Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2019 Volume 43 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2019 Volume 43 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5

  • Authors:
    • Chenjun Zhang
    • Jide Lu
    • Hairong Wang
    • Yuan Qi
    • Ying Kan
    • Zhiru Ge
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1951-1960
    |
    Published online on: March 12, 2019
       https://doi.org/10.3892/ijmm.2019.4128
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Autophagy and apoptosis are associated with cardiovascular diseases. Emerging evidence shows that microRNAs (miRs) are critical in the development of pathological processes underlying cardiovascular diseases by regulating the induction of apoptosis and autophagy. The present study aimed to investigate the role of miR‑103a‑3p in cardiomyocyte injury through autophagy and apoptosis. H9c2 cells were cultured under hypoxia and reoxygenation (H/R) conditions and were used to mimic cells under ischemia. The transfection of cells with miR‑103a‑3p (mimics and inhibitors) was performed to examine its function in cardiomyocytes. The expression levels of miR‑103a‑3p were evaluated by reverse transcription‑quantitative polymerase chain reaction analysis. Cell viability was determined using an MTT assay, and the lactate dehydrogenase assay (LDH) was used to investigate cell injury. The expression levels of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein, Beclin‑1, autophagy‑related 5 (Atg5), cleaved caspase‑3 and cleaved caspase‑9 were detected using western blotting. Immunofluorescence assays were performed to detect the expression of LC3 as a marker of autophagy. The target gene of miR‑103a‑3p was identified using dual‑luciferase reporter assays. The results revealed that the expression levels of miR‑103a‑3p were significantly downregulated in cardiomyocytes under H/R conditions. Injury of the cardiomyocytes was evaluated under H/R conditions. Following transfection of the cells with miR‑103a‑3p inhibitors, cell injury was increased, as determined by LDH and MTT assays. The expression levels of apoptotic proteins were consistent with the results obtained in the LDH and cell viability assays. The induction of autophagy was increased in cells under H/R conditions and cells with miR‑103a‑3p inhibitor transfection, whereas the induction of autophagy was decreased in cells transfected with miR‑103a‑3p mimics. In addition, the data indicated that miR‑103a‑3p directly targeted Atg5, which regulated the induction of autophagy and apoptosis. Taken together, these findings indicate that, following the inhibition of miR‑103a‑3p, Atg5 promotes autophagy and apoptosis in cardiomyocytes by directly targeting Atg5. Therefore, miR‑103a‑3p can be considered a potential therapeutic target for myocardial ischemia.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al: Heart disease and stroke statistics-2017 update: A report from the american heart association. Circulation. 135. pp. e146–e603. 2017, View Article : Google Scholar

2 

Bochaton T and Ovize M: Circadian rhythm and ischaemia-reper-fusion injury. Lancet. 391:8–9. 2018. View Article : Google Scholar

3 

Montaigne D, Marechal X, Modine T, Coisne A, Mouton S, Fayad G, Ninni S, Klein C, Ortmans S, Seunes C, et al: Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: A single-centre propensity-matched cohort study and a randomised study. Lancet. 391:59–69. 2018. View Article : Google Scholar

4 

Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Ghavami S, Gupta S, Ambrose E, Hnatowich M, Freed DH and Dixon IM: Autophagy and heart disease: Implications for cardiac ischemia-reperfusion damage. Curr Mol Med. 14:616–629. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Nishida K, Kyoi S, Yamaguchi O, Sadoshima J and Otsu K: The role of autophagy in the heart. Cell Death Differ. 16:31–38. 2009. View Article : Google Scholar

7 

Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA and Hill JA: Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 117:1782–1793. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Lavandero S, Troncoso R, Rothermel BA, Martinet W, Sadoshima J and Hill JA: Cardiovascular autophagy: Concepts, controversies, and perspectives. Autophagy. 9:1455–1466. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Moss EG: MicroRNAs: Hidden in the genome. Curr Biol. 12:R138–R140. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Ambros V: microRNAs: Tiny regulators with great potential. Cell. 107:823–826. 2001. View Article : Google Scholar

12 

Salem M, O'Brien JA, Bernaudo S, Shawer H, Ye G, Brkić J, Amleh A, Vanderhyden BC, Refky B, Yang BB, et al: miRNA-590-3p promotes ovarian cancer growth and metastasis via a novel FOXA2-versican pathway. Cancer Res. 78:4175–4190. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Sun F, Yu M, Yu J, Liu Z, Zhou X, Liu Y, Ge X, Gao H, Li M, Jiang X, et al: miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis. 9:5222018. View Article : Google Scholar : PubMed/NCBI

14 

Zitzer NC, Snyder K, Meng X, Taylor PA, Efebera YA, Devine SM, Blazar BR, Garzon R and Ranganathan P: MicroRNA-155 modulates acute graft-versus-host disease by impacting T cell expansion, migration, and effector function. J Immunol. 200:4170–4179. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S, Serocki M, Dobrucki LW, Collawn JF, Kalinowski L and Bartoszewski R: eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis. 21:711–724. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Voshall A, Kim EJ, Ma X, Yamasaki T, Moriyama EN and Cerutti H: miRNAs in the alga Chlamydomonas reinhardtii are not phylogenetically conserved and play a limited role in responses to nutrient deprivation. Sci Rep. 7:54622017. View Article : Google Scholar : PubMed/NCBI

17 

Wei S, Xue J, Sun B, Zou Z, Chen C, Liu Q and Zhang A: miR-145 via targeting ERCC2 is involved in arsenite-induced DNA damage in human hepatic cells. Toxicol Lett. 295:220–228. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Wang X, Ha T, Hu Y, Lu C, Liu L, Zhang X, Kao R, Kalbfleisch J, Williams D and Li C: MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression. Oncotarget. 7:86926–86936. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Bartman CM, Oyama Y, Brodsky K, Khailova L, Walker L, Koeppen M and Eckle T: Intense light-elicited upregulation of miR-21 facilitates glycolysis and cardioprotection through Per2-dependent mechanisms. PLoS One. 12:e01762432017. View Article : Google Scholar : PubMed/NCBI

20 

Weber DG, Casjens S, Johnen G, Bryk O, Raiko I, Pesch B, Kollmeier J, Bauer TT and Brüning T: Combination of MiR-103a-3p and mesothelin improves the biomarker performance of malignant mesothelioma diagnosis. PLoS One. 9:e1144832014. View Article : Google Scholar : PubMed/NCBI

21 

Zhong Z, Lv M and Chen J: Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 6:309192016. View Article : Google Scholar : PubMed/NCBI

22 

Hu X, Miao J, Zhang M, Wang X, Wang Z, Han J, Tong D and Huang C: miRNA-103a-3p promotes human gastric cancer cell proliferation by targeting and suppressing ATF7 in vitro. Mol Cells. 41:390–400. 2018.PubMed/NCBI

23 

Kang S, Shin KD, Kim JH and Chung T: Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis. Plant Cell Rep. 37:653–664. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M and Ohsumi Y: A protein conjugation system essential for autophagy. Nature. 395:395–398. 1998. View Article : Google Scholar : PubMed/NCBI

25 

Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ and Rubinsztein DC: Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci. 121:1649–1660. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H and Levine B: Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 402:672–676. 1999. View Article : Google Scholar : PubMed/NCBI

27 

Sun T, Li X, Zhang P, Chen WD, Zhang HL, Li DD, Deng R, Qian XJ, Jiao L, Ji J, et al: Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 6:72152015. View Article : Google Scholar : PubMed/NCBI

28 

Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y and Shimizu S: Discovery of Atg5/Atg7-independent alternative macroau-tophagy. Nature. 461:654–658. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

31 

Bainey KR and Armstrong PW: Clinical perspectives on reper-fusion injury in acute myocardial infarction. Am Heart J. 167:637–645. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Tian ZQ, Jiang H and Lu ZB: MiR-320 regulates cardiomyocyte apoptosis induced by ischemia-reperfusion injury by targeting AKIP1. Cell Mol Biol Lett. 23:412018. View Article : Google Scholar : PubMed/NCBI

33 

Di Y, Lei Y, Yu F, Changfeng F, Song W and Xuming M: MicroRNAs expression and function in cerebral ischemia reper-fusion injury. J Mol Neurosci. 53:242–250. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Liu X, Deng Y, Xu Y, Jin W and Li H: MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol. 118:133–146. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Yu M, Xue Y, Zheng J, Liu X, Yu H, Liu L, Li Z and Liu Y: Linc00152 promotes malignant progression of glioma stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway. Mol Cancer. 16:1102017. View Article : Google Scholar : PubMed/NCBI

36 

Onrat ST, Onrat E, Ercan Onay E, Yalim Z and Avşar A: The genetic determination of the differentiation between ischemic dilated cardiomyopathy and idiopathic dilated cardiomyopathy. Genet Test Mol Biomarkers. 22:644–651. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Chen L, Li G, Peng F, Jie X, Dongye G, Cai K, Feng R, Li B, Zeng Q, Lun K, et al: The induction of autophagy against mitochondria-mediated apoptosis in lung cancer cells by a ruthenium (II) imidazole complex. Oncotarget. 7:80716–80734. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Zhang Q, Xiang J, Wang X, Liu H, Hu B, Feng M and Fu Q: Beta(2)-adrenoceptor agonist clenbuterol reduces infarct size and myocardial apoptosis after myocardial ischaemia/reperfusion in anaesthetized rats. Br J Pharmacol. 160:1561–1572. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, Ohori K, Hotta H, Terashima Y and Shimamoto K: Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol. 43:564–570. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Mazel S, Burtrum D and Petrie HT: Regulation of cell division cycle progression by bcl-2 expression: A potential mechanism for inhibition of programmed cell death. J Exp Med. 183:2219–2226. 1996. View Article : Google Scholar : PubMed/NCBI

41 

Carlsson SR and Simonsen A: Membrane dynamics in autophagosome biogenesis. J Cell Sci. 128:193–205. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Chen C, Chen W, Li Y, Dong Y, Teng X, Nong Z, Pan X, Lv L, Gao Y and Wu G: Hyperbaric oxygen protects against myocardial reperfusion injury via the inhibition of inflammation and the modulation of autophagy. Oncotarget. 8:111522–111534. 2017. View Article : Google Scholar

43 

Wu Y, Fan W, Huang D and Sun X: Possible intermediary role of autophagy in serum albumin decrease-associated cardiovascular events among patients with coronary heart disease. Int J Cardiol. 250:642018. View Article : Google Scholar

44 

Chen L, Wang FY, Zeng ZY, Cui L, Shen J, Song XW, Li P, Zhao XX and Qin YW: MicroRNA-199a acts as a potential suppressor of cardiomyocyte autophagy through targeting Hspa5. Oncotarget. 8:63825–63834. 2017.PubMed/NCBI

45 

Huang Z, Wu S, Kong F, Cai X, Ye B, Shan P and Huang W: MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med. 21:467–474. 2017. View Article : Google Scholar

46 

Shang YY, Yao M, Zhou ZW, Jian-Cui Li-Xia Hu RY, Yu YY, Qiong-Gao, Biao-Yang, Liu YX, et al: Alisertib promotes apoptosis and autophagy in melanoma through p38 MAPK-mediated aurora a signaling. Oncotarget. 8:107076–107088. 2017. View Article : Google Scholar :

47 

Cheng Y and Yang JM: Autophagy and apoptosis: Rivals or mates? Chin J Cancer. 32:103–105. 2013.PubMed/NCBI

48 

Malhotra R, Warne JP, Salas E, Xu AW and Debnath J: Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy. 11:145–154. 2015.PubMed/NCBI

49 

Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, et al: Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem. 287:12455–12468. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Park JH and Shin C: MicroRNA-directed cleavage of targets: Mechanism and experimental approaches. BMB Rep. 47:417–423. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Arakawa S, Tsujioka M, Yoshida T, Tajima-Sakurai H, Nishida Y, Matsuoka Y, Yoshino I, Tsujimoto Y and Shimizu S: Role of Atg5-dependent cell death in the embryonic development of Bax/Bak double-knockout mice. Cell Death Differ. 24:1598–1608. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Luo S and Rubinsztein DC: Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ. 14:1247–1250. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang C, Lu J, Wang H, Qi Y, Kan Y and Ge Z: Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. Int J Mol Med 43: 1951-1960, 2019.
APA
Zhang, C., Lu, J., Wang, H., Qi, Y., Kan, Y., & Ge, Z. (2019). Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. International Journal of Molecular Medicine, 43, 1951-1960. https://doi.org/10.3892/ijmm.2019.4128
MLA
Zhang, C., Lu, J., Wang, H., Qi, Y., Kan, Y., Ge, Z."Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5". International Journal of Molecular Medicine 43.5 (2019): 1951-1960.
Chicago
Zhang, C., Lu, J., Wang, H., Qi, Y., Kan, Y., Ge, Z."Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5". International Journal of Molecular Medicine 43, no. 5 (2019): 1951-1960. https://doi.org/10.3892/ijmm.2019.4128
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang C, Lu J, Wang H, Qi Y, Kan Y and Ge Z: Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. Int J Mol Med 43: 1951-1960, 2019.
APA
Zhang, C., Lu, J., Wang, H., Qi, Y., Kan, Y., & Ge, Z. (2019). Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. International Journal of Molecular Medicine, 43, 1951-1960. https://doi.org/10.3892/ijmm.2019.4128
MLA
Zhang, C., Lu, J., Wang, H., Qi, Y., Kan, Y., Ge, Z."Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5". International Journal of Molecular Medicine 43.5 (2019): 1951-1960.
Chicago
Zhang, C., Lu, J., Wang, H., Qi, Y., Kan, Y., Ge, Z."Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5". International Journal of Molecular Medicine 43, no. 5 (2019): 1951-1960. https://doi.org/10.3892/ijmm.2019.4128
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team