|
1
|
Mozaffarian D, Benjamin EJ, Go AS, Arnett
DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP,
Fullerton HJ, et al Writing Group Members; American Heart
Association Statistics Committee; Stroke Statistics Subcommittee:
Heart Disease and Stroke Statistics-2016 Update: A Report From the
American Heart Association. Circulation. 133:e38–e360. 2016.
View Article : Google Scholar
|
|
2
|
Falcone GJ, Malik R, Dichgans M and Rosand
J: Current concepts and clinical applications of stroke genetics.
Lancet Neurol. 13:405–418. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bevan S, Traylor M, Adib-Samii P, Malik R,
Paul NL, Jackson C, Farrall M, Rothwell PM, Sudlow C, Dichgans M,
et al: Genetic heritability of ischemic stroke and the contribution
of previously reported candidate gene and genomewide associations.
Stroke. 43:3161–3167. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gretarsdottir S, Thorleifsson G, Manolescu
A, Styrkarsdottir U, Helgadottir A, Gschwendtner A, Kostulas K,
Kuhlenbäumer G, Bevan S, Jonsdottir T, et al: Risk variants for
atrial fibrillation on chromosome 4q25 associate with ischemic
stroke. Ann Neurol. 64:402–409. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gudbjartsson DF, Holm H, Gretarsdottir S,
Thorleifsson G, Walters GB, Thorgeirsson G, Gulcher J, Mathiesen
EB, Njølstad I, Nyrnes A, et al: A sequence variant in ZFHX3 on
16q22 associates with atrial fibrillation and ischemic stroke. Nat
Genet. 41:876–878. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ikram MA, Seshadri S, Bis JC, Fornage M,
DeStefano AL, Aulchenko YS, Debette S, Lumley T, Folsom AR, van den
Herik EG, et al: Genomewide association studies of stroke. N Engl J
Med. 360:1718–1728. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Holliday EG, Maguire JM, Evans TJ, Koblar
SA, Jannes J, Sturm JW, Hankey GJ, Baker R, Golledge J, Parsons MW,
et al Australian Stroke Genetics Collaborative; International
Stroke Genetics Consortium; Wellcome Trust Case Control Consortium
2: Common variants at 6p21.1 are associated with large artery
atherosclerotic stroke. Nat Genet. 44:1147–1151. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bellenguez C, Bevan S, Gschwendtner A,
Spencer CC, Burgess AI, Pirinen M, Jackson CA, Traylor M, Strange
A, Su Z, et al International Stroke Genetics Consortium (ISGC);
Wellcome Trust Case Control Consortium 2 (WTCCC2): Genome-wide
association study identifies a variant in HDAC9 associated with
large vessel ischemic stroke. Nat Genet. 44:328–333. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Traylor M, Farrall M, Holliday EG, Sudlow
C, Hopewell JC, Cheng YC, Fornage M, Ikram MA, Malik R, Bevan S, et
al Australian Stroke Genetics Collaborative, Wellcome Trust Case
Control Consortium 2 (WTCCC2); International Stroke Genetics
Consortium: Genetic risk factors for ischaemic stroke and its
subtypes (the METASTROKE collaboration): A meta-analysis of
genome-wide association studies. Lancet Neurol. 11:951–962. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kilarski LL, Achterberg S, Devan WJ,
Traylor M, Malik R, Lindgren A, Pare G, Sharma P, Slowik A, Thijs
V, et al GARNET Collaborative Research Group, Wellcome Trust Case
Control Consortium 2; Australian Stroke Genetic Collaborative; the
METASTROKE Consortium; the International Stroke Genetics
Consortium: Meta-analysis in more than 17,900 cases of ischemic
stroke reveals a novel association at 12q24.12. Neurology.
83:678–685. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Neurology Working Group of the Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE)
Consortium; Stroke Genetics Network (SiGN); International Stroke
Genetics Consortium (ISGC): Identification of additional risk loci
for stroke and small vessel disease: a meta-analysis of genome-wide
association studies. Lancet Neurol. 15:695–707. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
NINDS Stroke Genetics Network:
International Stroke Genetics Consortium (ISGC): Loci associated
with ischaemic stroke and its subtypes (SiGN): A genome-wide
association study. Lancet Neurol. 15:174–184. 2016. View Article : Google Scholar
|
|
13
|
Qureshi AI, Tuhrim S, Broderick JP, Batjer
HH, Hondo H and Hanley DF: Spontaneous intracerebral hemorrhage. N
Engl J Med. 344:1450–1460. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sacco RL: Lobar intracerebral hemorrhage.
N Engl J Med. 342:276–279. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
O'Donnell HC, Rosand J, Knudsen KA, Furie
KL, Segal AZ, Chiu RI, Ikeda D and Greenberg SM: Apolipoprotein E
genotype and the risk of recurrent lobar intracerebral hemorrhage.
N Engl J Med. 342:240–245. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Woo D, Kaushal R, Chakraborty R, Woo J,
Haverbusch M, Sekar P, Kissela B, Pancioli A, Jauch E, Kleindorfer
D, et al: Association of apolipoprotein E4 and haplotypes of the
apolipo-protein E gene with lobar intracerebral hemorrhage. Stroke.
36:1874–1879. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Greenberg SM, Vonsattel JP, Segal AZ, Chiu
RI, Clatworthy AE, Liao A, Hyman BT and Rebeck GW: Association of
apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid
angiopathy. Neurology. 50:961–965. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Devan WJ, Falcone GJ, Anderson CD,
Jagiella JM, Schmidt H, Hansen BM, Jimenez-Conde J,
Giralt-Steinhauer E, Cuadrado-Godia E, Soriano C, et al
International Stroke Genetics Consortium: Heritability estimates
identify a substantial genetic contribution to risk and outcome of
intracerebral hemorrhage. Stroke. 44:1578–1583. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Falcone GJ, Biffi A, Devan WJ, Jagiella
JM, Schmidt H, Kissela B, Hansen BM, Jimenez-Conde J,
Giralt-Steinhauer E, Elosua R, et al International Stroke Genetics
Consortium: Burden of risk alleles for hypertension increases risk
of intracerebral hemorrhage. Stroke. 43:2877–2883. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Woo D, Falcone GJ, Devan WJ, Brown WM,
Biffi A, Howard TD, Anderson CD, Brouwers HB, Valant V, Battey TW,
et al International Stroke Genetics Consortium: Meta-analysis of
genome-wide association studies identifies 1q22 as a susceptibility
locus for intracerebral hemorrhage. Am J Hum Genet. 94:511–521.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Macdonald RL and Schweizer TA: Spontaneous
subarachnoid haemorrhage. Lancet. 389:655–666. 2017. View Article : Google Scholar
|
|
22
|
van Gijn J, Kerr RS and Rinkel GJ:
Subarachnoid haemorrhage. Lancet. 369:306–318. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Linn FHH, Rinkel GJE, Algra A and van Gijn
J: Incidence of subarachnoid hemorrhage: role of region, year, and
rate of computed tomography: A meta-analysis. Stroke. 27:625–629.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Johnston SC, Selvin S and Gress DR: The
burden, trends, and demographics of mortality from subarachnoid
hemorrhage. Neurology. 50:1413–1418. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tromp G, Weinsheimer S, Ronkainen A and
Kuivaniemi H: Molecular basis and genetic predisposition to
intracranial aneurysm. Ann Med. 46:597–606. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bilguvar K, Yasuno K, Niemelä M, Ruigrok
YM, von Und Zu Fraunberg M, van Duijn CM, van den Berg LH, Mane S,
Mason CE, Choi M, et al: Susceptibility loci for intracranial
aneurysm in European and Japanese populations. Nat Genet.
40:1472–1477. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yasuno K, Bilguvar K, Bijlenga P, Low SK,
Krischek B, Auburger G, Simon M, Krex D, Arlier Z, Nayak N, et al:
Genome-wide association study of intracranial aneurysm identifies
three new risk loci. Nat Genet. 42:420–425. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yasuno K, Bakırcıoğlu M, Low SK, Bilgüvar
K, Gaál E, Ruigrok YM, Niemelä M, Hata A, Bijlenga P, Kasuya H, et
al: Common variant near the endothelin receptor type A (EDNRA) gene
is associated with intracranial aneurysm risk. Proc Natl Acad Sci
USA. 108:19707–19712. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Foroud T, Koller DL, Lai D, Sauerbeck L,
Anderson C, Ko N, Deka R, Mosley TH, Fornage M, Woo D, et al FIA
Study Investigators: Genome-wide association study of intracranial
aneurysms confirms role of Anril and SOX17 in disease risk. Stroke.
43:2846–2852. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Low SK, Takahashi A, Cha PC, Zembutsu H,
Kamatani N, Kubo M and Nakamura Y: Genome-wide association study
for intracranial aneurysm in the Japanese population identifies
three candidate susceptible loci and a functional genetic variant
at EDNRA. Hum Mol Genet. 21:2102–2110. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Foroud T, Lai D, Koller D, Van't Hof F,
Kurki MI, Anderson CS, Brown RD Jr, Connolly ES, Eriksson JG,
Flaherty M, et al Familial Intracranial Aneurysm Study
Investigators: Genome-wide association study of intracranial
aneurysm identifies a new association on chromosome 7. Stroke.
45:3194–3199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Alg VS, Sofat R, Houlden H and Werring DJ:
Genetic risk factors for intracranial aneurysms: A meta-analysis in
more than 116000 individuals. Neurology. 80:2154–2165. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Manolio TA, Collins FS, Cox NJ, Goldstein
DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR,
Chakravarti A, et al: Finding the missing heritability of complex
diseases. Nature. 461:747–753. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kubo M, Hata J, Ninomiya T, Matsuda K,
Yonemoto K, Nakano T, Matsushita T, Yamazaki K, Ohnishi Y, Saito S,
et al: A nonsynonymous SNP in PRKCH (protein kinase C eta)
increases the risk of cerebral infarction. Nat Genet. 39:212–217.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hata J, Matsuda K, Ninomiya T, Yonemoto K,
Matsushita T, Ohnishi Y, Saito S, Kitazono T, Ibayashi S, Iida M,
et al: Functional SNP in an Sp1-binding site of AGTRL1 gene is
associated with susceptibility to brain infarction. Hum Mol Genet.
16:630–639. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Matsushita T, Ashikawa K, Yonemoto K,
Hirakawa Y, Hata J, Amitani H, Doi Y, Ninomiya T, Kitazono T,
Ibayashi S, et al: Functional SNP of ARHGEF10 confers risk of
atherothrombotic stroke. Hum Mol Genet. 19:1137–1146. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sacco RL, Kasner SE, Broderick JP, Caplan
LR, Connors JJ, Culebras A, Elkind MS, George MG, Hamdan AD,
Higashida RT, et al American Heart Association Stroke Council;
Council on Cardiovascular Surgery and Anesthesia; Council on
Cardiovascular Radiology and Intervention; Council on
Cardiovascular and Stroke Nursing; Council on Epidemiology and
Prevention; Council on Peripheral Vascular Disease; Council on
Nutrition; Physical Activity and Metabolism: An updated definition
of stroke for the 21st century: A statement for healthcare
professionals from the American Heart Association/American Stroke
Association. Stroke. 44:2064–2089. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Grove ML, Yu B, Cochran BJ, Haritunians T,
Bis JC, Taylor KD, Hansen M, Borecki IB, Cupples LA and Fornage M:
Best practices and joint calling of the HumanExome BeadChip: The
CHARGE Consortium. PLoS One. 8:e680952013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Anderson CA, Pettersson FH, Clarke GM,
Cardon LR, Morris AP and Zondervan KT: Data quality control in
genetic case-control association studies. Nat Protoc. 5:1564–1573.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Price AL, Patterson NJ, Plenge RM,
Weinblatt ME, Shadick NA and Reich D: Principal components analysis
corrects for stratification in genome-wide association studies. Nat
Genet. 38:904–909. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kang JQ and Barnes G: A common
susceptibility factor of both autism and epilepsy: Functional
deficiency of GABA A receptors. J Autism Dev Disord. 43:68–79.
2013. View Article : Google Scholar
|
|
42
|
Sinnett D, Wagstaff J, Glatt K, Woolf E,
Kirkness EJ and Lalande M: High-resolution mapping of the
gamma-aminobutyric acid receptor subunit beta 3 and alpha 5 gene
cluster on chromosome 15q11–q13, and localization of breakpoints in
two Angelman syndrome patients. Am J Hum Genet. 52:1216–1229.
1993.PubMed/NCBI
|
|
43
|
Glatt K, Sinnett D and Lalande M: The
human gamma-amino-butyric acid receptor subunit beta 3 and alpha 5
gene cluster in chromosome 15q11–q13 is rich in highly polymorphic
(CA)n repeats. Genomics. 19:157–160. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Scapoli L, Martinelli M, Pezzetti F,
Carinci F, Bodo M, Tognon M and Carinci P: Linkage disequilibrium
between GABRB3 gene and nonsyndromic familial cleft lip with or
without cleft palate. Hum Genet. 110:15–20. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Macdonald RL, Kang JQ and Gallagher MJ:
Mutations in GABAA receptor subunits associated with genetic
epilepsies. J Physiol. 588:1861–1869. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Delahanty RJ, Kang JQ, Brune CW, Kistner
EO, Courchesne E, Cox NJ, Cook EH Jr, Macdonald RL and Sutcliffe
JS: Maternal transmission of a rare GABRB3 signal peptide variant
is associated with autism. Mol Psychiatry. 16:86–96. 2011.
View Article : Google Scholar
|
|
47
|
Hooper JD, Clements JA, Quigley JP and
Antalis TM: Type II transmembrane serine proteases. Insights into
an emerging class of cell surface proteolytic enzymes. J Biol Chem.
276:857–860. 2001. View Article : Google Scholar
|
|
48
|
Bugge TH, Antalis TM and Wu Q: Type II
transmembrane serine proteases. J Biol Chem. 284:23177–23181. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Antalis TM, Buzza MS, Hodge KM, Hooper JD
and Netzel-Arnett S: The cutting edge: Membrane-anchored serine
protease activities in the pericellular microenvironment. Biochem
J. 428:325–346. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Luostari K, Hartikainen JM, Tengström M,
Palvimo JJ, Kataja V, Mannermaa A and Kosma VM: Type II
transmembrane serine protease gene variants associate with breast
cancer. PLoS One. 9:e1025192014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hayano T and Kikuchi M: Molecular cloning
of the cDNA encoding a novel protein disulfide isomerase-related
protein (PDIR). FEBS Lett. 372:210–214. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vinaik R, Kozlov G and Gehring K:
Structure of the non-catalytic domain of the protein disulfide
isomerase-related protein (PDIR) reveals function in protein
binding. PLoS One. 8:e620212013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
de Vries PS, Chasman DI, Sabater-Lleal M,
Chen MH, Huffman JE, Steri M, Tang W, Teumer A, Marioni RE,
Grossmann V, et al: A meta-analysis of 120 246 individuals
identifies 18 new loci for fibrinogen concentration. Hum Mol Genet.
25:358–370. 2016. View Article : Google Scholar :
|
|
54
|
Gieger C, Radhakrishnan A, Cvejic A, Tang
W, Porcu E, Pistis G, Serbanovic-Canic J, Elling U, Goodall AH,
Labrune Y, et al: New gene functions in megakaryopoiesis and
platelet formation. Nature. 480:201–208. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bylund J, Bylund M and Oliw EH: cDna
cloning and expression of CYP4F12, a novel human cytochrome 450.
Biochem Biophys Res Commun. 280:892–897. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hashizume T, Imaoka S, Hiroi T, Terauchi
Y, Fujii T, Miyazaki H, Kamataki T and Funae Y: cDNA cloning and
expression of a novel cytochrome 450 (cyp4f12) from human small
intestine. Biochem Biophys Res Commun. 280:1135–1141. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kikuta Y, Kusunose E and Kusunose M:
Prostaglandin and leukotriene omega-hydroxylases. Prostaglandins
Other Lipid Mediat. 68–69:345–362. 2002. View Article : Google Scholar
|
|
58
|
Cauffiez C, Klinzig F, Rat E, Tournel G,
Allorge D, Chevalier D, Pottier N, Lovecchio T, Colombel JF,
Lhermitte M, et al: Human CYP4F12 genetic polymorphism:
Identification and functional characterization of seven variant
allozymes. Biochem Pharmacol. 68:2417–2425. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ye X, Ji C, Huang Q, Cheng C, Tang R, Xu
J, Zeng L, Dai J, Wu Q, Gu S, et al: Isolation and characterization
of a human putative receptor protein kinase cDNA STYK1. Mol Biol
Rep. 30:91–96. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu L, Yu XZ, Li TS, Song LX, Chen PL, Suo
TL, Li YH, Wang SD, Chen Y, Ren YM, et al: A novel protein tyrosine
kinase NOK that shares homology with platelet-derived growth
factor/fibroblast growth factor receptors induces tumorigenesis and
metastasis in nude mice. Cancer Res. 64:3491–3499. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Moriai R, Kobayashi D, Amachika T, Tsuji N
and Watanabe N: Diagnostic relevance of overexpressed NOK mRNA in
breast cancer. Anticancer Res. 26:4969–4973. 2006.
|
|
62
|
Amachika T, Kobayashi D, Moriai R, Tsuji N
and Watanabe N: Diagnostic relevance of overexpressed mRNA of novel
oncogene with kinase-domain (NOK) in lung cancers. Lung Cancer.
56:337–340. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jackson KA, Oprea G, Handy J and Kimbro
KS: Aberrant STYK1 expression in ovarian cancer tissues and cell
lines. J Ovarian Res. 2:152009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chung S, Tamura K, Furihata M, Uemura M,
Daigo Y, Nasu Y, Miki T, Shuin T, Fujioka T, Nakamura Y, et al:
Overexpression of the potential kinase serine/threonine/tyrosine
kinase 1 (STYK1) in castration-resistant prostate cancer. Cancer
Sci. 100:2109–2114. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hu L, Chen HY, Cai J, Zhang Y, Qi CY, Gong
H, Zhai YX, Fu H, Yang GZ and Gao CF: Serine threonine tyrosine
kinase 1 is a potential prognostic marker in colorectal cancer. BMC
Cancer. 15:2462015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang Z, Qu L, Deng B, Sun X, Wu S, Liao J,
Fan J and Peng Z: STYK1 promotes epithelial-mesenchymal transition
and tumor metastasis in human hepatocellular carcinoma through
MEK/ERK and PI3K/AKT signaling. Sci Rep. 6:332052016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li J, Wu F, Sheng F, Li YJ, Jin D and
Dingxand Zhang S: NOK/STYK1 interacts with GSK-3β and mediates Ser9
phosphorylation through activated Akt. FEBS Lett. 586:3787–3792.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu Y, Li T, Hu D and Zhang S: NOK/STYK1
promotes the genesis and remodeling of blood and lymphatic vessels
during tumor progression. Biochem Biophys Res Commun. 478:254–259.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Giudice GJ, Emery DJ and Diaz LA: Cloning
and primary structural analysis of the bullous pemphigoid
autoantigen BP180. J Invest Dermatol. 99:243–250. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Pulkkinen L and Uitto J and Uitto J:
Mutation analysis and molecular genetics of epidermolysis bullosa.
Matrix Biol. 18:29–42. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bauer JW and Lanschuetzer C: Type XVII
collagen gene mutations in junctional epidermolysis bullosa and
prospects for gene therapy. Clin Exp Dermatol. 28:53–60. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kasperkiewicz M, Zillikens D and Schmidt
E: Pemphigoid diseases: Pathogenesis, diagnosis, and treatment.
Autoimmunity. 45:55–70. 2012. View Article : Google Scholar
|
|
73
|
Chen YJ, Wu CY, Lin MW, Chen TJ, Liao KK,
Chen YC, Hwang CY, Chu SY, Chen CC, Lee DD, et al: Comorbidity
profiles among patients with bullous pemphigoid: A nationwide
population-based study. Br J Dermatol. 165:593–599. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ameglio F, D'Auria L, Cordiali-Fei P,
Mussi A, Valenzano L, D'Agosto G, Ferraro C, Bonifati C and
Giacalone B: Bullous pemphigoid and pemphigus vulgaris: Correlated
behaviour of serum VEGF, sE-selectin and TNF-alpha levels. J Biol
Regul Homeost Agents. 11:148–153. 1997.
|
|
75
|
Seppänen A: Collagen XVII: A shared
antigen in neurodermatological interactions? Clin Dev Immunol.
2013:2405702013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Aoki T and Nishimura M: Molecular
mechanism of cerebral aneurysm formation focusing on NF-κB as a key
mediator of inflammation. J Biorheol. 24:16–21. 2010. View Article : Google Scholar
|
|
77
|
Chyatte D, Bruno G, Desai S and Todor DR:
Inflammation and intracranial aneurysms. Neurosurgery.
45:1137–1147. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kurki MI, Gaál EI, Kettunen J, Lappalainen
T, Menelaou A, Anttila V, van't Hof FN, von Und Zu Fraunberg M,
Helisalmi S and Hiltunen M: High risk population isolate reveals
low frequency variants predisposing to intracranial aneurysms. PLoS
Genet. 10:e10041342014. View Article : Google Scholar : PubMed/NCBI
|