Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2017 Volume 39 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2017 Volume 39 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review)

  • Authors:
    • Jing Sun
    • Guangxian Nan
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
    Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1338-1346
    |
    Published online on: April 21, 2017
       https://doi.org/10.3892/ijmm.2017.2962
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Signaling pathways are critical modulators of a variety of physiological and pathological processes, and the abnormal activation of some signaling pathways can contribute to disease progression in various conditions. As a result, signaling pathways have emerged as an important tool through which the occurrence and development of diseases can be studied, which may then lead to the development of novel drugs. Accumulating evidence supports a key role for extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the embryonic development of the central nervous system (CNS) and in the regulation of adult brain function. ERK1/2, one of the most well characterized members of the mitogen-activated protein kinase family, regulates a range of processes, from metabolism, motility and inflammation, to cell death and survival. In the nervous system, ERK1/2 regulates synaptic plasticity, brain development and repair as well as memory formation. ERK1/2 is also a potent effector of neuronal death and neuroinflammation in many CNS diseases. This review summarizes recent findings in neurobiological ERK1/2 research, with a special emphasis on findings that clarify our understanding of the processes that regulate the plethora of isoform-specific ERK functions under physiological and pathological conditions. Finally, we suggest some potential therapeutic strategies associated with agents acting on the ERK1/2 signaling to prevent or treat neurological diseases.
View Figures

Figure 1

View References

1 

Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G and Smith MA: Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the 'two hit' hypothesis. Mech Ageing Dev. 123:39–46. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Roberts PJ and Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Shioda N, Han F and Fukunaga K: Role of Akt and ERK signaling in the neurogenesis following brain ischemia. Int Rev Neurobiol. 85:375–387. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Alam R and Gorska MM: Mitogen-activated protein kinase signalling and ERK1/2 bistability in asthma. Clin Exp Allergy. 41:149–159. 2011. View Article : Google Scholar

5 

Yao Y, Li W, Wu J, Germann UA, Su MS, Kuida K and Boucher DM: Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci USA. 100:12759–12764. 2003. View Article : Google Scholar : PubMed/NCBI

6 

Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P and Pouysségur J: Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science. 286:1374–1377. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Charest DL, Mordret G, Harder KW, Jirik F and Pelech SL: Molecular cloning, expression, and characterization of the human mitogen-activated protein kinase p44erk1. Mol Cell Biol. 13:4679–4690. 1993. View Article : Google Scholar : PubMed/NCBI

8 

Lefloch R, Pouysségur J and Lenormand P: Total ERK1/2 activity regulates cell proliferation. Cell Cycle. 8:705–711. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Lefloch R, Pouysségur J and Lenormand P: Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol. 28:511–527. 2008. View Article : Google Scholar :

10 

Raman M, Chen W and Cobb MH: Differential regulation and properties of MAPKs. Oncogene. 26:3100–3112. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Ji RR, Gereau RW IV, Malcangio M and Strichartz GR: MAP kinase and pain. Brain Res Brain Res Rev. 60:135–148. 2009. View Article : Google Scholar

12 

Lorenz K, Schmitt JP, Vidal M and Lohse MJ: Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling. Int J Biochem Cell Biol. 41:2351–2355. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Cui Y, Wu J, Jung SC, Park DB, Maeng YH, Hong JY, Kim SJ, Lee SR, Kim SJ, Kim SJ, et al: Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol Pharm Bull. 33:1814–1821. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Zhu C, Qi X, Chen Y, Sun B, Dai Y and Gu Y: PI3K/Akt and MAPK/ERK1/2 signaling pathways are involved in IGF-1-induced VEGF-C upregulation in breast cancer. J Cancer Res Clin Oncol. 137:1587–1594. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Yoon S and Seger R: The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 24:21–44. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Murphy LO and Blenis J: MAPK signal specificity: the right place at the right time. Trends Biochem Sci. 31:268–275. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Dhillon AS, Hagan S, Rath O and Kolch W: MAP kinase signalling pathways in cancer. Oncogene. 26:3279–3290. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Anjum R and Blenis J: The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 9:747–758. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Yao Z and Seger R: The ERK signaling cascade - views from different subcellular compartments. Biofactors. 35:407–416. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Lavoie H and Therrien M: Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 16:281–298. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A and Weber MJ: MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science. 281:1668–1671. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Brahma A and Dalby KN: Regulation of protein phosphorylation within the MKK1-ERK2 complex by MP1 and the MP1•P14 heterodimer. Arch Biochem Biophys. 460:85–91. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Jameson KL, Mazur PK, Zehnder AM, Zhang J, Zarnegar B, Sage J and Khavari PA: IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med. 19:626–630. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Xu S, Robbins D, Frost J, Dang A, Lange-Carter C and Cobb MH: MEKK1 phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA. 92:6808–6812. 1995. View Article : Google Scholar : PubMed/NCBI

25 

Karandikar M, Xu S and Cobb MH: MEKK1 binds raf-1 and the ERK2 cascade components. J Biol Chem. 275:40120–40127. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, Shokat KM and Barford D: A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature. 472:366–369. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Hu J, Yu H, Kornev AP, Zhao J, Filbert EL, Taylor SS and Shaw AS: Mutation that blocks ATP binding creates a pseudo-kinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc Natl Acad Sci USA. 108:6067–6072. 2011. View Article : Google Scholar

28 

Kim EK and Choi EJ: Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 1802:396–405. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Impey S, Obrietan K and Storm DR: Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron. 23:11–14. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Di Cristo G, Berardi N, Cancedda L, Pizzorusso T, Putignano E, Ratto GM and Maffei L: Requirement of ERK activation for visual cortical plasticity. Science. 292:2337–2340. 2001. View Article : Google Scholar : PubMed/NCBI

31 

English JD and Sweatt JD: A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem. 272:19103–19106. 1997. View Article : Google Scholar : PubMed/NCBI

32 

Kanterewicz BI, Urban NN, McMahon DB, Norman ED, Giffen LJ, Favata MF, Scherle PA, Trzskos JM, Barrionuevo G and Klann E: The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci. 20:3057–3066. 2000.PubMed/NCBI

33 

Huang SS, He J, Zhao DM, Xu XY, Tan HP and Li H: Effects of mutant huntingtin on mGluR5-mediated dual signaling pathways: implications for therapeutic interventions. Cell Mol Neurobiol. 30:1107–1115. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD and LeDoux JE: Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci. 20:8177–8187. 2000.PubMed/NCBI

35 

Ratto GM and Pizzorusso T: A kinase with a vision: role of ERK in the synaptic plasticity of the visual cortex. Adv Exp Med Biol. 557:122–132. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Thiels E, Kanterewicz BI, Norman ED, Trzaskos JM and Klann E: Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of Elk-1. J Neurosci. 22:2054–2062. 2002.PubMed/NCBI

37 

Imamura O, Pagès G, Pouysségur J, Endo S and Takishima K: ERK1 and ERK2 are required for radial glial maintenance and cortical lamination. Genes Cells. 15:1072–1088. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Fyffe-Maricich SL, Karlo JC, Landreth GE and Miller RH: The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci. 31:843–850. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC and Landreth GE: Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci. 28:6983–6995. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Samuels IS, Saitta SC and Landreth GE: MAP'ing CNS development and cognition: an ERKsome process. Neuron. 61:160–167. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Li X, Newbern JM, Wu Y, Morgan-Smith M, Zhong J, Charron J and Snider WD: MEK is a key regulator of gliogenesis in the developing brain. Neuron. 75:1035–1050. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Domercq M, Alberdi E, Sánchez-Gómez MV, Ariz U, Pérez-Samartín A and Matute C: Dual-specific phosphatase-6 (Dusp6) and ERK mediate AMPA receptor-induced oligodendrocyte death. J Biol Chem. 286:11825–11836. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Newbern JM, Li X, Shoemaker SE, Zhou J, Zhong J, Wu Y, Bonder D, Hollenback S, Coppola G, Geschwind DH, et al: Specific functions for ERK/MAPK signaling during PNS development. Neuron. 69:91–105. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Fyffe-Maricich SL, Schott A, Karl M, Krasno J and Miller RH: Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system. J Neurosci. 33:18402–18408. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H and Namura S: Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett. 288:163–166. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Subramaniam S and Unsicker K: ERK and cell death: ERK1/2 in neuronal death. FEBS J. 277:22–29. 2010. View Article : Google Scholar

47 

Jiang Q, Gu Z, Zhang G and Jing G: Diphosphorylation and involvement of extracellular signal-regulated kinases (ERK1/2) in glutamate-induced apoptotic-like death in cultured rat cortical neurons. Brain Res. 857:71–77. 2000. View Article : Google Scholar : PubMed/NCBI

48 

Benvenisti-Zarom L, Chen-Roetling J and Regan RF: Inhibition of the ERK/MAP kinase pathway attenuates heme oxygenase-1 expression and heme-mediated neuronal injury. Neurosci Lett. 398:230–234. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV and Alessandrini A: Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci USA. 98:11569–11574. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao M, Xu H, Yang Y, Poon W and Fei Z: Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol. 237:489–498. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Rundén E, Seglen PO, Haug FM, Ottersen OP, Wieloch T, Shamloo M and Laake JH: Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J Neurosci. 18:7296–7305. 1998.PubMed/NCBI

52 

Perry VH and Teeling J: Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 35:601–612. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Weinstein JR, Zhang M, Kutlubaev M, Lee R, Bishop C, Andersen H, Hanisch UK and Möller T: Thrombin-induced regulation of CD95(Fas) expression in the N9 microglial cell line: evidence for involvement of proteinase-activated receptor(1) and extracellular signal-regulated kinase 1/2. Neurochem Res. 34:445–452. 2009. View Article : Google Scholar

54 

Deng Z, Sui G, Rosa PM and Zhao W: Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS One. 7:e367392012. View Article : Google Scholar : PubMed/NCBI

55 

Kim S, Lee MS, Lee B, Gwon WG, Joung EJ, Yoon NY and Kim HR: Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysac-charide-stimulated BV-2 cells. BMC Complement Altern Med. 14:2312014. View Article : Google Scholar

56 

Park GH, Jeon SJ, Ryu JR, Choi MS, Han SH, Yang SI, Ryu JH, Cheong JH, Shin CY and Ko KH: Essential role of mitogen-activated protein kinase pathways in protease activated receptor 2-mediated nitric-oxide production from rat primary astrocytes. Nitric Oxide. 21:110–119. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Fields J, Cisneros IE, Borgmann K and Ghorpade A: Extracellular regulated kinase 1/2 signaling is a critical regulator of interleukin-1β-mediated astrocyte tissue inhibitor of metallopro-teinase-1 expression. PLoS One. 8:e568912013. View Article : Google Scholar

58 

Wang YJ, Zheng YL, Lu J, Chen GQ, Wang XH, Feng J, Ruan J, Sun X, Li CX and Sun QJ: Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem Int. 56:424–430. 2010. View Article : Google Scholar

59 

Shao J, Liu T, Xie QR, Zhang T, Yu H, Wang B, Ying W, Mruk DD, Silvestrini B, Cheng CY, et al: Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation. J Neuroimmunol. 254:83–90. 2013. View Article : Google Scholar

60 

Zhao H, Wang SL, Qian L, Jin JL, Li H, Xu Y and Zhu XL: Diammonium glycyrrhizinate attenuates Aβ(1-42)-induced neuroinflammation and regulates MAPK and NF-κB pathways in vitro and in vivo. CNS Neurosci Ther. 19:117–124. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Xia Q, Hu Q, Wang H, Yang H, Gao F, Ren H, Chen D, Fu C, Zheng L, Zhen X, et al: Induction of COX-2-PGE2 synthesis by activation of the MAPK/ERK pathway contributes to neuronal death triggered by TDP-43-depleted microglia. Cell Death Dis. 6:e17022015. View Article : Google Scholar : PubMed/NCBI

62 

Fiore RS, Bayer VE, Pelech SL, Posada J, Cooper JA and Baraban JM: p42 mitogen-activated protein kinase in brain: prominent localization in neuronal cell bodies and dendrites. Neuroscience. 55:463–472. 1993. View Article : Google Scholar : PubMed/NCBI

63 

Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM and Sweatt JD: The MAPK cascade is required for mammalian associative learning. Nat Neurosci. 1:602–609. 1998. View Article : Google Scholar

64 

Feld M, Dimant B, Delorenzi A, Coso O and Romano A: Phosph-orylation of extra-nuclear ERK/MAPK is required for long-term memory consolidation in the crab Chasmagnathus. Behav Brain Res. 158:251–261. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Igaz LM, Winograd M, Cammarota M, Izquierdo LA, Alonso M, Izquierdo I and Medina JH: Early activation of extracellular signal-regulated kinase signaling pathway in the hippocampus is required for short-term memory formation of a fear-motivated learning. Cell Mol Neurobiol. 26:989–1002. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Kelly A, Laroche S and Davis S: Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippo-campal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci. 23:5354–5360. 2003.PubMed/NCBI

67 

Villarreal JS and Barea-Rodriguez EJ: ERK phosphorylation is required for retention of trace fear memory. Neurobiol Learn Mem. 85:44–57. 2006. View Article : Google Scholar

68 

Shalin SC, Zirrgiebel U, Honsa KJ, Julien JP, Miller FD, Kaplan DR and Sweatt JD: Neuronal MEK is important for normal fear conditioning in mice. J Neurosci Res. 75:760–770. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Satoh Y, Endo S, Ikeda T, Yamada K, Ito M, Kuroki M, Hiramoto T, Imamura O, Kobayashi Y, Watanabe Y, et al: Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J Neurosci. 27:10765–10776. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Selcher JC, Nekrasova T, Paylor R, Landreth GE and Sweatt JD: Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learn Mem. 8:11–19. 2001. View Article : Google Scholar : PubMed/NCBI

71 

Saba-El-Leil MK, Vella FD, Vernay B, Voisin L, Chen L, Labrecque N, Ang SL and Meloche S: An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep. 4:964–968. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pagès G, Valverde O, et al: Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron. 34:807–820. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Cestari V, Costanzi M, Castellano C and Rossi-Arnaud C: A role for ERK2 in reconsolidation of fear memories in mice. Neurobiol Learn Mem. 86:133–143. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Ferrer I, Blanco R, Carmona M, Ribera R, Goutan E, Puig B, Rey MJ, Cardozo A, Viñals F and Ribalta T: Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol. 11:144–158. 2001. View Article : Google Scholar : PubMed/NCBI

75 

Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Hervé D, Greengard P and Fisone G: Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci. 27:6995–7005. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Ahnstedt H, Säveland H, Nilsson O and Edvinsson L: Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway. BMC Neurosci. 12:52011. View Article : Google Scholar : PubMed/NCBI

77 

Ayala V, Granado-Serrano AB, Cacabelos D, Naudí A, Ilieva EV, Boada J, Caraballo-Miralles V, Lladó J, Ferrer I, Pamplona R, et al: Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS. Acta Neuropathol. 122:259–270. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Feld M, Krawczyk MC, Sol Fustiñana M, Blake MG, Baratti CM, Romano A and Boccia MM: Decrease of ERK/MAPK overac-tivation in prefrontal cortex reverses early memory deficit in a mouse model of Alzheimer's disease. J Alzheimers Dis. 40:69–82. 2014.

79 

Fujimoto S, Katsuki H, Ohnishi M, Takagi M, Kume T and Akaike A: Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience. 144:694–701. 2007. View Article : Google Scholar

80 

Maddahi A, Ansar S, Chen Q and Edvinsson L: Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab. 31:144–154. 2011. View Article : Google Scholar :

81 

Ohnishi M, Katsuki H, Fujimoto S, Takagi M, Kume T and Akaike A: Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp Neurol. 206:43–52. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Maddahi A and Edvinsson L: Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J Neuroinflammation. 7:142010. View Article : Google Scholar : PubMed/NCBI

83 

Maddahi A, Povlsen GK and Edvinsson L: Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation. 9:2742012. View Article : Google Scholar : PubMed/NCBI

84 

Ansar S, Maddahi A and Edvinsson L: Inhibition of cerebro-vascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage. BMC Neurosci. 12:1072011. View Article : Google Scholar

85 

Feng D, Wang B, Ma Y, Shi W, Tao K, Zeng W, Cai Q, Zhang Z and Qin H: The Ras/Raf/Erk pathway mediates the subarachnoid hemorrhage-induced apoptosis of hippocampal neurons through phosphorylation of p53. Mol Neurobiol. 53:5737–5748. 2016. View Article : Google Scholar

86 

Liu Y, Qin L, Li G, Zhang W, An L, Liu B and Hong JS: Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther. 305:212–218. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Qian L, Tan KS, Wei SJ, Wu HM, Xu Z, Wilson B, Lu RB, Hong JS and Flood PM: Microglia-mediated neurotoxicity is inhibited by morphine through an opioid receptor-independent reduction of NADPH oxidase activity. J Immunol. 179:1198–1209. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, Stipanovich A, Caboche J, Lombroso PJ, Nairn AC, et al: Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA. 102:491–496. 2005. View Article : Google Scholar :

89 

Santini E, Sgambato-Faure V, Li Q, Savasta M, Dovero S, Fisone G and Bezard E: Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS One. 5:e123222010. View Article : Google Scholar : PubMed/NCBI

90 

Lindgren HS, Ohlin KE and Cenci MA: Differential involvement of D1 and D2 dopamine receptors in L-DOPA-induced angiogenic activity in a rat model of Parkinson's disease. Neuropsychopharmacology. 34:2477–2488. 2009. View Article : Google Scholar : PubMed/NCBI

91 

Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K and Grundke-Iqbal I: Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Brain Res Mol Brain Res. 109:45–55. 2002. View Article : Google Scholar

92 

Zhu X, Lee HG, Raina AK, Perry G and Smith MA: The role of mitogen-activated protein kinase pathways in Alzheimer's disease. Neurosignals. 11:270–281. 2002. View Article : Google Scholar

93 

Liu F, Su Y, Li B and Ni B: Regulation of amyloid precursor protein expression and secretion via activation of ERK1/2 by hepatocyte growth factor in HEK293 cells transfected with APP751. Exp Cell Res. 287:387–396. 2003. View Article : Google Scholar : PubMed/NCBI

94 

Lu L, Koya E, Zhai H, Hope BT and Shaham Y: Role of ERK in cocaine addiction. Trends Neurosci. 29:695–703. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Hoffmann HM, Nadal R, Vignes M and Ortiz J: Chronic cocaine self-administration modulates ERK1/2 and CREB responses to dopamine receptor agonists in striatal slices. Addict Biol. 17:565–575. 2012. View Article : Google Scholar

96 

Pascoli V, Cahill E, Bellivier F, Caboche J and Vanhoutte P: Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation. Biol Psychiatry. 76:917–926. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Agoglia AE, Sharko AC, Psilos KE, Holstein SE, Reid GT and Hodge CW: Alcohol alters the activation of ERK1/2, a functional regulator of binge alcohol drinking in adult C57BL/6J mice. Alcohol Clin Exp Res. 39:463–475. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Boudreau AC, Reimers JM, Milovanovic M and Wolf ME: Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. J Neurosci. 27:10621–10635. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Schumann J and Yaka R: Prolonged withdrawal from repeated noncontingent cocaine exposure increases NMDA receptor expression and ERK activity in the nucleus accumbens. J Neurosci. 29:6955–6963. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Brami-Cherrier K, Roze E, Girault JA, Betuing S and Caboche J: Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. J Neurochem. 108:1323–1335. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Ciccarelli A and Giustetto M: Role of ERK signaling in activity-dependent modifications of histone proteins. Neuropharmacology. 80:34–44. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Chung YH, Joo KM, Lim HC, Cho MH, Kim D, Lee WB and Cha CI: Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1G93A transgenic mice. Brain Res. 1050:203–209. 2005. View Article : Google Scholar : PubMed/NCBI

103 

Apolloni S, Parisi C, Pesaresi MG, Rossi S, Carrì MT, Cozzolino M, Volonté C and D'Ambrosi N: The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J Immunol. 190:5187–5195. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Apostol BL, Illes K, Pallos J, Bodai L, Wu J, Strand A, Schweitzer ES, Olson JM, Kazantsev A, Marsh JL, et al: Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum Mol Genet. 15:273–285. 2006. View Article : Google Scholar

105 

Varma H, Cheng R, Voisine C, Hart AC and Stockwell BR: Inhibitors of metabolism rescue cell death in Huntington's disease models. Proc Natl Acad Sci USA. 104:14525–14530. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Liévens JC, Rival T, Iché M, Chneiweiss H and Birman S: Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila. Hum Mol Genet. 14:713–724. 2005. View Article : Google Scholar : PubMed/NCBI

107 

Huang YY, Martin KC and Kandel ER: Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci. 20:6317–6325. 2000.PubMed/NCBI

108 

Ribeiro FM, Paquet M, Ferreira LT, Cregan T, Swan P, Cregan SP and Ferguson SS: Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Hunti-ngton's disease. J Neurosci. 30:316–324. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Maddahi A, Chen Q and Edvinsson L: Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat. BMC Neurosci. 10:562009. View Article : Google Scholar : PubMed/NCBI

110 

Ahnstedt H, Mostajeran M, Blixt FW, Warfvinge K, Ansar S, Krause DN and Edvinsson L: U0126 attenuates cerebral vasocon-striction and improves long-term neurologic outcome after stroke in female rats. J Cereb Blood Flow Metab. 35:454–460. 2015. View Article : Google Scholar

111 

Vikman P, Ansar S, Henriksson M, Stenman E and Edvinsson L: Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Exp Brain Res. 183:499–510. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Maddahi A, Kruse LS, Chen QW and Edvinsson L: The role of tumor necrosis factor-α and TNF-α receptors in cerebral arteries following cerebral ischemia in rat. J Neuroinflammation. 8:1072011. View Article : Google Scholar

113 

Zhang J, Xu X, Zhou D, Li H, You W, Wang Z and Chen G: Possible role of Raf-1 kinase in the development of cerebral vaso-spasm and early brain injury after experimental subarachnoid hemorrhage in rats. Mol Neurobiol. 52:1527–1539. 2015. View Article : Google Scholar

114 

Beg SA, Hansen-Schwartz JA, Vikman PJ, Xu CB and Edvinsson LI: ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab. 26:846–856. 2006. View Article : Google Scholar

115 

Li J, Fan Y, Zhang YN, Sun DJ, Fu SB, Ma L, Jiang LH, Cui C, Ding HF and Yang J: The Raf-1 inhibitor GW5074 and the ERK1/2 pathway inhibitor U0126 ameliorate PC12 cells apoptosis induced by 6-hydroxydopamine. Pharmazie. 67:718–724. 2012.PubMed/NCBI

116 

Bartolomé F, de Las Cuevas N, Muñoz U, Bermejo F and Martín-Requero A: Impaired apoptosis in lymphoblasts from Alzheimer's disease patients: cross-talk of Ca2+/calmodulin and ERK1/2 signaling pathways. Cell Mol Life Sci. 64:1437–1448. 2007. View Article : Google Scholar

117 

Pei JJ, Gong CX, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I and Iqbal K: Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer's disease. Am J Pathol. 163:845–858. 2003. View Article : Google Scholar : PubMed/NCBI

118 

Chong YH, Shin YJ, Lee EO, Kayed R, Glabe CG and Tenner AJ: ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem. 281:20315–20325. 2006. View Article : Google Scholar : PubMed/NCBI

119 

Andersen JM, Myhre O and Fonnum F: Discussion of the role of the extracellular signal-regulated kinase-phospholipase A2 pathway in production of reactive oxygen species in Alzheimer's disease. Neurochem Res. 28:319–326. 2003. View Article : Google Scholar : PubMed/NCBI

120 

Pan B, Zhong P, Sun D and Liu QS: Extracellular signal-regulated kinase signaling in the ventral tegmental area mediates cocaine-induced synaptic plasticity and rewarding effects. J Neurosci. 31:11244–11255. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sun J and Nan G: The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med 39: 1338-1346, 2017.
APA
Sun, J., & Nan, G. (2017). The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). International Journal of Molecular Medicine, 39, 1338-1346. https://doi.org/10.3892/ijmm.2017.2962
MLA
Sun, J., Nan, G."The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review)". International Journal of Molecular Medicine 39.6 (2017): 1338-1346.
Chicago
Sun, J., Nan, G."The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review)". International Journal of Molecular Medicine 39, no. 6 (2017): 1338-1346. https://doi.org/10.3892/ijmm.2017.2962
Copy and paste a formatted citation
x
Spandidos Publications style
Sun J and Nan G: The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med 39: 1338-1346, 2017.
APA
Sun, J., & Nan, G. (2017). The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). International Journal of Molecular Medicine, 39, 1338-1346. https://doi.org/10.3892/ijmm.2017.2962
MLA
Sun, J., Nan, G."The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review)". International Journal of Molecular Medicine 39.6 (2017): 1338-1346.
Chicago
Sun, J., Nan, G."The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review)". International Journal of Molecular Medicine 39, no. 6 (2017): 1338-1346. https://doi.org/10.3892/ijmm.2017.2962
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team