|
1
|
Brownlee M: The pathobiology of diabetic
complications: A unifying mechanism. Diabetes. 54:1615–1625. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kalapos MP: The tandem of free radicals
and methylglyoxal. Chem Biol Interact. 171:251–271. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wu CH, Huang SM, Lin JA and Yen GC:
Inhibition of advanced glycation endproduct formation by
foodstuffs. Food Funct. 2:224–234. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shu T, Zhu Y, Wang H, Lin Y, Ma Z and Han
X: AGEs decrease insulin synthesis in pancreatic β-cell by
repressing Pdx-1 protein expression at the post-translational
level. PLoS One. 6:e187822011. View Article : Google Scholar
|
|
5
|
Thornalley PJ: Glyoxalase I - structure,
function and a critical role in the enzymatic defence against
glycation. Biochem Soc Trans. 31:1343–1348. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Solomon TPJ, Knudsen SH, Karstoft K,
Winding K, Holst JJ and Pedersen BK: Examining the effects of
hyperglycemia on pancreatic endocrine function in humans: Evidence
for in vivo glucotoxicity. J Clin Endocrinol Metab. 97:4682–4691.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Brownlee M: A radical explanation for
glucose-induced beta cell dysfunction. J Clin Invest.
112:1788–1790. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sakuraba H, Mizukami H, Yagihashi N, Wada
R, Hanyu C and Yagihashi S: Reduced beta-cell mass and expression
of oxidative stress-related DNA damage in the islet of Japanese
Type II diabetic patients. Diabetologia. 45:85–96. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tanaka Y, Tran PO, Harmon J and Robertson
RP: A role for glutathione peroxidase in protecting pancreatic beta
cells against oxidative stress in a model of glucose toxicity. Proc
Natl Acad Sci USA. 99:12363–12368. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Welsh N, Margulis B, Borg LA, Wiklund HJ,
Saldeen J, Flodström M, Mello MA, Andersson A, Pipeleers DG,
Hellerström C, et al: Differences in the expression of heat-shock
proteins and antioxidant enzymes between human and rodent
pancreatic islets: Implications for the pathogenesis of
insulin-dependent diabetes mellitus. Mol Med. 1:806–820.
1995.PubMed/NCBI
|
|
11
|
Bonora E: Protection of pancreatic
beta-cells: Is it feasible? Nutr Metab Cardiovasc Dis. 18:74–83.
2008. View Article : Google Scholar
|
|
12
|
Chang-Chen KJ, Mullur R and
Bernal-Mizrachi E: Beta-cell failure as a complication of diabetes.
Rev Endocr Metab Disord. 9:329–343. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Philippe J and Raccah D: Treating type 2
diabetes: How safe are current therapeutic agents? Int J Clin
Pract. 63:321–332. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lee SH, Park MH, Park SJ, Kim J, Kim YT,
Oh MC, Jeong Y, Kim M, Han JS and Jeon YJ: Bioactive compounds
extracted from Ecklonia cava by using enzymatic hydrolysis protects
high glucose-induced damage in INS-1 pancreatic β-cells. Appl
Biochem Biotechnol. 167:1973–1985. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chakraborty D, Samadder A, Dutta S and
Khuda-Bukhsh AR: Antihyperglycemic potentials of a threatened
plant, Helonias dioica: Antioxidative stress responses and the
signaling cascade. Exp Biol Med (Maywood). 237:64–76. 2012.
View Article : Google Scholar
|
|
16
|
Hanhineva K, Törrönen R, Bondia-Pons I,
Pekkinen J, Kolehmainen M, Mykkänen H and Poutanen K: Impact of
dietary polyphenols on carbohydrate metabolism. Int J Mol Sci.
11:1365–1402. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Babu PV, Liu D and Gilbert ER: Recent
advances in understanding the anti-diabetic actions of dietary
flavonoids. J Nutr Biochem. 24:1777–1789. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
McKenna DJ, Jones K, Humphrey S and Hughes
K: Black cohosh: Efficacy, safety, and use in clinical and
preclinical applications. Altern Ther Health Med. 7:93–100.
2001.PubMed/NCBI
|
|
19
|
Choi EM: Deoxyactein isolated from
Cimicifuga racemosa protects osteoblastic MC3T3-E1 cells against
antimycin A-induced cytotoxicity. J Appl Toxicol. 33:488–494. 2013.
View Article : Google Scholar
|
|
20
|
Choi EM: Deoxyactein stimulates osteoblast
function and inhibits bone-resorbing mediators in MC3T3-E1 cells. J
Appl Toxicol. 33:190–195. 2013. View Article : Google Scholar
|
|
21
|
Sheader EA, Benson RS and Best L:
Cytotoxic action of methylglyoxal on insulin-secreting cells.
Biochem Pharmacol. 61:1381–1386. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tiedge M, Lortz S, Munday R and Lenzen S:
Complementary action of antioxidant enzymes in the protection of
bioengineered insulin-producing RINm5F cells against the toxicity
of reactive oxygen species. Diabetes. 47:1578–1585. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jakubowski W and Bartosz G:
2,7-dichlorofluorescin oxidation and reactive oxygen species: What
does it measure? Cell Biol Int. 24:757–760. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Thornalley PJ and Tisdale MJ: Inhibition
of proliferation of human promyelocytic leukaemia HL60 cells by
S-D-lactoylglutathione in vitro. Leuk Res. 12:897–904. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rains JL and Jain SK: Oxidative stress,
insulin signaling, and diabetes. Free Radic Biol Med. 50:567–575.
2011. View Article : Google Scholar
|
|
26
|
Suh KS, Rhee SY, Kim YS and Choi EM:
Inhibitory effect of apocynin on methylglyoxal-mediated glycation
in osteoblastic MC3T3-E1 cells. J Appl Toxicol. 35:350–357. 2015.
View Article : Google Scholar
|
|
27
|
Vulesevic B, McNeill B, Giacco F, Maeda K,
Blackburn NJ, Brownlee M, Milne RW and Suuronen EJ:
Methylglyoxal-induced endothelial cell loss and inflammation
contribute to the development of diabetic cardiomyopathy. Diabetes.
65:1699–1713. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sun YP, Gu JF, Tan XB, Wang CF, Jia XB,
Feng L and Liu JP: Curcumin inhibits advanced glycation end
product-induced oxidative stress and inflammatory responses in
endothelial cell damage via trapping methylglyoxal. Mol Med Rep.
13:1475–1486. 2016.PubMed/NCBI
|
|
29
|
Gogvadze V, Orrenius S and Zhivotovsky B:
Multiple pathways of cytochrome c release from mitochondria in
apoptosis. Biochim Biophys Acta. 1757:639–647. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Petit JM, Maftah A, Ratinaud MH and Julien
R: 10N-nonyl acridine orange interacts with cardiolipin and allows
the quantification of this phospholipid in isolated mitochondria.
Eur J Biochem. 209:267–273. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jornayvaz FR and Shulman GI: Regulation of
mitochondrial biogenesis. Essays Biochem. 47:69–84. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nemoto S, Fergusson MM and Finkel T: SIRT1
functionally interacts with the metabolic regulator and
transcriptional coactivator PGC-1{alpha}. J Biol Chem.
280:16456–16460. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Salahuddin P, Rabbani G and Khan RH: The
role of advanced glycation end products in various types of
neurodegenerative disease: a therapeutic approach. Cell Mol Biol
Lett. 19:407–437. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sherry NA, Tsai EB and Herold KC: Natural
history of β-cell function in type 1 diabetes. Diabetes. 54(Suppl
2): S32–S39. 2005. View Article : Google Scholar
|
|
35
|
Dhar A, Dhar I, Jiang B, Desai KM and Wu
L: Chronic methylglyoxal infusion by minipump causes pancreatic
beta-cell dysfunction and induces type 2 diabetes in Sprague-Dawley
rats. Diabetes. 60:899–908. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ahlgren U, Jonsson J, Jonsson L, Simu K
and Edlund H: beta-cell-specific inactivation of the mouse
Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and
maturity onset diabetes. Genes Dev. 12:1763–1768. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wu H, MacFarlane WM, Tadayyon M, Arch JR,
James RF and Docherty K: Insulin stimulates pancreatic-duodenal
homoeobox factor-1 (PDX1) DNA-binding activity and insulin promoter
activity in pancreatic beta cells. Biochem J. 344:813–818.
1999.PubMed/NCBI
|
|
38
|
Leibowitz G, Ferber S, Apelqvist A, Edlund
H, Gross DJ, Cerasi E, Melloul D and Kaiser N: IPF1/PDX1 deficiency
and beta-cell dysfunction in Psammomys obesus, an animal With type
2 diabetes. Diabetes. 50:1799–1806. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Macfarlane WM, Shepherd RM, Cosgrove KE,
James RF, Dunne MJ and Docherty K: Glucose modulation of insulin
mRNA levels is dependent on transcription factor PDX-1 and occurs
independently of changes in intracellular Ca2+.
Diabetes. 49:418–423. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kawamori D, Kaneto H, Nakatani Y, Matsuoka
TA, Matsuhisa M, Hori M and Yamasaki Y: The forkhead transcription
factor Foxo1 bridges the JNK pathway and the transcription factor
PDX-1 through its intracellular translocation. J Biol Chem.
281:1091–1098. 2006. View Article : Google Scholar
|
|
41
|
Hagman DK, Hays LB, Parazzoli SD and
Poitout V: Palmitate inhibits insulin gene expression by altering
PDX-1 nuclear localization and reducing MafA expression in isolated
rat islets of Langerhans. J Biol Chem. 280:32413–32418. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ardestani A, Sauter NS, Paroni F,
Dharmadhikari G, Cho JH, Lupi R, Marchetti P, Oberholzer J, Conte
JK and Maedler K: Neutralizing interleukin-1beta (IL-1beta) induces
beta-cell survival by maintaining PDX1 protein nuclear
localization. J Biol Chem. 286:17144–17155. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Osborn O, Brownell SE, Sanchez-Alavez M,
Salomon D, Gram H and Bartfai T: Treatment with an Interleukin 1
beta antibody improves glycemic control in diet-induced obesity.
Cytokine. 44:141–148. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mandrup-Poulsen T: The role of
interleukin-1 in the pathogenesis of IDDM. Diabetologia.
39:1005–1029. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Maedler K, Sergeev P, Ris F, Oberholzer J,
Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA and Donath MY:
Glucose-induced beta cell production of IL-1beta contributes to
glucotoxicity in human pancreatic islets. J Clin Invest.
110:851–860. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Börjesson A and Carlsson C: Altered
proinsulin conversion in rat pancreatic islets exposed long-term to
various glucose concentrations or interleukin-1beta. J Endocrinol.
192:381–387. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Abordo EA, Minhas HS and Thornalley PJ:
Accumulation of alpha-oxoaldehydes during oxidative stress: A role
in cytotoxicity. Biochem Pharmacol. 58:641–648. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Miyazawa N, Abe M, Souma T, Tanemoto M,
Abe T, Nakayama M and Ito S: Methylglyoxal augments intracellular
oxidative stress in human aortic endothelial cells. Free Radic Res.
44:101–107. 2010. View Article : Google Scholar
|
|
49
|
Newsholme P, Haber EP, Hirabara SM,
Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli
AR and Curi R: Diabetes associated cell stress and dysfunction:
Role of mitochondrial and non-mitochondrial ROS production and
activity. J Physiol. 583:9–24. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Robertson RP: Chronic oxidative stress as
a central mechanism for glucose toxicity in pancreatic islet beta
cells in diabetes. J Biol Chem. 279:42351–42354. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Petrosillo G, Di Venosa N, Pistolese M,
Casanova G, Tiravanti E, Colantuono G, Federici A, Paradies G and
Ruggiero FM: Protective effect of melatonin against mitochondrial
dysfunction associated with cardiac ischemia-reperfusion: Role of
cardiolipin. FASEB J. 20:269–276. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Martín MA, Serrano AB, Ramos S, Pulido MI,
Bravo L and Goya L: Cocoa flavonoids up-regulate antioxidant enzyme
activity via the ERK1/2 pathway to protect against oxidative
stress-induced apoptosis in HepG2 cells. J Nutr Biochem.
21:196–205. 2010. View Article : Google Scholar
|
|
53
|
Robertson RP and Harmon JS: Pancreatic
islet beta-cell and oxidative stress: The importance of glutathione
peroxidase. FEBS Lett. 581:3743–3748. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Muscogiuri G, Salmon AB, Aguayo-Mazzucato
C, Li M, Balas B, Guardado-Mendoza R, Giaccari A, Reddick RL, Reyna
SM, Weir G, et al: Genetic disruption of SOD1 gene causes glucose
intolerance and impairs β-cell function. Diabetes. 62:4201–4207.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Moriscot C, Pattou F, Kerr-Conte J,
Richard MJ, Lemarchand P and Benhamou PY: Contribution of
adenoviral-mediated superoxide dismutase gene transfer to the
reduction in nitric oxide-induced cytotoxicity on human islets and
INS-1 insulin-secreting cells. Diabetologia. 43:625–631. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kubisch HM, Wang J, Bray TM and Phillips
JP: Targeted overexpression of Cu/Zn superoxide dismutase protects
pancreatic beta-cells against oxidative stress. Diabetes.
46:1563–1566. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mysore TB, Shinkel TA, Collins J, Salvaris
EJ, Fisicaro N, Murray-Segal LJ, Johnson LE, Lepore DA, Walters SN,
Stokes R, et al: Overexpression of glutathione peroxidase with two
isoforms of superoxide dismutase protects mouse islets from
oxidative injury and improves islet graft function. Diabetes.
54:2109–2116. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Nishikawa T, Edelstein D, Du XL, Yamagishi
S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP,
et al: Normalizing mitochondrial superoxide production blocks three
pathways of hyperglycaemic damage. Nature. 404:787–790. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rodgers JT, Lerin C, Gerhart-Hines Z and
Puigserver P: Metabolic adaptations through the PGC-1 alpha and
SIRT1 pathways. FEBS Lett. 582:46–53. 2008. View Article : Google Scholar
|
|
60
|
Cheng HL, Mostoslavsky R, Saito S, Manis
JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW and Chua KF:
Developmental defects and p53 hyperacetylation in Sir2 homolog
(SIRT1)-deficient mice. Proc Natl Acad Sci USA. 100:10794–10799.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Brunet A, Sweeney LB, Sturgill JF, Chua
KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et
al: Stress-dependent regulation of FOXO transcription factors by
the SIRT1 deacetylase. Science. 303:2011–2015. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Finkel T: Cell biology: A clean energy
programme. Nature. 444:151–152. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hock MB and Kralli A: Transcriptional
control of mitochondrial biogenesis and function. Annu Rev Physiol.
71:177–203. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Akhand AA, Kato M, Suzuki H, Liu W, Du J,
Hamaguchi M, Miyata T, Kurokawa K and Nakashima I: Carbonyl
compounds cross-link cellular proteins and activate
protein-tyrosine kinase p60c-Src. J Cell Biochem. 72:1–7. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rosca MG, Monnier VM, Szweda LI and Weiss
MF: Alterations in renal mitochondrial respiration in response to
the reactive oxoaldehyde methylglyoxal. Am J Physiol Renal Physiol.
283:F52–F59. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Akhand AA, Hossain K, Mitsui H, Kato M,
Miyata T, Inagi R, Du J, Takeda K, Kawamoto Y, Suzuki H, et al:
Glyoxal and methylglyoxal trigger distinct signals for map family
kinases and caspase activation in human endothelial cells. Free
Radic Biol Med. 31:20–30. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Stitt AW, Jenkins AJ and Cooper ME:
Advanced glycation end products and diabetic complications. Expert
Opin Investig Drugs. 11:1205–1223. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yim HS, Kang SO, Hah YC, Chock PB and Yim
MB: Free radicals generated during the glycation reaction of amino
acids by methylglyoxal. A model study of protein-cross-linked free
radicals. J Biol Chem. 270:28228–28233. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Pedchenko VK, Chetyrkin SV, Chuang P, Ham
AJ, Saleem MA, Mathieson PW, Hudson BG and Voziyan PA: Mechanism of
perturbation of integrin-mediated cell-matrix interactions by
reactive carbonyl compounds and its implication for pathogenesis of
diabetic nephropathy. Diabetes. 54:2952–2960. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sejersen H and Rattan SI:
Dicarbonyl-induced accelerated aging in vitro in human skin
fibroblasts. Biogerontology. 10:203–211. 2009. View Article : Google Scholar
|
|
71
|
Barati MT, Merchant ML, Kain AB, Jevans
AW, McLeish KR and Klein JB: Proteomic analysis defines altered
cellular redox pathways and advanced glycation end-product
metabolism in glomeruli of db/db diabetic mice. Am J Physiol Renal
Physiol. 293:F1157–F1165. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Shinohara M, Thornalley PJ, Giardino I,
Beisswenger P, Thorpe SR, Onorato J and Brownlee M: Overexpression
of glyoxalase-I in bovine endothelial cells inhibits intracellular
advanced glycation endproduct formation and prevents
hyperglycemia-induced increases in macromolecular endocytosis. J
Clin Invest. 101:1142–1147. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Miyata T, van Ypersele de Strihou C,
Imasawa T, Yoshino A, Ueda Y, Ogura H, Kominami K, Onogi H, Inagi
R, Nangaku M, et al: Glyoxalase I deficiency is associated with an
unusual level of advanced glycation end products in a hemodialysis
patient. Kidney Int. 60:2351–2359. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kumagai T, Nangaku M, Kojima I, Nagai R,
Ingelfinger JR, Miyata T, Fujita T and Inagi R: Glyoxalase I
overexpression ameliorates renal ischemia-reperfusion injury in
rats. Am J Physiol Renal Physiol. 296:F912–F921. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
McLellan AC, Thornalley PJ, Benn J and
Sonksen PH: Glyoxalase system in clinical diabetes mellitus and
correlation with diabetic complications. Clin Sci (Lond). 87:21–29.
1994. View Article : Google Scholar
|