D, Niu C,
Wang Y, Ji L, Li J, Fu Z, Pan B, et al: The compensatory enrichment
of sphingosine-1-phosphate harbored on glycated high-density
lipoprotein restores endothelial protective function in type 2
diabetes mellitus. Cardiovasc Diabetol. 13:822014. View Article : Google Scholar
|
|
128
|
Zhu D, Sreekumar PG, Hinton DR and Kannan
R: Expression and regulation of enzymes in the ceramide metabolic
pathway in human retinal pigment epithelial cells and their
relevance to retinal degeneration. Vision Res. 50:643–651. 2010.
View Article : Google Scholar :
|
|
129
|
Mizugishi K, Yamashita T, Olivera A,
Miller GF, Spiegel S and Proia RL: Essential role for sphingosine
kinases in neural and vascular development. Mol Cell Biol.
25:11113–11121. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Tsuji T, Inoue M, Yoshida Y, Fujita T,
Kaino Y and Kohno T: Therapeutic approach for type 1 diabetes
mellitus using the novel immunomodulator FTY720 (fingolimod) in
combination with once-daily injection of insulin glargine in
non-obese diabetic mice. J Diabetes Investig. 3:132–137. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Gonzalez-Cabrera PJ, Brown S, Studer SM
and Rosen H: S1P signaling: new therapies and opportunities.
F1000Prime Rep. 6:1092014.
|