Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2020 Volume 46 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 46 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Alteration of enzymes and their application to nucleic acid amplification (Review)

  • Authors:
    • Kiyoshi Yasukawa
    • Itaru Yanagihara
    • Shinsuke Fujiwara
  • View Affiliations / Copyright

    Affiliations: Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606‑8502, Japan, Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka 594‑1101, Japan, Department of Bioscience, School of Science and Technology, Kwansei‑Gakuin University, Sanda, Hyogo 669‑1337, Japan
    Copyright: © Yasukawa et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1633-1643
    |
    Published online on: September 15, 2020
       https://doi.org/10.3892/ijmm.2020.4726
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Since the discovery of polymerase chain reaction (PCR) in 1985, several methods have been developed to achieve nucleic acid amplification, and are currently used in various fields including clinical diagnosis and life science research. Thus, a wealth of information has accumulated regarding nucleic acid‑related enzymes. In this review, some nucleic acid‑related enzymes were selected and the recent advances in their modification along with their application to nucleic acid amplification were described. The discussion also focused on optimization of the corresponding reaction conditions. Using newly developed enzymes under well‑optimized reaction conditions, the sensitivity, specificity, and fidelity of nucleic acid tests can be improved successfully.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Seki M, Kim CK, Hayakawa S and Mitarai S: Recent advances in tuberculosis diagnostics in resource-limited settings. Eur J Clin Microbiol Infect Dis. 37:1405–1410. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Zhao J, Chang L and Wang L: Nucleic acid testing and molecular characterization of HIV infections. Eur J Clin Microbiol Infect Dis. 38:829–842. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Mullis KB and Faloona FA: Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155:335–350. 1987. View Article : Google Scholar : PubMed/NCBI

4 

Kievits T, van Gemen B, van Strijp D, Schkkink P, Dircks M, Adriaanse H, Malek L, Sooknanan R and Lens P: NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 35:273–286. 1991. View Article : Google Scholar : PubMed/NCBI

5 

Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG and Malinowski DP: Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 20:1691–1696. 1992. View Article : Google Scholar : PubMed/NCBI

6 

Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC and Ward DC: Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 19:225–232. 1998. View Article : Google Scholar : PubMed/NCBI

7 

Vincent M, Xu Y and Kong H: Helicase-dependent isothermal DNA amplification. EMBO Rep. 5:795–800. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N and Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E632000. View Article : Google Scholar : PubMed/NCBI

9 

Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S and Sintim HO: Isothermal amplified detection of DNA and RNA. Mol Biosyst. 10:970–1003. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Chien A, Edgar DB and Trela JM: Deoxyribonucleic acid polymerase from the extreme thermophile. Thermus aquaticus J Bacteriol. 127:1550–1557. 1976. View Article : Google Scholar

11 

Pavlov AR, Pavlova NV, Kozyavkin SA and Slesarev AI: Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol. 22:253–260. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Tabor S and Richardson CC: A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy-and dideoxyribonucleotides. Proc Natl Acad Sci USA. 92:6339–6343. 1995. View Article : Google Scholar

13 

Pavlov AR, Belova GI, Kozyavkin SA and Slesarev AI: Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases. Proc Natl Acad Sci USA. 99:13510–13515. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Mallet F, Oriol G, Mary C, Verrier B and Mandrand B: Continuous RT-PCR using AMV-RT and Taq DNA polymerase: Characterization and comparison to uncoupled procedures. Biotechniques. 18:678–687. 1995.PubMed/NCBI

15 

Kimmel AR and Berger SL: Preparation of cDNA and the generation of cDNA libraries: Overview. Methods Enzymol. 152:307–316. 1987. View Article : Google Scholar : PubMed/NCBI

16 

Georgiadis MM, Jessen SM, Ogata CM, Telesnitsky A, Goff SP and Hendrickson WA: Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase. Structure. 3:879–892. 1995. View Article : Google Scholar : PubMed/NCBI

17 

Das D and Georgiadis MM: The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. 12:819–829. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Yasukawa K, Nemoto D and Inouye K: Comparison of the thermal stabilities of reverse transcriptases from avian myeloblastosis virus and Moloney murine leukaemia virus. J Biochem. 143:261–268. 2008. View Article : Google Scholar

19 

Kotewicz ML, Sampson CM, D'Alessio JM and Gerard GF: Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. 16:265–277. 1988. View Article : Google Scholar : PubMed/NCBI

20 

Gerard GF, Potter RJ, Smith MD, Rosenthal K, Dhariwal G, Lee J and Chatterjee DK: The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. 30:3118–3129. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Mizuno M, Yasukawa K and Inouye K: Insight into the mechanism of the stabilization of Moloney murine leukaemia virus reverse transcriptase by eliminating RNase H activity. Biosci Biotechnol Biochem. 74:440–442. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Yasukawa K, Mizuno M, Konishi A and Inouye K: Increase in thermal stability of Moloney murine leukaemia virus reverse transcriptase by site-directed mutagenesis. J Biotechnol. 150:299–306. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Konishi A, Ma X and Yasukawa K: Stabilization of Moloney murine leukemia virus reverse transcriptase by site-directed mutagenesis of the surface residue Val433. Biosci Biotechnol Biochem. 78:147–150. 2014. View Article : Google Scholar

24 

Baba M, Kakue R, Leucht C, Rasor P, Walch H, Ladiges D, Bell C, Kojima K, Takita T and Yasukawa K: Further increase in thermostability of Moloney murine leukemia virus reverse transcriptase by mutational combination. Protein Eng Des Sel. 30:551–557. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Arezi B and Hogrefe H: Novel mutations in Moloney murine leukemia virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. 37:473–481. 2009. View Article : Google Scholar :

26 

Baranauskas A, Paliksa S, Alzbutas G, Vaitkevicius M, Lubiene J, Letukiene V, Burinskas S, Sasnauskas G and Skirgaila R: Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. 25:657–668. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Katano Y, Li T, Baba M, Nakamura M, Ito M, Kojima K, Takita T and Yasukawa K: Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system. Biosci Biotechnol Biochem. 81:2339–2345. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Konishi A, Nemoto D, Yasukawa K and Inouye K: Comparison of the thermal stabilities of the αβ heterodimer and the α subunit of avian myeloblastosis virus reverse transcriptase. Biosci Biotechnol Biochem. 75:1618–1620. 2011. View Article : Google Scholar

29 

Konishi A, Yasukawa K and Inouye K: Improving the thermal stability of avian myeloblastosis virus reverse transcriptase α-subunit by site-directed mutagenesis. Biotechnol Lett. 34:1209–1215. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Yasukawa K, Agata N and Inouye K: Detection of cesA mRNA from Bacillus cereus by RNA-specific amplification. Enzyme Microb Technol. 46:391–396. 2009. View Article : Google Scholar

31 

Okano H, Katano Y, Baba M, Fujiwara A, Hidese R, Fujiwara S, Yanagihara I, Hayashi T, Kojima K, Takita T and Yasukawa K: Enhanced detection of RNA by MMLV reverse transcriptase coupled with thermostable DNA polymerase and DNA/RNA helicase. Enzyme. Microb Technol. 96:111–120. 2017. View Article : Google Scholar

32 

Baase WA, Liu L, Tronrud DF and Matthews BW: Lessons from the lysozyme of phage T4. Protein Sci. 19:631–641. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Astatke M, Ng K, Grindley ND and Joyce CM: A single side-chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc Natl Acad Sci USA. 95:3402–3407. 1998. View Article : Google Scholar

34 

Gardner AF and Jack WE: Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Res. 27:2545–2553. 1999. View Article : Google Scholar : PubMed/NCBI

35 

Lin TC, Wang CX, Joyce CM and Konigsberg WH: 3′-5′ Exonucleolytic activity of DNA polymerases: Structural features that allow kinetic discrimination between ribo- and deoxyribo-nucleotide residues. Biochemistry. 40:8749–8755. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Lam WC, Thompson EH, Potapova O, Sun XC, Joyce CM and Millar DP: 3′-5′ Exonuclease of Klenow fragment: Role of amino acid residues within the single-stranded DNA binding region in exonucleolysis and duplex DNA melting. Biochemistry. 41:3943–3951. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Shandilya H, Griffiths K, Flynn EK, Astatke M, Shih PJ, Lee JE, Gerard GF, Gibbs MD and Bergquist PL: Thermophilic bacterial DNA polymerases with reverse-transcriptase activity. Extremophiles. 8:243–251. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Myers TW and Gelfand DH: Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry. 30:7661–7666. 1991. View Article : Google Scholar : PubMed/NCBI

39 

Ong JL, Loakes D, Jaroslawski S, Too K and Holliger P: Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. J Mol Biol. 361:537–550. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Kranaster R, Drum M, Engel N, Weidmann M, Hufert FT and Marx A: One-step RNA pathogen detection with reverse tran-scriptase activity of a mutated thermostable Thermus aquaticus DNA polymerase. Biotechnol J. 5:224–231. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Jozwiakowski SK and Connolly BA: A modified family-B archaeal DNA polymerase with reverse transcriptase activity. Chembiochem. 12:35–37. 2011. View Article : Google Scholar

42 

Schönbrunner NJ, Fiss EH, Budker O, Stoffel S, Sigua CL, Gelfand DH and Myers TW: Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3′-5′ exonuclease activity. Biochemistry. 45:12786–12795. 2006. View Article : Google Scholar

43 

Sano S, Yamada Y, Shinkawa T, Kato S, Okada T, Higashibata H and Fujiwara S: Mutations to create thermostable reverse transcriptase with bacterial family A DNA polymerase from Thermotoga petrophila K4. J Biosci Bioeng. 113:315–321. 2012. View Article : Google Scholar

44 

Cline J, Braman JC and Hogrefe HH: PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24:3546–3551. 1996. View Article : Google Scholar : PubMed/NCBI

45 

Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M and Imanaka T: Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol. 63:4504–4510. 1997. View Article : Google Scholar : PubMed/NCBI

46 

Firbank SJ, Wardle J, Heslop P, Lewis RJ and Connolly BA: Uracil recognition in archaeal DNA polymerases captured by X-ray crystallography. J Mol Biol. 381:529–539. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Ellefson JW, Gollihar J, Shroff R, Shivram H, Iyer VR and Ellington AD: Synthetic evolutionary origin of a proofreading reverse transcriptase. Science. 352:1590–1593. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Okano H, Baba M, Kawato K, Hidese R, Yanagihara I, Kojima K, Takita T, Fujiwara S and Yasukawa K: High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies. J Biosci Bioeng. 125:275–281. 2018. View Article : Google Scholar

49 

Singleton MR, Dillingham MS and Wigley DB: Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 76:23–50. 2007. View Article : Google Scholar : PubMed/NCBI

50 

An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J and Kong H: Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem. 280:28952–28958. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Jeong YJ, Park K and Kim DE: Isothermal DNA amplification in vitro: The helicase-dependent amplification system. Cell Mol Life Sci. 66:3325–3336. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Artiushin S, Tong Y, Timoney J, Lemieux B, Schlegel A and Kong H: Thermophilic helicase-dependent DNA amplification using the IsoAmp™ SE experimental kit for rapid detection of Streptococcus equi subspecies equi in clinical samples. J Vet Diagn Invest. 23:909–914. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Runyon GT and Lohman TM: Escherichia coli helicase II (UvrD) protein can completely unwind fully duplex linear and nicked circular DNA. J Biol Chem. 264:17502–17512. 1989.PubMed/NCBI

54 

Fujiwara A, Kawato K, Kato S, Yasukawa K, Hides R and Fujiwara S: Application for a euryarchaeota-specific helicase from Thermococcus kodakarensis and its application for noise reduction in PCR. Appl Environ Microbiol. 82:3022–3031. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Walker JE, Luyties O and Santangelo TJ: Factor-dependent archaeal transcription termination. Proc Natl Acad Sci USA. 114:E6767–E6773. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Hidese R, Kawato K, Nakura Y, Fujiwara A, Yasukawa K, Yanagihara I and Fujiwara S: Thermostable DNA helicase improves the sensitivity of digital PCR. Biochem Biophys Res Commun. 495:2189–2194. 2018. View Article : Google Scholar

57 

Gutiérrez-Rivas M, Ibáñez Á, Martínez MA, Domingo E and Menéndez-Arias L: Mutational analysis of Phe160 within the 'palm' subdomain of human immunodeficiency virus type 1 reverse transcriptase. J Mol Biol. 290:615–625. 1999. View Article : Google Scholar

58 

Kati WM, Johnson KA, Jerva LF and Anderson KS: Mechanism and fidelity of HIV reverse transcriptase. J Biol Chem. 267:25988–25997. 1992.PubMed/NCBI

59 

Bebenek K and Kunkel TA: Analyzing fidelity of DNA polymerase. Methods Enzymol. 262:217–232. 1995. View Article : Google Scholar

60 

Shendure J and Ji H: Next-generation DNA sequencing. Nat Biotechnol. 26:1135–1145. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Iida K, Jin H and Zhu JK: Bioinformatics analysis suggests base modifications of tRNAs and miRNAs in Arabidopsis thaliana. BMC Genomics. 10:1552009. View Article : Google Scholar : PubMed/NCBI

62 

Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB and Loeb LA: Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci USA. 109:14508–14513. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Yasukawa K, Iida K, Okano H, Hidese R, Baba M, Yanagihara I, Kojima K, Takita T and Fujiwara S: Next-generation sequencing-based analysis of reverse transcriptase fidelity. Biochem Biophys Res Commun. 492:147–153. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Okano H, Baba M, Hidese R, Iida K, Li T, Kojima K, Takita T, Yanagihara I, Fujiwara S and Yasukawa K: Accurate fidelity analysis of the reverse transcriptase by a modified next-generation sequencing. Enzyme Microb Technol. 115:81–85. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Barrioluengo V, Álvarez M, Barbieri D and Menéndez-Arias L: Thermostable HIV-1 group O reverse transcriptase variants with the same fidelity as murine leukaemia virus reverse transcritpase. Biochem J. 436:599–607. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Álvarez M, Barrioluengo V, Afonso-Lehmann RN and Menéndez-Arias L: Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis. Nucleic Acid Res. 41:4601–4612. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Garforth SJ, Domaoal RA, Lwatula C, Landau MJ, Meyer AJ, Anderson KS and Prasad VR: K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies. J Mol Biol. 401:33–44. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Li J, Macdonald J and von Stetten F: Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst. 144:31–67. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Bleuit JS, Xu H, Ma Y, Wang T, Liu J and Morrical SW: Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair. Proc Natl Acad Sci USA. 98:8298–8305. 2001. View Article : Google Scholar : PubMed/NCBI

70 

Piepenburg O, Williams CH, Stemple DL and Armes NA: DNA detection using recombination proteins. PLoS Biol. 4:e2042006. View Article : Google Scholar : PubMed/NCBI

71 

Boyle DS, McNerney R, Teng Low H, Leader BT, Pérez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg O and Forrest MS: Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One. 9. pp. e1030912014, View Article : Google Scholar

72 

Shin Y, Perera AP, Tang WY, Fu DL, Liu Q, Sheng JK, Gu Z, Lee TY, Barkham T and Kyoung Park M: A rapid amplification/detection assay for analysis of Mycobacterium tuberculosis using an isothermal and silicon bio-photonic sensor complex. Biosens Bioelectron. 68:390–396. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Krõlov K, Frolova J, Tudoran O, Suhorutsenko J, Lehto T, Sibul H, Mäger I, Laanpere M, Tulp I and Langel Ü: Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagn. 16:127–135. 2014. View Article : Google Scholar

74 

Clancy E, Higgins O, Forrest MS, Boo TW, Cormican M, Barry T, Piepenburg O and Smith TJ: Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood. BMC Infect Dis. 15:4812015. View Article : Google Scholar : PubMed/NCBI

75 

Mondal D, Ghosh P, Khan MA, Hossain F, Böhlken-Fascher S, Matlashewski G, Kroeger A, Olliaro P, Abd El and Wahed A: Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasit Vectors. 9:2812016. View Article : Google Scholar : PubMed/NCBI

76 

Sriworarat C, Phumee A, Mungthin M, Leelayoova S and Siriyasatien P: Development of loop-mediated isothermal amplification (LAMP) for simple detection of Leishmania infection. Parasit Vectors. 8:5912015. View Article : Google Scholar : PubMed/NCBI

77 

Nzelu CO, Cáceres AG, Guerrero-Quincho S, Tineo-Villafuerte E, Rodriquez-Delfin L, Mimori T, Uezato H, Katakura K, Gomez EA, Guevara AG, et al: A rapid molecular diagnosis of cutaneous leishmaniasis by colorimetric malachite green-loop-mediated isothermal amplification (LAMP) combined with an FTA card as a direct sampling tool. Acta Trop. 153:116–119. 2016. View Article : Google Scholar

78 

Jauset-Rubio M, Tomaso H, El-Shahawi MS, Bashammakh AS, Al-Youbi AO and O'Sullivan CK: Duplex lateral flow assay for the simultaneous detection of yersinia pestis and francisella tularensis. Anal Chem. 90:12745–12751. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Toldrà A, Jauset-Rubio M, Andree KB, Fernández-Tejedor M, Diogène J, Katakis I, O'Sullivan CK and Campàs M: Detection and quantification of the toxic marine microalgae karlodinium veneficum and karlodinium armiger using recombinase polymerase amplification and enzyme-linked oligonucleotide assay. Anal Chim Acta. 1039:140–148. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Al-Madhagi S, Joda H, Jauset-Rubio M, Ortiz M, Katakis I and O' Sullivan CK: Isothermal amplification using modified primers for rapid electrochemical analysis of coeliac disease associated DQB1*02 HLA allele. Anal Biochem. 556:16–22. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Sabaté del Río J, Steylaerts T, Henry OYF, Bienstman P, Stakenborg T, Van Roy W and O′Sullivan CK: Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification. Biosens Bioelectron. 73:130–137. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Wiedenheft B, Sternberg SH and Doudna JA: RNA-guided genetic silencing systems in bacteria and archaea. Nature. 482:331–338. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, et al: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 356:438–442. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ and Zhang F: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 360:439–444. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM and Doudna JA: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360:436–439. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Chakrabarti R and Schutt CE: The enhancement of PCR amplification by low molecular weight amides. Nucleic Acids Res. 29:2377–2381. 2001. View Article : Google Scholar : PubMed/NCBI

87 

Kovárová M and Dráber P: New specificity and yield enhancer of polymerase chain reactions. Nucleic Acids Res. 28:E702000. View Article : Google Scholar : PubMed/NCBI

88 

Chester N and Marshak DR: Dimethyl sulfoxide-mediated primer Tm reduction: A method for analyzing the role of renaturation temperature in the polymerase chain reaction. Anal Biochem. 209:284–290. 1993. View Article : Google Scholar : PubMed/NCBI

89 

Sarkar G, Kapelner S and Sommer SS: Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18:74651990. View Article : Google Scholar : PubMed/NCBI

90 

Yasukawa K, Konishi A and Inouye K: Effects of organic solvents on the reverse transcription reaction catalyzed by reverse transcriptases from avian myeloblastosis virus and Moloney murine leukemia virus. Biosci Biotechnol Biochem. 74:1925–1930. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Ahokas H and Erkkilä MJ: Interference of PCR amplification by the polyamines, spermine and spermidine. PCR Methods Appl. 3:65–68. 1993. View Article : Google Scholar : PubMed/NCBI

92 

Roperch JP, Benzekri K, Mansour H and Incitti R: Improved amplification efficiency on stool samples by addition of spermi-dine and its use for non-invasive detection of colorectal cancer. BMC Biotechnol. 15:412015. View Article : Google Scholar

93 

Kikuchi A, Sawamura T, Kawase N, Kitajima Y, Yoshida T, Daimaru O, Nakakita T and Itoh S: Utility of spermidine in PCR amplification of stool samples. Biochem Genet. 48:428–432. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yasukawa K, Yanagihara I and Fujiwara S: Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 46: 1633-1643, 2020.
APA
Yasukawa, K., Yanagihara, I., & Fujiwara, S. (2020). Alteration of enzymes and their application to nucleic acid amplification (Review). International Journal of Molecular Medicine, 46, 1633-1643. https://doi.org/10.3892/ijmm.2020.4726
MLA
Yasukawa, K., Yanagihara, I., Fujiwara, S."Alteration of enzymes and their application to nucleic acid amplification (Review)". International Journal of Molecular Medicine 46.5 (2020): 1633-1643.
Chicago
Yasukawa, K., Yanagihara, I., Fujiwara, S."Alteration of enzymes and their application to nucleic acid amplification (Review)". International Journal of Molecular Medicine 46, no. 5 (2020): 1633-1643. https://doi.org/10.3892/ijmm.2020.4726
Copy and paste a formatted citation
x
Spandidos Publications style
Yasukawa K, Yanagihara I and Fujiwara S: Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 46: 1633-1643, 2020.
APA
Yasukawa, K., Yanagihara, I., & Fujiwara, S. (2020). Alteration of enzymes and their application to nucleic acid amplification (Review). International Journal of Molecular Medicine, 46, 1633-1643. https://doi.org/10.3892/ijmm.2020.4726
MLA
Yasukawa, K., Yanagihara, I., Fujiwara, S."Alteration of enzymes and their application to nucleic acid amplification (Review)". International Journal of Molecular Medicine 46.5 (2020): 1633-1643.
Chicago
Yasukawa, K., Yanagihara, I., Fujiwara, S."Alteration of enzymes and their application to nucleic acid amplification (Review)". International Journal of Molecular Medicine 46, no. 5 (2020): 1633-1643. https://doi.org/10.3892/ijmm.2020.4726
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team