|
1
|
Zhu X, Castellani RJ, Takeda A, Nunomura
A, Atwood CS, Perry G and Smith MA: Differential activation of
neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the 'two hit'
hypothesis. Mech Ageing Dev. 123:39–46. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Roberts PJ and Der CJ: Targeting the
Raf-MEK-ERK mitogen-activated protein kinase cascade for the
treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Shioda N, Han F and Fukunaga K: Role of
Akt and ERK signaling in the neurogenesis following brain ischemia.
Int Rev Neurobiol. 85:375–387. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Alam R and Gorska MM: Mitogen-activated
protein kinase signalling and ERK1/2 bistability in asthma. Clin
Exp Allergy. 41:149–159. 2011. View Article : Google Scholar
|
|
5
|
Yao Y, Li W, Wu J, Germann UA, Su MS,
Kuida K and Boucher DM: Extracellular signal-regulated kinase 2 is
necessary for mesoderm differentiation. Proc Natl Acad Sci USA.
100:12759–12764. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pagès G, Guérin S, Grall D, Bonino F,
Smith A, Anjuere F, Auberger P and Pouysségur J: Defective
thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice.
Science. 286:1374–1377. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Charest DL, Mordret G, Harder KW, Jirik F
and Pelech SL: Molecular cloning, expression, and characterization
of the human mitogen-activated protein kinase p44erk1. Mol Cell
Biol. 13:4679–4690. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lefloch R, Pouysségur J and Lenormand P:
Total ERK1/2 activity regulates cell proliferation. Cell Cycle.
8:705–711. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lefloch R, Pouysségur J and Lenormand P:
Single and combined silencing of ERK1 and ERK2 reveals their
positive contribution to growth signaling depending on their
expression levels. Mol Cell Biol. 28:511–527. 2008. View Article : Google Scholar :
|
|
10
|
Raman M, Chen W and Cobb MH: Differential
regulation and properties of MAPKs. Oncogene. 26:3100–3112. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ji RR, Gereau RW IV, Malcangio M and
Strichartz GR: MAP kinase and pain. Brain Res Brain Res Rev.
60:135–148. 2009. View Article : Google Scholar
|
|
12
|
Lorenz K, Schmitt JP, Vidal M and Lohse
MJ: Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling. Int J
Biochem Cell Biol. 41:2351–2355. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cui Y, Wu J, Jung SC, Park DB, Maeng YH,
Hong JY, Kim SJ, Lee SR, Kim SJ, Kim SJ, et al:
Anti-neuroinflammatory activity of nobiletin on suppression of
microglial activation. Biol Pharm Bull. 33:1814–1821. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhu C, Qi X, Chen Y, Sun B, Dai Y and Gu
Y: PI3K/Akt and MAPK/ERK1/2 signaling pathways are involved in
IGF-1-induced VEGF-C upregulation in breast cancer. J Cancer Res
Clin Oncol. 137:1587–1594. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yoon S and Seger R: The extracellular
signal-regulated kinase: multiple substrates regulate diverse
cellular functions. Growth Factors. 24:21–44. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Murphy LO and Blenis J: MAPK signal
specificity: the right place at the right time. Trends Biochem Sci.
31:268–275. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dhillon AS, Hagan S, Rath O and Kolch W:
MAP kinase signalling pathways in cancer. Oncogene. 26:3279–3290.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Anjum R and Blenis J: The RSK family of
kinases: emerging roles in cellular signalling. Nat Rev Mol Cell
Biol. 9:747–758. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yao Z and Seger R: The ERK signaling
cascade - views from different subcellular compartments.
Biofactors. 35:407–416. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lavoie H and Therrien M: Regulation of RAF
protein kinases in ERK signalling. Nat Rev Mol Cell Biol.
16:281–298. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schaeffer HJ, Catling AD, Eblen ST,
Collier LS, Krauss A and Weber MJ: MP1: a MEK binding partner that
enhances enzymatic activation of the MAP kinase cascade. Science.
281:1668–1671. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Brahma A and Dalby KN: Regulation of
protein phosphorylation within the MKK1-ERK2 complex by MP1 and the
MP1•P14 heterodimer. Arch Biochem Biophys. 460:85–91. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jameson KL, Mazur PK, Zehnder AM, Zhang J,
Zarnegar B, Sage J and Khavari PA: IQGAP1 scaffold-kinase
interaction blockade selectively targets RAS-MAP kinase-driven
tumors. Nat Med. 19:626–630. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xu S, Robbins D, Frost J, Dang A,
Lange-Carter C and Cobb MH: MEKK1 phosphorylates MEK1 and MEK2 but
does not cause activation of mitogen-activated protein kinase. Proc
Natl Acad Sci USA. 92:6808–6812. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Karandikar M, Xu S and Cobb MH: MEKK1
binds raf-1 and the ERK2 cascade components. J Biol Chem.
275:40120–40127. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Brennan DF, Dar AC, Hertz NT, Chao WC,
Burlingame AL, Shokat KM and Barford D: A Raf-induced allosteric
transition of KSR stimulates phosphorylation of MEK. Nature.
472:366–369. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hu J, Yu H, Kornev AP, Zhao J, Filbert EL,
Taylor SS and Shaw AS: Mutation that blocks ATP binding creates a
pseudo-kinase stabilizing the scaffolding function of kinase
suppressor of Ras, CRAF and BRAF. Proc Natl Acad Sci USA.
108:6067–6072. 2011. View Article : Google Scholar
|
|
28
|
Kim EK and Choi EJ: Pathological roles of
MAPK signaling pathways in human diseases. Biochim Biophys Acta.
1802:396–405. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Impey S, Obrietan K and Storm DR: Making
new connections: role of ERK/MAP kinase signaling in neuronal
plasticity. Neuron. 23:11–14. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Di Cristo G, Berardi N, Cancedda L,
Pizzorusso T, Putignano E, Ratto GM and Maffei L: Requirement of
ERK activation for visual cortical plasticity. Science.
292:2337–2340. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
English JD and Sweatt JD: A requirement
for the mitogen-activated protein kinase cascade in hippocampal
long term potentiation. J Biol Chem. 272:19103–19106. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kanterewicz BI, Urban NN, McMahon DB,
Norman ED, Giffen LJ, Favata MF, Scherle PA, Trzskos JM,
Barrionuevo G and Klann E: The extracellular signal-regulated
kinase cascade is required for NMDA receptor-independent LTP in
area CA1 but not area CA3 of the hippocampus. J Neurosci.
20:3057–3066. 2000.PubMed/NCBI
|
|
33
|
Huang SS, He J, Zhao DM, Xu XY, Tan HP and
Li H: Effects of mutant huntingtin on mGluR5-mediated dual
signaling pathways: implications for therapeutic interventions.
Cell Mol Neurobiol. 30:1107–1115. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Schafe GE, Atkins CM, Swank MW, Bauer EP,
Sweatt JD and LeDoux JE: Activation of ERK/MAP kinase in the
amygdala is required for memory consolidation of pavlovian fear
conditioning. J Neurosci. 20:8177–8187. 2000.PubMed/NCBI
|
|
35
|
Ratto GM and Pizzorusso T: A kinase with a
vision: role of ERK in the synaptic plasticity of the visual
cortex. Adv Exp Med Biol. 557:122–132. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Thiels E, Kanterewicz BI, Norman ED,
Trzaskos JM and Klann E: Long-term depression in the adult
hippocampus in vivo involves activation of extracellular
signal-regulated kinase and phosphorylation of Elk-1. J Neurosci.
22:2054–2062. 2002.PubMed/NCBI
|
|
37
|
Imamura O, Pagès G, Pouysségur J, Endo S
and Takishima K: ERK1 and ERK2 are required for radial glial
maintenance and cortical lamination. Genes Cells. 15:1072–1088.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fyffe-Maricich SL, Karlo JC, Landreth GE
and Miller RH: The ERK2 mitogen-activated protein kinase regulates
the timing of oligodendrocyte differentiation. J Neurosci.
31:843–850. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Samuels IS, Karlo JC, Faruzzi AN,
Pickering K, Herrup K, Sweatt JD, Saitta SC and Landreth GE:
Deletion of ERK2 mitogen-activated protein kinase identifies its
key roles in cortical neurogenesis and cognitive function. J
Neurosci. 28:6983–6995. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Samuels IS, Saitta SC and Landreth GE:
MAP'ing CNS development and cognition: an ERKsome process. Neuron.
61:160–167. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li X, Newbern JM, Wu Y, Morgan-Smith M,
Zhong J, Charron J and Snider WD: MEK is a key regulator of
gliogenesis in the developing brain. Neuron. 75:1035–1050. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Domercq M, Alberdi E, Sánchez-Gómez MV,
Ariz U, Pérez-Samartín A and Matute C: Dual-specific phosphatase-6
(Dusp6) and ERK mediate AMPA receptor-induced oligodendrocyte
death. J Biol Chem. 286:11825–11836. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Newbern JM, Li X, Shoemaker SE, Zhou J,
Zhong J, Wu Y, Bonder D, Hollenback S, Coppola G, Geschwind DH, et
al: Specific functions for ERK/MAPK signaling during PNS
development. Neuron. 69:91–105. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fyffe-Maricich SL, Schott A, Karl M,
Krasno J and Miller RH: Signaling through ERK1/2 controls myelin
thickness during myelin repair in the adult central nervous system.
J Neurosci. 33:18402–18408. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Satoh T, Nakatsuka D, Watanabe Y, Nagata
I, Kikuchi H and Namura S: Neuroprotection by MAPK/ERK kinase
inhibition with U0126 against oxidative stress in a mouse neuronal
cell line and rat primary cultured cortical neurons. Neurosci Lett.
288:163–166. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Subramaniam S and Unsicker K: ERK and cell
death: ERK1/2 in neuronal death. FEBS J. 277:22–29. 2010.
View Article : Google Scholar
|
|
47
|
Jiang Q, Gu Z, Zhang G and Jing G:
Diphosphorylation and involvement of extracellular signal-regulated
kinases (ERK1/2) in glutamate-induced apoptotic-like death in
cultured rat cortical neurons. Brain Res. 857:71–77. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Benvenisti-Zarom L, Chen-Roetling J and
Regan RF: Inhibition of the ERK/MAP kinase pathway attenuates heme
oxygenase-1 expression and heme-mediated neuronal injury. Neurosci
Lett. 398:230–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Namura S, Iihara K, Takami S, Nagata I,
Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV and
Alessandrini A: Intravenous administration of MEK inhibitor U0126
affords brain protection against forebrain ischemia and focal
cerebral ischemia. Proc Natl Acad Sci USA. 98:11569–11574. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao
M, Xu H, Yang Y, Poon W and Fei Z: Interactions between SIRT1 and
MAPK/ERK regulate neuronal apoptosis induced by traumatic brain
injury in vitro and in vivo. Exp Neurol. 237:489–498. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Rundén E, Seglen PO, Haug FM, Ottersen OP,
Wieloch T, Shamloo M and Laake JH: Regional selective neuronal
degeneration after protein phosphatase inhibition in hippocampal
slice cultures: evidence for a MAP kinase-dependent mechanism. J
Neurosci. 18:7296–7305. 1998.PubMed/NCBI
|
|
52
|
Perry VH and Teeling J: Microglia and
macrophages of the central nervous system: the contribution of
microglia priming and systemic inflammation to chronic
neurodegeneration. Semin Immunopathol. 35:601–612. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Weinstein JR, Zhang M, Kutlubaev M, Lee R,
Bishop C, Andersen H, Hanisch UK and Möller T: Thrombin-induced
regulation of CD95(Fas) expression in the N9 microglial cell line:
evidence for involvement of proteinase-activated receptor(1) and
extracellular signal-regulated kinase 1/2. Neurochem Res.
34:445–452. 2009. View Article : Google Scholar
|
|
54
|
Deng Z, Sui G, Rosa PM and Zhao W:
Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling
pathway in microglial cells. PLoS One. 7:e367392012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kim S, Lee MS, Lee B, Gwon WG, Joung EJ,
Yoon NY and Kim HR: Anti-inflammatory effects of
sargachromenol-rich ethanolic extract of Myagropsis myagroides on
lipopolysac-charide-stimulated BV-2 cells. BMC Complement Altern
Med. 14:2312014. View Article : Google Scholar
|
|
56
|
Park GH, Jeon SJ, Ryu JR, Choi MS, Han SH,
Yang SI, Ryu JH, Cheong JH, Shin CY and Ko KH: Essential role of
mitogen-activated protein kinase pathways in protease activated
receptor 2-mediated nitric-oxide production from rat primary
astrocytes. Nitric Oxide. 21:110–119. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fields J, Cisneros IE, Borgmann K and
Ghorpade A: Extracellular regulated kinase 1/2 signaling is a
critical regulator of interleukin-1β-mediated astrocyte tissue
inhibitor of metallopro-teinase-1 expression. PLoS One.
8:e568912013. View Article : Google Scholar
|
|
58
|
Wang YJ, Zheng YL, Lu J, Chen GQ, Wang XH,
Feng J, Ruan J, Sun X, Li CX and Sun QJ: Purple sweet potato color
suppresses lipopolysaccharide-induced acute inflammatory response
in mouse brain. Neurochem Int. 56:424–430. 2010. View Article : Google Scholar
|
|
59
|
Shao J, Liu T, Xie QR, Zhang T, Yu H, Wang
B, Ying W, Mruk DD, Silvestrini B, Cheng CY, et al: Adjudin
attenuates lipopolysaccharide (LPS)- and ischemia-induced
microglial activation. J Neuroimmunol. 254:83–90. 2013. View Article : Google Scholar
|
|
60
|
Zhao H, Wang SL, Qian L, Jin JL, Li H, Xu
Y and Zhu XL: Diammonium glycyrrhizinate attenuates
Aβ(1-42)-induced neuroinflammation and regulates MAPK and NF-κB
pathways in vitro and in vivo. CNS Neurosci Ther. 19:117–124. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xia Q, Hu Q, Wang H, Yang H, Gao F, Ren H,
Chen D, Fu C, Zheng L, Zhen X, et al: Induction of COX-2-PGE2
synthesis by activation of the MAPK/ERK pathway contributes to
neuronal death triggered by TDP-43-depleted microglia. Cell Death
Dis. 6:e17022015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Fiore RS, Bayer VE, Pelech SL, Posada J,
Cooper JA and Baraban JM: p42 mitogen-activated protein kinase in
brain: prominent localization in neuronal cell bodies and
dendrites. Neuroscience. 55:463–472. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Atkins CM, Selcher JC, Petraitis JJ,
Trzaskos JM and Sweatt JD: The MAPK cascade is required for
mammalian associative learning. Nat Neurosci. 1:602–609. 1998.
View Article : Google Scholar
|
|
64
|
Feld M, Dimant B, Delorenzi A, Coso O and
Romano A: Phosph-orylation of extra-nuclear ERK/MAPK is required
for long-term memory consolidation in the crab Chasmagnathus. Behav
Brain Res. 158:251–261. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Igaz LM, Winograd M, Cammarota M,
Izquierdo LA, Alonso M, Izquierdo I and Medina JH: Early activation
of extracellular signal-regulated kinase signaling pathway in the
hippocampus is required for short-term memory formation of a
fear-motivated learning. Cell Mol Neurobiol. 26:989–1002. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kelly A, Laroche S and Davis S: Activation
of mitogen-activated protein kinase/extracellular signal-regulated
kinase in hippo-campal circuitry is required for consolidation and
reconsolidation of recognition memory. J Neurosci. 23:5354–5360.
2003.PubMed/NCBI
|
|
67
|
Villarreal JS and Barea-Rodriguez EJ: ERK
phosphorylation is required for retention of trace fear memory.
Neurobiol Learn Mem. 85:44–57. 2006. View Article : Google Scholar
|
|
68
|
Shalin SC, Zirrgiebel U, Honsa KJ, Julien
JP, Miller FD, Kaplan DR and Sweatt JD: Neuronal MEK is important
for normal fear conditioning in mice. J Neurosci Res. 75:760–770.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Satoh Y, Endo S, Ikeda T, Yamada K, Ito M,
Kuroki M, Hiramoto T, Imamura O, Kobayashi Y, Watanabe Y, et al:
Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show
deficits in long-term memory; ERK2 has a specific function in
learning and memory. J Neurosci. 27:10765–10776. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Selcher JC, Nekrasova T, Paylor R,
Landreth GE and Sweatt JD: Mice lacking the ERK1 isoform of MAP
kinase are unimpaired in emotional learning. Learn Mem. 8:11–19.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Saba-El-Leil MK, Vella FD, Vernay B,
Voisin L, Chen L, Labrecque N, Ang SL and Meloche S: An essential
function of the mitogen-activated protein kinase Erk2 in mouse
trophoblast development. EMBO Rep. 4:964–968. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Mazzucchelli C, Vantaggiato C, Ciamei A,
Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pagès G,
Valverde O, et al: Knockout of ERK1 MAP kinase enhances synaptic
plasticity in the striatum and facilitates striatal-mediated
learning and memory. Neuron. 34:807–820. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cestari V, Costanzi M, Castellano C and
Rossi-Arnaud C: A role for ERK2 in reconsolidation of fear memories
in mice. Neurobiol Learn Mem. 86:133–143. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ferrer I, Blanco R, Carmona M, Ribera R,
Goutan E, Puig B, Rey MJ, Cardozo A, Viñals F and Ribalta T:
Phosphorylated map kinase (ERK1, ERK2) expression is associated
with early tau deposition in neurones and glial cells, but not with
increased nuclear DNA vulnerability and cell death, in Alzheimer
disease, Pick's disease, progressive supranuclear palsy and
corticobasal degeneration. Brain Pathol. 11:144–158. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Santini E, Valjent E, Usiello A, Carta M,
Borgkvist A, Girault JA, Hervé D, Greengard P and Fisone G:
Critical involvement of cAMP/DARPP-32 and extracellular
signal-regulated protein kinase signaling in L-DOPA-induced
dyskinesia. J Neurosci. 27:6995–7005. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ahnstedt H, Säveland H, Nilsson O and
Edvinsson L: Human cerebrovascular contractile receptors are
upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway. BMC
Neurosci. 12:52011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ayala V, Granado-Serrano AB, Cacabelos D,
Naudí A, Ilieva EV, Boada J, Caraballo-Miralles V, Lladó J, Ferrer
I, Pamplona R, et al: Cell stress induces TDP-43 pathological
changes associated with ERK1/2 dysfunction: implications in ALS.
Acta Neuropathol. 122:259–270. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Feld M, Krawczyk MC, Sol Fustiñana M,
Blake MG, Baratti CM, Romano A and Boccia MM: Decrease of ERK/MAPK
overac-tivation in prefrontal cortex reverses early memory deficit
in a mouse model of Alzheimer's disease. J Alzheimers Dis.
40:69–82. 2014.
|
|
79
|
Fujimoto S, Katsuki H, Ohnishi M, Takagi
M, Kume T and Akaike A: Thrombin induces striatal neurotoxicity
depending on mitogen-activated protein kinase pathways in vivo.
Neuroscience. 144:694–701. 2007. View Article : Google Scholar
|
|
80
|
Maddahi A, Ansar S, Chen Q and Edvinsson
L: Blockade of the MEK/ERK pathway with a raf inhibitor prevents
activation of pro-inflammatory mediators in cerebral arteries and
reduction in cerebral blood flow after subarachnoid hemorrhage in a
rat model. J Cereb Blood Flow Metab. 31:144–154. 2011. View Article : Google Scholar :
|
|
81
|
Ohnishi M, Katsuki H, Fujimoto S, Takagi
M, Kume T and Akaike A: Involvement of thrombin and
mitogen-activated protein kinase pathways in hemorrhagic brain
injury. Exp Neurol. 206:43–52. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Maddahi A and Edvinsson L: Cerebral
ischemia induces microvascular pro-inflammatory cytokine expression
via the MEK/ERK pathway. J Neuroinflammation. 7:142010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Maddahi A, Povlsen GK and Edvinsson L:
Regulation of enhanced cerebrovascular expression of
proinflammatory mediators in experimental subarachnoid hemorrhage
via the mitogen-activated protein kinase kinase/extracellular
signal-regulated kinase pathway. J Neuroinflammation. 9:2742012.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ansar S, Maddahi A and Edvinsson L:
Inhibition of cerebro-vascular raf activation attenuates cerebral
blood flow and prevents upregulation of contractile receptors after
subarachnoid hemorrhage. BMC Neurosci. 12:1072011. View Article : Google Scholar
|
|
85
|
Feng D, Wang B, Ma Y, Shi W, Tao K, Zeng
W, Cai Q, Zhang Z and Qin H: The Ras/Raf/Erk pathway mediates the
subarachnoid hemorrhage-induced apoptosis of hippocampal neurons
through phosphorylation of p53. Mol Neurobiol. 53:5737–5748. 2016.
View Article : Google Scholar
|
|
86
|
Liu Y, Qin L, Li G, Zhang W, An L, Liu B
and Hong JS: Dextromethorphan protects dopaminergic neurons against
inflammation-mediated degeneration through inhibition of microglial
activation. J Pharmacol Exp Ther. 305:212–218. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Qian L, Tan KS, Wei SJ, Wu HM, Xu Z,
Wilson B, Lu RB, Hong JS and Flood PM: Microglia-mediated
neurotoxicity is inhibited by morphine through an opioid
receptor-independent reduction of NADPH oxidase activity. J
Immunol. 179:1198–1209. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Valjent E, Pascoli V, Svenningsson P, Paul
S, Enslen H, Corvol JC, Stipanovich A, Caboche J, Lombroso PJ,
Nairn AC, et al: Regulation of a protein phosphatase cascade allows
convergent dopamine and glutamate signals to activate ERK in the
striatum. Proc Natl Acad Sci USA. 102:491–496. 2005. View Article : Google Scholar :
|
|
89
|
Santini E, Sgambato-Faure V, Li Q, Savasta
M, Dovero S, Fisone G and Bezard E: Distinct changes in cAMP and
extracellular signal-regulated protein kinase signalling in
L-DOPA-induced dyskinesia. PLoS One. 5:e123222010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lindgren HS, Ohlin KE and Cenci MA:
Differential involvement of D1 and D2 dopamine receptors in
L-DOPA-induced angiogenic activity in a rat model of Parkinson's
disease. Neuropsychopharmacology. 34:2477–2488. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Pei JJ, Braak H, An WL, Winblad B, Cowburn
RF, Iqbal K and Grundke-Iqbal I: Up-regulation of mitogen-activated
protein kinases ERK1/2 and MEK1/2 is associated with the
progression of neurofibrillary degeneration in Alzheimer's disease.
Brain Res Mol Brain Res. 109:45–55. 2002. View Article : Google Scholar
|
|
92
|
Zhu X, Lee HG, Raina AK, Perry G and Smith
MA: The role of mitogen-activated protein kinase pathways in
Alzheimer's disease. Neurosignals. 11:270–281. 2002. View Article : Google Scholar
|
|
93
|
Liu F, Su Y, Li B and Ni B: Regulation of
amyloid precursor protein expression and secretion via activation
of ERK1/2 by hepatocyte growth factor in HEK293 cells transfected
with APP751. Exp Cell Res. 287:387–396. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lu L, Koya E, Zhai H, Hope BT and Shaham
Y: Role of ERK in cocaine addiction. Trends Neurosci. 29:695–703.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hoffmann HM, Nadal R, Vignes M and Ortiz
J: Chronic cocaine self-administration modulates ERK1/2 and CREB
responses to dopamine receptor agonists in striatal slices. Addict
Biol. 17:565–575. 2012. View Article : Google Scholar
|
|
96
|
Pascoli V, Cahill E, Bellivier F, Caboche
J and Vanhoutte P: Extracellular signal-regulated protein kinases 1
and 2 activation by addictive drugs: a signal toward pathological
adaptation. Biol Psychiatry. 76:917–926. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Agoglia AE, Sharko AC, Psilos KE, Holstein
SE, Reid GT and Hodge CW: Alcohol alters the activation of ERK1/2,
a functional regulator of binge alcohol drinking in adult C57BL/6J
mice. Alcohol Clin Exp Res. 39:463–475. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Boudreau AC, Reimers JM, Milovanovic M and
Wolf ME: Cell surface AMPA receptors in the rat nucleus accumbens
increase during cocaine withdrawal but internalize after cocaine
challenge in association with altered activation of
mitogen-activated protein kinases. J Neurosci. 27:10621–10635.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Schumann J and Yaka R: Prolonged
withdrawal from repeated noncontingent cocaine exposure increases
NMDA receptor expression and ERK activity in the nucleus accumbens.
J Neurosci. 29:6955–6963. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Brami-Cherrier K, Roze E, Girault JA,
Betuing S and Caboche J: Role of the ERK/MSK1 signalling pathway in
chromatin remodelling and brain responses to drugs of abuse. J
Neurochem. 108:1323–1335. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ciccarelli A and Giustetto M: Role of ERK
signaling in activity-dependent modifications of histone proteins.
Neuropharmacology. 80:34–44. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chung YH, Joo KM, Lim HC, Cho MH, Kim D,
Lee WB and Cha CI: Immunohistochemical study on the distribution of
phosphorylated extracellular signal-regulated kinase (ERK) in the
central nervous system of SOD1G93A transgenic mice.
Brain Res. 1050:203–209. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Apolloni S, Parisi C, Pesaresi MG, Rossi
S, Carrì MT, Cozzolino M, Volonté C and D'Ambrosi N: The NADPH
oxidase pathway is dysregulated by the P2X7 receptor in
the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J
Immunol. 190:5187–5195. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Apostol BL, Illes K, Pallos J, Bodai L, Wu
J, Strand A, Schweitzer ES, Olson JM, Kazantsev A, Marsh JL, et al:
Mutant huntingtin alters MAPK signaling pathways in PC12 and
striatal cells: ERK1/2 protects against mutant
huntingtin-associated toxicity. Hum Mol Genet. 15:273–285. 2006.
View Article : Google Scholar
|
|
105
|
Varma H, Cheng R, Voisine C, Hart AC and
Stockwell BR: Inhibitors of metabolism rescue cell death in
Huntington's disease models. Proc Natl Acad Sci USA.
104:14525–14530. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liévens JC, Rival T, Iché M, Chneiweiss H
and Birman S: Expanded polyglutamine peptides disrupt EGF receptor
signaling and glutamate transporter expression in Drosophila. Hum
Mol Genet. 14:713–724. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Huang YY, Martin KC and Kandel ER: Both
protein kinase A and mitogen-activated protein kinase are required
in the amygdala for the macromolecular synthesis-dependent late
phase of long-term potentiation. J Neurosci. 20:6317–6325.
2000.PubMed/NCBI
|
|
108
|
Ribeiro FM, Paquet M, Ferreira LT, Cregan
T, Swan P, Cregan SP and Ferguson SS: Metabotropic glutamate
receptor-mediated cell signaling pathways are altered in a mouse
model of Hunti-ngton's disease. J Neurosci. 30:316–324. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Maddahi A, Chen Q and Edvinsson L:
Enhanced cerebrovascular expression of matrix metalloproteinase-9
and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway
during cerebral ischemia in the rat. BMC Neurosci. 10:562009.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ahnstedt H, Mostajeran M, Blixt FW,
Warfvinge K, Ansar S, Krause DN and Edvinsson L: U0126 attenuates
cerebral vasocon-striction and improves long-term neurologic
outcome after stroke in female rats. J Cereb Blood Flow Metab.
35:454–460. 2015. View Article : Google Scholar
|
|
111
|
Vikman P, Ansar S, Henriksson M, Stenman E
and Edvinsson L: Cerebral ischemia induces transcription of
inflammatory and extracellular-matrix-related genes in rat cerebral
arteries. Exp Brain Res. 183:499–510. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Maddahi A, Kruse LS, Chen QW and Edvinsson
L: The role of tumor necrosis factor-α and TNF-α receptors in
cerebral arteries following cerebral ischemia in rat. J
Neuroinflammation. 8:1072011. View Article : Google Scholar
|
|
113
|
Zhang J, Xu X, Zhou D, Li H, You W, Wang Z
and Chen G: Possible role of Raf-1 kinase in the development of
cerebral vaso-spasm and early brain injury after experimental
subarachnoid hemorrhage in rats. Mol Neurobiol. 52:1527–1539. 2015.
View Article : Google Scholar
|
|
114
|
Beg SA, Hansen-Schwartz JA, Vikman PJ, Xu
CB and Edvinsson LI: ERK1/2 inhibition attenuates cerebral blood
flow reduction and abolishes ET(B) and 5-HT(1B) receptor
upregulation after subarachnoid hemorrhage in rat. J Cereb Blood
Flow Metab. 26:846–856. 2006. View Article : Google Scholar
|
|
115
|
Li J, Fan Y, Zhang YN, Sun DJ, Fu SB, Ma
L, Jiang LH, Cui C, Ding HF and Yang J: The Raf-1 inhibitor GW5074
and the ERK1/2 pathway inhibitor U0126 ameliorate PC12 cells
apoptosis induced by 6-hydroxydopamine. Pharmazie. 67:718–724.
2012.PubMed/NCBI
|
|
116
|
Bartolomé F, de Las Cuevas N, Muñoz U,
Bermejo F and Martín-Requero A: Impaired apoptosis in lymphoblasts
from Alzheimer's disease patients: cross-talk of
Ca2+/calmodulin and ERK1/2 signaling pathways. Cell Mol
Life Sci. 64:1437–1448. 2007. View Article : Google Scholar
|
|
117
|
Pei JJ, Gong CX, An WL, Winblad B, Cowburn
RF, Grundke-Iqbal I and Iqbal K: Okadaic-acid-induced inhibition of
protein phosphatase 2A produces activation of mitogen-activated
protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in
Alzheimer's disease. Am J Pathol. 163:845–858. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chong YH, Shin YJ, Lee EO, Kayed R, Glabe
CG and Tenner AJ: ERK1/2 activation mediates Abeta oligomer-induced
neurotoxicity via caspase-3 activation and tau cleavage in rat
organotypic hippocampal slice cultures. J Biol Chem.
281:20315–20325. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Andersen JM, Myhre O and Fonnum F:
Discussion of the role of the extracellular signal-regulated
kinase-phospholipase A2 pathway in production of reactive oxygen
species in Alzheimer's disease. Neurochem Res. 28:319–326. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Pan B, Zhong P, Sun D and Liu QS:
Extracellular signal-regulated kinase signaling in the ventral
tegmental area mediates cocaine-induced synaptic plasticity and
rewarding effects. J Neurosci. 31:11244–11255. 2011. View Article : Google Scholar : PubMed/NCBI
|