Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2017 Volume 40 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2017 Volume 40 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cell-penetrating peptides and their utility in genome function modifications (Review)

  • Authors:
    • Maciej Gagat
    • Wioletta Zielińska
    • Alina Grzanka
  • View Affiliations / Copyright

    Affiliations: Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
    Copyright: © Gagat et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1615-1623
    |
    Published online on: October 4, 2017
       https://doi.org/10.3892/ijmm.2017.3172
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

For almost 30 years, studies have confirmed the effectiveness of cell-penetrating peptides (CPPs) in the facilitation of the intracellular delivery of various cargo molecules, including RNA, DNA, plasmids, proteins or nanoparticles, under in vitro and in vivo conditions. The cellular uptake of CPPs occurs via energy-dependent, as well as -independent mechanisms. In this relatively new direction of research, studies have attempted to introduce genome modification systems into cells by CPPs. Cellular uptake of CPPs carrying either covalently bound or electrostatically conjugated cargo, has several advantages over viral delivery systems, as it does not lead to any significant cytotoxicity or immunogenicity, and simultaneously it is more efficient than other non-viral systems. So far, CPPs have been successfully used to introduce Cre recombinase, zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats systems into cells. The present article systematically reviewed the information obtained from studies on CPPs and assessed their utility with regard to their effectiveness and safety of use.
View Figures

Figure 1

Figure 2

View References

1 

Zorko M and Langel U: Cell-penetrating peptides: Mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. 57:529–545. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Karro K, Männik T, Männik A and Ustav M: DNA transfer into animal cells using stearylated CPP based transfection reagent. Methods Mol Biol. 1324:435–445. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Ramakrishna S, Kwaku Dad A-BB, Beloor J, Gopalappa R, Lee SK and Kim H: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24:1020–1027. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Zatsepin TS, Turner JJ, Oretskaya TS and Gait MJ: Conjugates of oligonucleotides and analogues with cell penetrating peptides as gene silencing agents. Curr Pharm Des. 11:3639–3654. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Segovia N, Dosta P, Cascante A, Ramos V and Borrós S: Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization. Acta Biomater. 10:2147–2158. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Liu C, Luo Q, Tu Y, Wang G, Liu Y and Xie Y: Drug-carrier interaction analysis in the cell penetrating peptide-modified liposomes for doxorubicin loading. J Microencapsul. 32:745–754. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Li Y, Wen G, Wang D, Zhang X, Lu Y, Wang J, Zhong L, Cai H, Zhang X and Wang Y: A complementary strategy for enhancement of nanoparticle intracellular uptake. Pharm Res. 31:2054–2064. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Jo J, Hong S, Choi WY and Lee DR: Cell-penetrating peptide (CPP)-conjugated proteins is an efficient tool for manipulation of human mesenchymal stromal cells. Sci Rep. 4:43782014. View Article : Google Scholar : PubMed/NCBI

9 

Khafagy S, Morishita M, Isowa K, Imai J and Takayama K: Effect of cell-penetrating peptides on the nasal absorption of insulin. J Control Release. 133:103–108. 2009. View Article : Google Scholar

10 

Skotland T, Iversen TG, Torgersen ML and Sandvig K: Cell-penetrating peptides: Possibilities and challenges for drug delivery in vitro and in vivo. Molecules. 20:13313–13323. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Frankel AD and Pabo CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55:1189–1193. 1988. View Article : Google Scholar : PubMed/NCBI

12 

Green M and Loewenstein PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 55:1179–1188. 1988. View Article : Google Scholar : PubMed/NCBI

13 

Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine WA and Rosen CA: Structural and functional characterization of human immunodeficiency virus tat protein. J Virol. 63:1–8. 1989.PubMed/NCBI

14 

Derossi D, Joliot AH, Chassaing G and Prochiantz A: The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 269:10444–10450. 1994.PubMed/NCBI

15 

Milletti F: Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov Today. 17:850–860. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Derossi D, Chassaing G and Prochiantz A: Trojan peptides: The penetratin system for intracellular delivery. Trends Cell Biol. 8:84–87. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Pooga M, Hällbrink M, Zorko M and Langel U: Cell penetration by transportan. FASEB J. 12:67–77. 1998.PubMed/NCBI

18 

Kwon SJ, Han K, Jung S, Lee JE, Park S, Cheon YP and Lim HJ: Transduction of the MPG-tagged fusion protein into mammalian cells and oocytes depends on amiloride-sensitive endocytic pathway. BMC Biotechnol. 9:732009. View Article : Google Scholar : PubMed/NCBI

19 

Mo RH, Zaro JL and Shen WC: Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Mol Pharm. 9:299–309. 2012. View Article : Google Scholar :

20 

Bechara C, Pallerla M, Burlina F, Illien F, Cribier S and Sagan S: Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion. Cell Mol Life Sci. 72:809–820. 2015. View Article : Google Scholar

21 

Melikov K, Hara A, Yamoah K, Zaitseva E, Zaitsev E and Chernomordik LV: Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium. Biochem J. 471:221–230. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Zavaglia D, Favrot MC, Eymin B, Tenaud C and Coll JL: Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein. Gene Ther. 10:314–325. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Lin YZ, Yao SY, Veach RA, Torgerson TR and Hawiger J: Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem. 270:14255–14258. 1995. View Article : Google Scholar : PubMed/NCBI

24 

Oehlke J, Krause E, Wiesner B, Beyermann M and Bienert M: Extensive cellular uptake into endothelial cells of an amphipathic beta-sheet forming peptide. FEBS Lett. 415:196–199. 1997. View Article : Google Scholar : PubMed/NCBI

25 

Rousselle C, Clair P, Temsamani J and Scherrmann JM: Improved brain delivery of benzylpenicillin with a peptide-vector-mediated strategy. J Drug Target. 10:309–315. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Järver P and Langel U: Cell-penetrating peptides - a brief introduction. Biochim Biophys Acta. 1758:260–263. 2006. View Article : Google Scholar

27 

Meade BR and Dowdy SF: Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev. 59:134–140. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Simeoni F, Morris MC, Heitz F and Divita G: Insight into the mechanism of the peptide-based gene delivery system MPG: Implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 31:2717–2724. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Muñoz-Morris MA, Heitz F, Divita G and Morris MC: The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Biochem Biophys Res Commun. 355:877–882. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Gros E, Deshayes S, Morris MC, Aldrian-Herrada G, Depollier J, Heitz F and Divita G: A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta. 1758:384–393. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Deshayes S, Morris M, Heitz F and Divita G: Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev. 60:537–547. 2008. View Article : Google Scholar

32 

Guo Z, Peng H, Kang J and Sun D: Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed Rep. 4:528–534. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Mäger I, Langel K, Lehto T, Eiríksdóttir E and Langel U: The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochim Biophys Acta. 1818:502–511. 2012. View Article : Google Scholar

34 

Dutta D and Donaldson JG: Search for inhibitors of endocytosis: Intended specificity and unintended consequences. Cell Logist. 2:203–208. 2012. View Article : Google Scholar

35 

Tomoda H, Kishimoto Y and Lee YC: Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages. J Biol Chem. 264:15445–15450. 1989.PubMed/NCBI

36 

Bode SA1, Thévenin M, Bechara C, Sagan S, Bregant S, Lavielle S, Chassaing G and Burlina F: Self-assembling mini cell-penetrating peptides enter by both direct translocation and glycosaminoglycan-dependent endocytosis. Chem Commun (Camb). 48:7179–7181. 2012. View Article : Google Scholar

37 

Cleal K, He L, Watson PD and Jones AT: Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles. Curr Pharm Des. 19:2878–2894. 2013. View Article : Google Scholar

38 

Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G and Prochiantz A: Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem. 271:18188–18193. 1996. View Article : Google Scholar : PubMed/NCBI

39 

Matsuzaki K, Sugishita K and Miyajima K: Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett. 449:221–224. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Deshayes S, Plénat T, Aldrian-Herrada G, Divita G, Le Grimellec C and Heitz F: Primary amphipathic cell-penetrating peptides: Structural requirements and interactions with model membranes. Biochemistry. 43:7698–7706. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Regberg J, Eriksson JN and Langel U: Cell-penetrating peptides: From cell cultures to in vivo applications. Front Biosci (Elite Ed). 5:509–516. 2013. View Article : Google Scholar

42 

Safety and efficacy study of AVI-5126 when used on vein grafts before use in heart by-pass graft surgery (CABG). https://clinicaltrials.gov/ct2/show/NCT00451256. 2009

43 

Safety and efficacy study of KAI-1678 to treat pain in subjects with postherpetic neuralgia. https://clinicaltrials.gov/ct2/show/NCT01106716. 2010

44 

Safety and efficacy study of KAI-1678 to treat pain in subjects with spinal cord injury. https://clinicaltrials.gov/ct2/show/NCT01135108. 2010

45 

Safety and efficacy study of KAI-1678 to treat subjects with postoperative pain. https://clinicaltrials.gov/ct2/show/NCT01015235. 2011

46 

Efficacy of AM-111 in patients with acute sensorineural hearing loss. https://clinicaltrials.gov/ct2/show/NCT00802425. 2014

47 

Safety and efficacy study of RT001 to treat moderate to severe lateral canthal lines. https://clinicaltrials.gov/ct2/show/NCT00888914. 2013

48 

Safety, tolerability and PK of a single iv infusion of 10, 40, and 80 µg/kg XG-102 administered to healthy volunteers. https://clinicaltrials.gov/ct2/show/NCT01570205. 2012

49 

Efficacy and safety of XG-102 in reduction of post-cataract surgery intraocular inflammation. https://clinicaltrials.gov/ct2/show/NCT02235272. 2015

50 

AM-111 in the treatment of acute inner ear hearing loss (HEALOS). https://clinicaltrials.gov/ct2/show/NCT02561091. 2014

51 

Efficacy and safety of AM-111 as acute sudden sensorineural hearing loss treatment (ASSENT). https://clinicaltrials.gov/ct2/show/NCT02809118. 2017

52 

Bakhtiyari S, Haghani K, Basati G and Karimfar MH: siRNA therapeutics in the treatment of diseases. Ther Deliv. 4:45–57. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Nakase I, Tanaka G and Futaki S: Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Mol Biosyst. 9:855–861. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Wierzbicki PM, Kogut-Wierzbicka M, Ruczynski J, Siedlecka-Kroplewska K, Kaszubowska L, Rybarczyk A, Alenowicz M, Rekowski P and Kmiec Z: Protein and siRNA delivery by transportan and transportan 10 into colorectal cancer cell lines. Folia Histochem Cytobiol. 52:270–280. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, Barnes PJ, Sproat BS, Gait MJ and Lindsay MA: Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem. 18:1450–1459. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Turner JJ, Jones S, Fabani MM, Ivanova G, Arzumanov AA and Gait MJ: RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol Dis. 38:1–7. 2007. View Article : Google Scholar

57 

Muratovska A and Eccles MR: Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558:63–68. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Davidson TJ, Harel S, Arboleda VA, Prunell GF, Shelanski ML, Greene LA and Troy CM: Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci. 24:10040–10046. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Chiu YL, Ali A, Chu CY, Cao H and Rana TM: Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 11:1165–1175. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Turner JJ, Williams D, Owen D and Gait MJ: Disulfide conjugation of peptides to oligonucleotides and their analogs. Current protocols in nucleic acid chemistry. Chapter 4: Unit 4.28. 2006. View Article : Google Scholar

61 

Huang YW, Lee HJ, Tolliver LM and Aronstam RS: Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: Opportunities and challenges. Biomed Res Int. 2015:8340792015.PubMed/NCBI

62 

Crowet JM, Lins L, Deshayes S, Divita G, Morris M, Brasseur R and Thomas A: Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo. Biochim Biophys Acta. 1828:499–509. 2013. View Article : Google Scholar

63 

Crombez L, Morris MC, Dufort S, Aldrian-Herrada G, Nguyen Q, Mc Master G, Coll JL, Heitz F and Divita G: Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res. 37:4559–4569. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Kadkhodayan S, Jafarzade BS, Sadat SM, Motevalli F, Agi E and Bolhassani A: Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett. 188:38–45. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Bivalkar-Mehla S, Mehla R and Chauhan A: Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection. J Drug Target. 25:307–319. 2017. View Article : Google Scholar

66 

Kato T, Yamashita H, Misawa T, Nishida K, Kurihara M, Tanaka M, Demizu Y and Oba M: Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorg Med Chem. 24:2681–2687. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Rudolph C, Plank C, Lausier J, Schillinger U, Müller RH and Rosenecker J: Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J Biol Chem. 278:11411–11418. 2003. View Article : Google Scholar : PubMed/NCBI

68 

Rádis-Baptista G, Campelo IS, Morlighem JR, Melo LM and Freitas VJ: Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol. 252:15–26. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Nagy A: Cre recombinase: The universal reagent for genome tailoring. Genesis. 26:99–109. 2000. View Article : Google Scholar : PubMed/NCBI

70 

Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J and Ruley HE: Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol. 19:929–933. 2001. View Article : Google Scholar : PubMed/NCBI

71 

Wadia JS, Stan RV and Dowdy SF: Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 10:310–315. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Hashimoto M, Taniguchi M, Yoshino S, Arai S and Sato K: S Phase-preferential Cre-recombination in mammalian cells revealed by HIV-TAT-PTD-mediated protein transduction. J Biochem. 143:87–95. 2008. View Article : Google Scholar

73 

Xu Y, Liu S, Yu G, Chen J, Chen J, Xu X, Wu Y, Zhang A, Dowdy SF and Cheng G: Excision of selectable genes from transgenic goat cells by a protein transducible TAT-Cre recombinase. Gene. 419:70–74. 2008. View Article : Google Scholar : PubMed/NCBI

74 

De Coupade C, Fittipaldi A, Chagnas V, Michel M, Carlier S, Tasciotti E, Darmon A, Ravel D, Kearsey J, Giacca M, et al: Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochem J. 390:407–418. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Gitton Y, Tibaldi L, Dupont E, Levi G and Joliot A: Efficient CPP-mediated Cre protein delivery to developing and adult CNS tissues. BMC Biotechnol. 9:402009. View Article : Google Scholar : PubMed/NCBI

76 

Sonsteng KM, Prigge JR, Talago EA, June RK and Schmidt EE: Hydrodynamic delivery of Cre protein to lineage-mark or time-stamp mouse hepatocytes in situ. PLoS One. 9:e912192014. View Article : Google Scholar : PubMed/NCBI

77 

Gaj T, Guo J, Kato Y, Sirk SJ and Barbas CF III: Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods. 9:805–807. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Chen Z, Jaafar L, Agyekum DG, Xiao H, Wade MF, Kumaran RI, Spector DL, Bao G, Porteus MH, Dynan WS, et al: Receptor-mediated delivery of engineered nucleases for genome modification. Nucleic Acids Res. 41:e1822013. View Article : Google Scholar : PubMed/NCBI

79 

Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK and Cathomen T: DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. 16:352–358. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Pruett-Miller SM, Reading DW, Porter SN and Porteus MH: Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet. 5:e10003762009. View Article : Google Scholar : PubMed/NCBI

81 

Puria R, Sahi S and Nain V: HER2+ breast cancer therapy: By CPP-ZFN mediated targeting of mTOR? Technol Cancer Res Treat. 11:175–180. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Nain V, Sahi S and Verma A: CPP-ZFN: A potential DNA-targeting anti-malarial drug. Malar J. 9:2582010. View Article : Google Scholar : PubMed/NCBI

83 

Liu J, Gaj T, Patterson JT, Sirk SJ and Barbas CF III: Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. 9:e857552014. View Article : Google Scholar : PubMed/NCBI

84 

Horvath P and Barrangou R: CRISPR/Cas, the immune system of bacteria and archaea. Science. 327:167–170. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Selle K and Barrangou R: Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol. 23:225–232. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Harms DW, Quadros RM, Seruggia D, Ohtsuka M, Takahashi G, Montoliu L and Gurumurthy CB: Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet. 83:15.7.1–15.7.27. 2014. View Article : Google Scholar

87 

Bortesi L and Fischer R: The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 33:41–52. 2015. View Article : Google Scholar

88 

Park A, Hong P, Won ST, Thibault PA, Vigant F, Oguntuyo KY, Taft JD and Lee B: Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev. 3:160572016. View Article : Google Scholar : PubMed/NCBI

89 

Suresh B, Ramakrishna S and Kim H: Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing. Methods Mol Biol. 1507:81–94. 2017. View Article : Google Scholar

90 

Langel U: Handbook of Cell-Penetrating Peptides. 2nd edition. Taylor and Francis Group; 2006, View Article : Google Scholar

91 

Saar K, Lindgren M, Hansen M, Eiríksdóttir E, Jiang Y, Rosenthal-Aizman K, Sassian M and Langel U: Cell-penetrating peptides: A comparative membrane toxicity study. Anal Biochem. 345:55–65. 2005. View Article : Google Scholar : PubMed/NCBI

92 

Suhorutsenko J, Oskolkov N, Arukuusk P, Kurrikoff K, Eriste E, Copolovici DM and Langel U: Cell-penetrating peptides, PepFects, show no evidence of toxicity and immunogenicity in vitro and in vivo. Bioconjug Chem. 22:2255–2262. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Amantana A, Moulton HM, Cate ML, Reddy MT, Whitehead T, Hassinger JN, Youngblood DS and Iversen PL: Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjug Chem. 18:1325–1331. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Maiolo JR, Ferrer M and Ottinger EA: Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim Biophys Acta. 1712:161–172. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Cox DB, Platt RJ and Zhang F: Therapeutic genome editing: Prospects and challenges. Nat Med. 21:121–131. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, et al: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 34:328–333. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gagat M, Zielińska W and Grzanka A: Cell-penetrating peptides and their utility in genome function modifications (Review). Int J Mol Med 40: 1615-1623, 2017.
APA
Gagat, M., Zielińska, W., & Grzanka, A. (2017). Cell-penetrating peptides and their utility in genome function modifications (Review). International Journal of Molecular Medicine, 40, 1615-1623. https://doi.org/10.3892/ijmm.2017.3172
MLA
Gagat, M., Zielińska, W., Grzanka, A."Cell-penetrating peptides and their utility in genome function modifications (Review)". International Journal of Molecular Medicine 40.6 (2017): 1615-1623.
Chicago
Gagat, M., Zielińska, W., Grzanka, A."Cell-penetrating peptides and their utility in genome function modifications (Review)". International Journal of Molecular Medicine 40, no. 6 (2017): 1615-1623. https://doi.org/10.3892/ijmm.2017.3172
Copy and paste a formatted citation
x
Spandidos Publications style
Gagat M, Zielińska W and Grzanka A: Cell-penetrating peptides and their utility in genome function modifications (Review). Int J Mol Med 40: 1615-1623, 2017.
APA
Gagat, M., Zielińska, W., & Grzanka, A. (2017). Cell-penetrating peptides and their utility in genome function modifications (Review). International Journal of Molecular Medicine, 40, 1615-1623. https://doi.org/10.3892/ijmm.2017.3172
MLA
Gagat, M., Zielińska, W., Grzanka, A."Cell-penetrating peptides and their utility in genome function modifications (Review)". International Journal of Molecular Medicine 40.6 (2017): 1615-1623.
Chicago
Gagat, M., Zielińska, W., Grzanka, A."Cell-penetrating peptides and their utility in genome function modifications (Review)". International Journal of Molecular Medicine 40, no. 6 (2017): 1615-1623. https://doi.org/10.3892/ijmm.2017.3172
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team