Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2020 Volume 45 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2020 Volume 45 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis

  • Authors:
    • Xin Wang
    • Xinxin Liu
    • Nian Liu
    • Hongxiang Chen
  • View Affiliations / Copyright

    Affiliations: Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 93-102
    |
    Published online on: October 31, 2019
       https://doi.org/10.3892/ijmm.2019.4392
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Psoriasis is one of the most common immune‑mediated inflammatory diseases of the skin. The identification of the pivotal molecular mechanisms responsible for the disease pathogenesis may lead to the development of novel therapeutic options. The present study aimed to identify pivotal differentially expressed genes (DEGs) and methylated DEGs in psoriasis. The raw data from gene microarrays were obtained from the Gene Expression Omnibus database. The data were processed using packages in Bioconductor. In total, 352 upregulated and 137 downregulated DEGs were identified. The upregulated DEGs were primarily enriched in the ‘innate immune defense’ response and the ‘cell cycle’. The downregulated DEGs were primarily enriched in ‘cell adhesion’ and ‘tight junction pathways’. A total of 95 methylated DEGs were identified, which were significantly enriched in the ‘interleukin (IL)‑17 signaling pathway’ and the ‘response to interferon’. Based on a comprehensive evaluation of all algorithms in cytoHubba, the key epigenetic‑associated hub genes (S100A9, SELL, FCGR3B, MMP9, S100A7, IL7R, IRF7, CCR7, IFI44, CXCL1 and LCN2) were screened out. In order to further validate these genes, the present study constructed a model of imiquimod (IMQ)‑induced psoriasiform dermatitis using mice. The levels of these hub genes were increased in the IMQ group. The knockdown of methylation‑regulating enzyme ten‑eleven translocation (TET) 2 expression in mice attenuated the expression levels of S100A9, SELL, IL7R, MMP9, CXCL1 and LCN2. Furthermore, the hydroxymethylated level of S100A9 was highly expressed in the IMQ group and was significantly decreased by TET2 deficiency in mice. On the whole, using an integrative system bioinformatics approach, the present study identified a series of characteristic enrichment pathways and key genes that may serve as potential biomarkers in psoriasis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Raychaudhuri SK, Maverakis E and Raychaudhuri SP: Diagnosis and classification of psoriasis. Autoimmun Rev. 13:490–495. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Duffin KC, Chandran V, Gladman DD, Krueger GG, Elder JT and Rahman P: Genetics of psoriasis and psoriatic arthritis: Update and future direction. J Rheumatol. 35:1449–1453. 2008.PubMed/NCBI

3 

Fogel O, Richard-Miceli C and Tost J: Epigenetic changes in chronic inflammatory diseases. Adv Protein Chem Struct Biol. 106:139–189. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Griffiths CE: The immunological basis of psoriasis. J Eur Acad Dermatol Venereol. 17(Suppl 2): S1–S5. 2003. View Article : Google Scholar

5 

Boehncke WH and Schön MP: Psoriasis. Lancet. 386:983–994. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Turek-Plewa J and Jagodziński PP: The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 10:631–647. 2005.PubMed/NCBI

7 

Ichiyama K, Chen T, Wang X, Yan X, Kim BS, Tanaka S, Ndiaye-Lobry D, Deng Y, Zou Y, Zheng P, et al: The methyl-cytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity. 42:613–626. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Solary E, Bernard OA, Tefferi A, Fuks F and Vainchenker W: The ten-eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 28:485–496. 2014. View Article : Google Scholar

9 

Wang X, Liu X, Duan X, Zhu K, Zhang S, Gan L, Liu N, Jaypaul H, Makamure JT, Ming Z and Chen H: Ten-eleven translocation-2 regulates DNA hydroxymethylation status and psoriasiform dermatitis progression in mice. Acta Derm Venereol. 98:585–593. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Roberson ED, Liu Y, Ryan C, Joyce CE, Duan S, Cao L, Martin A, Liao W, Menter A and Bowcock AM: A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol. 132:583–592. 2012. View Article : Google Scholar

11 

Chen L, Sun F, Yang X, Jin Y, Shi M, Wang L, Shi Y, Zhan C and Wang Q: Correlation between RNA-Seq and microarrays results using TCGA data. Gene. 628:200–204. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Tejasvi T, Johnston A, Ding J, Stuart PE, Xing X, Kochkodan JJ, et al: Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J Invest Dermatol. 134:1828–1838. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Liu J, Li H, Sun L, Wang Z, Xing C and Yuan Y: Aberrantly methylated-differentially expressed genes and pathways in colorectal cancer. Cancer Cell Int. 17:752017. View Article : Google Scholar : PubMed/NCBI

14 

Huo X, Sun H, Cao D, Yang J, Peng P, Yu M and Shen K: Identification of prognosis markers for endometrial cancer by integrated analysis of DNA methylation and RNA-Seq data. Sci Rep. 9:99242019. View Article : Google Scholar : PubMed/NCBI

15 

Gautier L, Cope L, Bolstad BM and Irizarry RA: Affy-analysis of affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

17 

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI

18 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The gene ontology consortium Nat Genet. 25:25–29. 2000.

19 

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al: The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39:D561–D568. 2011. View Article : Google Scholar :

20 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and Lin CY: cyto-Hubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 8(Suppl 4): S112014. View Article : Google Scholar

21 

van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP and Lubberts E: Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 182:5836–5845. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Schukur L, Geering B, Charpin-El Hamri G and Fussenegger M: Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci Transl Med. 7:318ra2012015. View Article : Google Scholar : PubMed/NCBI

23 

Taves S, Berta T, Liu DL, Gan S, Chen G, Kim YH, Van de Ven T, Laufer S and Ji RR: Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord. Brain Behav Immun. 55:70–81. 2016. View Article : Google Scholar

24 

Gargiulo S, Greco A, Gramanzini M, Esposito S, Affuso A, Brunetti A and Vesce G: Mice anesthesia, analgesia, and care, part I: Anesthetic considerations in preclinical research. ILAR J. 53:E55–E69. 2012. View Article : Google Scholar

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

26 

Dong B, Wang G, Yao J, Yuan P, Kang W, Zhi L and He X: Predicting novel genes and pathways associated with osteosar-coma by using bioinformatics analysis. Gene. 628:32–37. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Mabuchi T and Hwang ST: ACKR2: Nature's decoy receptor lures unsuspecting chemokines in psoriasis. J Invest Dermatol. 137:7–11. 2017. View Article : Google Scholar

28 

Reich K: The concept of psoriasis as a systemic inflammation: Implications for disease management. J Eur Acad Dermatol Venereol. 26(Suppl 2): S3–S11. 2012. View Article : Google Scholar

29 

Zhu H, Lou F, Yin Q, Gao Y, Sun Y, Bai J, Xu Z, Liu Z, Cai W, Ke F, et al: RIG-I antiviral signaling drives interleukin-23 production and psoriasis-like skin disease. EMBO Mol Med. 9:589–604. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Colombo M, Raposo G and Théry C: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Pelletier F, Garnache-Ottou F, Angelot F, Biichlé S, Vidal C, Humbert P, Saas P, Seillès E and Aubin F: Increased levels of circulating endothelial-derived microparticles and small-size platelet-derived microparticles in psoriasis. J Invest Dermatol. 131:1573–1576. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Pelletier F, Garnache-Ottou F, Biichlé S, Vivot A, Humbert P, Saas P, Seillès E and Aubin F: Effects of anti-TNF-α agents on circulating endothelial-derived and platelet-derived micropar-ticles in psoriasis. Exp Dermatol. 23:924–925. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Li J, Chen C, Bi X, Zhou C, Huang T, Ni C, Yang P, Chen S, Ye M and Duan S: DNA methylation of CMTM3, SSTR2, and MDFI genes in colorectal cancer. Gene. 630:1–7. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Lowes MA, Russell CB, Martin DA, Towne JE and Krueger JG: The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 34:174–181. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ and Geczy CL: Functions of S100 proteins. Curr Mol Med. 13:24–57. 2013. View Article : Google Scholar :

36 

Madsen P, Rasmussen HH, Leffers H, Honoré B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B, et al: Molecular cloning, occurrence, and expression of a novel partially secreted protein 'psoriasin' that is highly up-regulated in psoriatic skin. J Invest Dermatol. 97:701–712. 1991. View Article : Google Scholar : PubMed/NCBI

37 

Gschwandtner M, Zhong S, Tschachler A, Mlitz V, Karner S, Elbe-Bürger A and Mildner M: Fetal human keratinocytes produce large amounts of antimicrobial peptides: Involvement of histone-methylation processes. J Invest Dermatol. 134:2192–2201. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Monhian N, Jewett BS, Baker SR and Varani J: Matrix metal-loproteinase expression in normal skin associated with basal cell carcinoma and in distal skin from the same patients. Arch Facial Plast Surg. 7:238–243. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Głażewska EK, Niczyporuk M, Ławicki S, Szmitkowski M, Donejko M, Zajkowska M, Będkowska GE and Przylipiak A: Narrowband ultraviolet B light treatment changes plasma concentrations of MMP-3, MMP-9 and TIMP-3 in psoriatic patients. Ther Clin Risk Manag. 13:575–582. 2017. View Article : Google Scholar :

40 

Chicoine E, Estève PO, Robledo O, Van Themsche C, Potworowski EF and St-Pierre Y: Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression. Biochem Biophys Res Commun. 297:765–772. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Wu Y, Zhang Z, Tao L, Chen G, Liu F, Wang T, Xue F, Chen Y, He L, Zheng J and Liu Y: A high copy number of FCGR3B is associated with psoriasis vulgaris in Han Chinese. Dermatology. 229:70–75. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Lee SK, Jeon EK, Kim YJ, Seo SH, Kim CD, Lim JS and Lee JH: A global gene expression analysis of the peripheral blood mono-nuclear cells reveals the gene expression signature in psoriasis. Ann Dermatol. 21:237–242. 2009. View Article : Google Scholar

43 

Raposo RA, Gupta R, Abdel-Mohsen M, Dimon M, Debbaneh M, Jiang W, York VA, Leadabrand KS, Brown G, Malakouti M, et al: Antiviral gene expression in psoriasis. J Eur Acad Dermatol Venereol. 29:1951–1957. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Rittié L and Elder JT: Capturing the finer points of gene expression in psoriasis: Beaming in on the CCL19/CCR7 axis. J Invest Dermatol. 132:1535–1538. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Shao S, Cao T, Jin L, Li B, Fang H, Zhang J, Zhang Y, Hu J and Wang G: Increased lipocalin-2 contributes to the pathogenesis of psoriasis by modulating neutrophil chemotaxis and cytokine secretion. J Invest Dermatol. 136:1418–1428. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N and Taniguchi T: IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 434:772–777. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, Zhou C, Fang Y, Liu J, Yang J, et al: Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 214:1471–1491. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Ehrchen JM, Sunderkötter C, Foell D, Vogl T and Roth J: The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 86:557–566. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Sevimoglu T and Arga KY: Computational systems biology of psoriasis: Are we ready for the age of Omics and systems biomarkers? OMICS. 19:669–687. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Guo P, Luo Y, Mai G, Zhang M, Wang G, Zhao M, Gao L, Li F and Zhou F: Gene expression profile based classification models of psoriasis. Genomics. 103:48–55. 2014. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Liu X, Liu N and Chen H: Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis. Int J Mol Med 45: 93-102, 2020.
APA
Wang, X., Liu, X., Liu, N., & Chen, H. (2020). Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis. International Journal of Molecular Medicine, 45, 93-102. https://doi.org/10.3892/ijmm.2019.4392
MLA
Wang, X., Liu, X., Liu, N., Chen, H."Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis". International Journal of Molecular Medicine 45.1 (2020): 93-102.
Chicago
Wang, X., Liu, X., Liu, N., Chen, H."Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis". International Journal of Molecular Medicine 45, no. 1 (2020): 93-102. https://doi.org/10.3892/ijmm.2019.4392
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Liu X, Liu N and Chen H: Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis. Int J Mol Med 45: 93-102, 2020.
APA
Wang, X., Liu, X., Liu, N., & Chen, H. (2020). Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis. International Journal of Molecular Medicine, 45, 93-102. https://doi.org/10.3892/ijmm.2019.4392
MLA
Wang, X., Liu, X., Liu, N., Chen, H."Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis". International Journal of Molecular Medicine 45.1 (2020): 93-102.
Chicago
Wang, X., Liu, X., Liu, N., Chen, H."Prediction of crucial epigenetically‑associated, differentially expressed genes by integrated bioinformatics analysis and the identification of S100A9 as a novel biomarker in psoriasis". International Journal of Molecular Medicine 45, no. 1 (2020): 93-102. https://doi.org/10.3892/ijmm.2019.4392
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team