|
1
|
Seki M, Kim CK, Hayakawa S and Mitarai S:
Recent advances in tuberculosis diagnostics in resource-limited
settings. Eur J Clin Microbiol Infect Dis. 37:1405–1410. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhao J, Chang L and Wang L: Nucleic acid
testing and molecular characterization of HIV infections. Eur J
Clin Microbiol Infect Dis. 38:829–842. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mullis KB and Faloona FA: Specific
synthesis of DNA in vitro via a polymerase-catalyzed chain
reaction. Methods Enzymol. 155:335–350. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kievits T, van Gemen B, van Strijp D,
Schkkink P, Dircks M, Adriaanse H, Malek L, Sooknanan R and Lens P:
NASBA isothermal enzymatic in vitro nucleic acid amplification
optimized for the diagnosis of HIV-1 infection. J Virol Methods.
35:273–286. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Walker GT, Fraiser MS, Schram JL, Little
MC, Nadeau JG and Malinowski DP: Strand displacement
amplification-an isothermal, in vitro DNA amplification technique.
Nucleic Acids Res. 20:1691–1696. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lizardi PM, Huang X, Zhu Z, Bray-Ward P,
Thomas DC and Ward DC: Mutation detection and single-molecule
counting using isothermal rolling-circle amplification. Nat Genet.
19:225–232. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vincent M, Xu Y and Kong H:
Helicase-dependent isothermal DNA amplification. EMBO Rep.
5:795–800. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Notomi T, Okayama H, Masubuchi H, Yonekawa
T, Watanabe K, Amino N and Hase T: Loop-mediated isothermal
amplification of DNA. Nucleic Acids Res. 28:E632000. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yan L, Zhou J, Zheng Y, Gamson AS, Roembke
BT, Nakayama S and Sintim HO: Isothermal amplified detection of DNA
and RNA. Mol Biosyst. 10:970–1003. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chien A, Edgar DB and Trela JM:
Deoxyribonucleic acid polymerase from the extreme thermophile.
Thermus aquaticus J Bacteriol. 127:1550–1557. 1976. View Article : Google Scholar
|
|
11
|
Pavlov AR, Pavlova NV, Kozyavkin SA and
Slesarev AI: Recent developments in the optimization of
thermostable DNA polymerases for efficient applications. Trends
Biotechnol. 22:253–260. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tabor S and Richardson CC: A single
residue in DNA polymerases of the Escherichia coli DNA polymerase I
family is critical for distinguishing between deoxy-and
dideoxyribonucleotides. Proc Natl Acad Sci USA. 92:6339–6343. 1995.
View Article : Google Scholar
|
|
13
|
Pavlov AR, Belova GI, Kozyavkin SA and
Slesarev AI: Helix-hairpin-helix motifs confer salt resistance and
processivity on chimeric DNA polymerases. Proc Natl Acad Sci USA.
99:13510–13515. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mallet F, Oriol G, Mary C, Verrier B and
Mandrand B: Continuous RT-PCR using AMV-RT and Taq DNA polymerase:
Characterization and comparison to uncoupled procedures.
Biotechniques. 18:678–687. 1995.PubMed/NCBI
|
|
15
|
Kimmel AR and Berger SL: Preparation of
cDNA and the generation of cDNA libraries: Overview. Methods
Enzymol. 152:307–316. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Georgiadis MM, Jessen SM, Ogata CM,
Telesnitsky A, Goff SP and Hendrickson WA: Mechanistic implications
from the structure of a catalytic fragment of Moloney murine
leukemia virus reverse transcriptase. Structure. 3:879–892. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Das D and Georgiadis MM: The crystal
structure of the monomeric reverse transcriptase from Moloney
murine leukemia virus. Structure. 12:819–829. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yasukawa K, Nemoto D and Inouye K:
Comparison of the thermal stabilities of reverse transcriptases
from avian myeloblastosis virus and Moloney murine leukaemia virus.
J Biochem. 143:261–268. 2008. View Article : Google Scholar
|
|
19
|
Kotewicz ML, Sampson CM, D'Alessio JM and
Gerard GF: Isolation of cloned Moloney murine leukemia virus
reverse transcriptase lacking ribonuclease H activity. Nucleic
Acids Res. 16:265–277. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gerard GF, Potter RJ, Smith MD, Rosenthal
K, Dhariwal G, Lee J and Chatterjee DK: The role of template-primer
in protection of reverse transcriptase from thermal inactivation.
Nucleic Acids Res. 30:3118–3129. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mizuno M, Yasukawa K and Inouye K: Insight
into the mechanism of the stabilization of Moloney murine leukaemia
virus reverse transcriptase by eliminating RNase H activity. Biosci
Biotechnol Biochem. 74:440–442. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yasukawa K, Mizuno M, Konishi A and Inouye
K: Increase in thermal stability of Moloney murine leukaemia virus
reverse transcriptase by site-directed mutagenesis. J Biotechnol.
150:299–306. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Konishi A, Ma X and Yasukawa K:
Stabilization of Moloney murine leukemia virus reverse
transcriptase by site-directed mutagenesis of the surface residue
Val433. Biosci Biotechnol Biochem. 78:147–150. 2014. View Article : Google Scholar
|
|
24
|
Baba M, Kakue R, Leucht C, Rasor P, Walch
H, Ladiges D, Bell C, Kojima K, Takita T and Yasukawa K: Further
increase in thermostability of Moloney murine leukemia virus
reverse transcriptase by mutational combination. Protein Eng Des
Sel. 30:551–557. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Arezi B and Hogrefe H: Novel mutations in
Moloney murine leukemia virus reverse transcriptase increase
thermostability through tighter binding to template-primer. Nucleic
Acids Res. 37:473–481. 2009. View Article : Google Scholar :
|
|
26
|
Baranauskas A, Paliksa S, Alzbutas G,
Vaitkevicius M, Lubiene J, Letukiene V, Burinskas S, Sasnauskas G
and Skirgaila R: Generation and characterization of new highly
thermostable and processive M-MuLV reverse transcriptase variants.
Protein Eng Des Sel. 25:657–668. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Katano Y, Li T, Baba M, Nakamura M, Ito M,
Kojima K, Takita T and Yasukawa K: Generation of thermostable
Moloney murine leukemia virus reverse transcriptase variants using
site saturation mutagenesis library and cell-free protein
expression system. Biosci Biotechnol Biochem. 81:2339–2345. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Konishi A, Nemoto D, Yasukawa K and Inouye
K: Comparison of the thermal stabilities of the αβ heterodimer and
the α subunit of avian myeloblastosis virus reverse transcriptase.
Biosci Biotechnol Biochem. 75:1618–1620. 2011. View Article : Google Scholar
|
|
29
|
Konishi A, Yasukawa K and Inouye K:
Improving the thermal stability of avian myeloblastosis virus
reverse transcriptase α-subunit by site-directed mutagenesis.
Biotechnol Lett. 34:1209–1215. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yasukawa K, Agata N and Inouye K:
Detection of cesA mRNA from Bacillus cereus by RNA-specific
amplification. Enzyme Microb Technol. 46:391–396. 2009. View Article : Google Scholar
|
|
31
|
Okano H, Katano Y, Baba M, Fujiwara A,
Hidese R, Fujiwara S, Yanagihara I, Hayashi T, Kojima K, Takita T
and Yasukawa K: Enhanced detection of RNA by MMLV reverse
transcriptase coupled with thermostable DNA polymerase and DNA/RNA
helicase. Enzyme. Microb Technol. 96:111–120. 2017. View Article : Google Scholar
|
|
32
|
Baase WA, Liu L, Tronrud DF and Matthews
BW: Lessons from the lysozyme of phage T4. Protein Sci. 19:631–641.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Astatke M, Ng K, Grindley ND and Joyce CM:
A single side-chain prevents Escherichia coli DNA polymerase I
(Klenow fragment) from incorporating ribonucleotides. Proc Natl
Acad Sci USA. 95:3402–3407. 1998. View Article : Google Scholar
|
|
34
|
Gardner AF and Jack WE: Determinants of
nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic
Acids Res. 27:2545–2553. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lin TC, Wang CX, Joyce CM and Konigsberg
WH: 3′-5′ Exonucleolytic activity of DNA polymerases: Structural
features that allow kinetic discrimination between ribo- and
deoxyribo-nucleotide residues. Biochemistry. 40:8749–8755. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lam WC, Thompson EH, Potapova O, Sun XC,
Joyce CM and Millar DP: 3′-5′ Exonuclease of Klenow fragment: Role
of amino acid residues within the single-stranded DNA binding
region in exonucleolysis and duplex DNA melting. Biochemistry.
41:3943–3951. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Shandilya H, Griffiths K, Flynn EK,
Astatke M, Shih PJ, Lee JE, Gerard GF, Gibbs MD and Bergquist PL:
Thermophilic bacterial DNA polymerases with reverse-transcriptase
activity. Extremophiles. 8:243–251. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Myers TW and Gelfand DH: Reverse
transcription and DNA amplification by a Thermus thermophilus DNA
polymerase. Biochemistry. 30:7661–7666. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ong JL, Loakes D, Jaroslawski S, Too K and
Holliger P: Directed evolution of DNA polymerase, RNA polymerase
and reverse transcriptase activity in a single polypeptide. J Mol
Biol. 361:537–550. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kranaster R, Drum M, Engel N, Weidmann M,
Hufert FT and Marx A: One-step RNA pathogen detection with reverse
tran-scriptase activity of a mutated thermostable Thermus aquaticus
DNA polymerase. Biotechnol J. 5:224–231. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jozwiakowski SK and Connolly BA: A
modified family-B archaeal DNA polymerase with reverse
transcriptase activity. Chembiochem. 12:35–37. 2011. View Article : Google Scholar
|
|
42
|
Schönbrunner NJ, Fiss EH, Budker O,
Stoffel S, Sigua CL, Gelfand DH and Myers TW: Chimeric thermostable
DNA polymerases with reverse transcriptase and attenuated 3′-5′
exonuclease activity. Biochemistry. 45:12786–12795. 2006.
View Article : Google Scholar
|
|
43
|
Sano S, Yamada Y, Shinkawa T, Kato S,
Okada T, Higashibata H and Fujiwara S: Mutations to create
thermostable reverse transcriptase with bacterial family A DNA
polymerase from Thermotoga petrophila K4. J Biosci Bioeng.
113:315–321. 2012. View Article : Google Scholar
|
|
44
|
Cline J, Braman JC and Hogrefe HH: PCR
fidelity of pfu DNA polymerase and other thermostable DNA
polymerases. Nucleic Acids Res. 24:3546–3551. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Takagi M, Nishioka M, Kakihara H,
Kitabayashi M, Inoue H, Kawakami B, Oka M and Imanaka T:
Characterization of DNA polymerase from Pyrococcus sp. strain KOD1
and its application to PCR. Appl Environ Microbiol. 63:4504–4510.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Firbank SJ, Wardle J, Heslop P, Lewis RJ
and Connolly BA: Uracil recognition in archaeal DNA polymerases
captured by X-ray crystallography. J Mol Biol. 381:529–539. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ellefson JW, Gollihar J, Shroff R, Shivram
H, Iyer VR and Ellington AD: Synthetic evolutionary origin of a
proofreading reverse transcriptase. Science. 352:1590–1593. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Okano H, Baba M, Kawato K, Hidese R,
Yanagihara I, Kojima K, Takita T, Fujiwara S and Yasukawa K: High
sensitive RNA detection by one-step RT-PCR using the genetically
engineered variant of DNA polymerase with reverse transcriptase
activity from hyperthermophilies. J Biosci Bioeng. 125:275–281.
2018. View Article : Google Scholar
|
|
49
|
Singleton MR, Dillingham MS and Wigley DB:
Structure and mechanism of helicases and nucleic acid translocases.
Annu Rev Biochem. 76:23–50. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J
and Kong H: Characterization of a thermostable UvrD helicase and
its participation in helicase-dependent amplification. J Biol Chem.
280:28952–28958. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jeong YJ, Park K and Kim DE: Isothermal
DNA amplification in vitro: The helicase-dependent amplification
system. Cell Mol Life Sci. 66:3325–3336. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Artiushin S, Tong Y, Timoney J, Lemieux B,
Schlegel A and Kong H: Thermophilic helicase-dependent DNA
amplification using the IsoAmp™ SE experimental kit for rapid
detection of Streptococcus equi subspecies equi in clinical
samples. J Vet Diagn Invest. 23:909–914. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Runyon GT and Lohman TM: Escherichia coli
helicase II (UvrD) protein can completely unwind fully duplex
linear and nicked circular DNA. J Biol Chem. 264:17502–17512.
1989.PubMed/NCBI
|
|
54
|
Fujiwara A, Kawato K, Kato S, Yasukawa K,
Hides R and Fujiwara S: Application for a euryarchaeota-specific
helicase from Thermococcus kodakarensis and its application for
noise reduction in PCR. Appl Environ Microbiol. 82:3022–3031. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Walker JE, Luyties O and Santangelo TJ:
Factor-dependent archaeal transcription termination. Proc Natl Acad
Sci USA. 114:E6767–E6773. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hidese R, Kawato K, Nakura Y, Fujiwara A,
Yasukawa K, Yanagihara I and Fujiwara S: Thermostable DNA helicase
improves the sensitivity of digital PCR. Biochem Biophys Res
Commun. 495:2189–2194. 2018. View Article : Google Scholar
|
|
57
|
Gutiérrez-Rivas M, Ibáñez Á, Martínez MA,
Domingo E and Menéndez-Arias L: Mutational analysis of Phe160
within the 'palm' subdomain of human immunodeficiency virus type 1
reverse transcriptase. J Mol Biol. 290:615–625. 1999. View Article : Google Scholar
|
|
58
|
Kati WM, Johnson KA, Jerva LF and Anderson
KS: Mechanism and fidelity of HIV reverse transcriptase. J Biol
Chem. 267:25988–25997. 1992.PubMed/NCBI
|
|
59
|
Bebenek K and Kunkel TA: Analyzing
fidelity of DNA polymerase. Methods Enzymol. 262:217–232. 1995.
View Article : Google Scholar
|
|
60
|
Shendure J and Ji H: Next-generation DNA
sequencing. Nat Biotechnol. 26:1135–1145. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Iida K, Jin H and Zhu JK: Bioinformatics
analysis suggests base modifications of tRNAs and miRNAs in
Arabidopsis thaliana. BMC Genomics. 10:1552009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Schmitt MW, Kennedy SR, Salk JJ, Fox EJ,
Hiatt JB and Loeb LA: Detection of ultra-rare mutations by
next-generation sequencing. Proc Natl Acad Sci USA.
109:14508–14513. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yasukawa K, Iida K, Okano H, Hidese R,
Baba M, Yanagihara I, Kojima K, Takita T and Fujiwara S:
Next-generation sequencing-based analysis of reverse transcriptase
fidelity. Biochem Biophys Res Commun. 492:147–153. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Okano H, Baba M, Hidese R, Iida K, Li T,
Kojima K, Takita T, Yanagihara I, Fujiwara S and Yasukawa K:
Accurate fidelity analysis of the reverse transcriptase by a
modified next-generation sequencing. Enzyme Microb Technol.
115:81–85. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Barrioluengo V, Álvarez M, Barbieri D and
Menéndez-Arias L: Thermostable HIV-1 group O reverse transcriptase
variants with the same fidelity as murine leukaemia virus reverse
transcritpase. Biochem J. 436:599–607. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Álvarez M, Barrioluengo V, Afonso-Lehmann
RN and Menéndez-Arias L: Altered error specificity of RNase
H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA
synthesis. Nucleic Acid Res. 41:4601–4612. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Garforth SJ, Domaoal RA, Lwatula C, Landau
MJ, Meyer AJ, Anderson KS and Prasad VR: K65R and K65A
substitutions in HIV-1 reverse transcriptase enhance polymerase
fidelity by decreasing both dNTP misinsertion and mispaired primer
extension efficiencies. J Mol Biol. 401:33–44. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li J, Macdonald J and von Stetten F:
Review: A comprehensive summary of a decade development of the
recombinase polymerase amplification. Analyst. 144:31–67. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bleuit JS, Xu H, Ma Y, Wang T, Liu J and
Morrical SW: Mediator proteins orchestrate enzyme-ssDNA assembly
during T4 recombination-dependent DNA replication and repair. Proc
Natl Acad Sci USA. 98:8298–8305. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Piepenburg O, Williams CH, Stemple DL and
Armes NA: DNA detection using recombination proteins. PLoS Biol.
4:e2042006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Boyle DS, McNerney R, Teng Low H, Leader
BT, Pérez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg
O and Forrest MS: Rapid detection of Mycobacterium tuberculosis by
recombinase polymerase amplification. PLoS One. 9. pp. e1030912014,
View Article : Google Scholar
|
|
72
|
Shin Y, Perera AP, Tang WY, Fu DL, Liu Q,
Sheng JK, Gu Z, Lee TY, Barkham T and Kyoung Park M: A rapid
amplification/detection assay for analysis of Mycobacterium
tuberculosis using an isothermal and silicon bio-photonic sensor
complex. Biosens Bioelectron. 68:390–396. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Krõlov K, Frolova J, Tudoran O,
Suhorutsenko J, Lehto T, Sibul H, Mäger I, Laanpere M, Tulp I and
Langel Ü: Sensitive and rapid detection of Chlamydia trachomatis by
recombinase polymerase amplification directly from urine samples. J
Mol Diagn. 16:127–135. 2014. View Article : Google Scholar
|
|
74
|
Clancy E, Higgins O, Forrest MS, Boo TW,
Cormican M, Barry T, Piepenburg O and Smith TJ: Development of a
rapid recombinase polymerase amplification assay for the detection
of Streptococcus pneumoniae in whole blood. BMC Infect Dis.
15:4812015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mondal D, Ghosh P, Khan MA, Hossain F,
Böhlken-Fascher S, Matlashewski G, Kroeger A, Olliaro P, Abd El and
Wahed A: Mobile suitcase laboratory for rapid detection of
Leishmania donovani using recombinase polymerase amplification
assay. Parasit Vectors. 9:2812016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sriworarat C, Phumee A, Mungthin M,
Leelayoova S and Siriyasatien P: Development of loop-mediated
isothermal amplification (LAMP) for simple detection of Leishmania
infection. Parasit Vectors. 8:5912015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Nzelu CO, Cáceres AG, Guerrero-Quincho S,
Tineo-Villafuerte E, Rodriquez-Delfin L, Mimori T, Uezato H,
Katakura K, Gomez EA, Guevara AG, et al: A rapid molecular
diagnosis of cutaneous leishmaniasis by colorimetric malachite
green-loop-mediated isothermal amplification (LAMP) combined with
an FTA card as a direct sampling tool. Acta Trop. 153:116–119.
2016. View Article : Google Scholar
|
|
78
|
Jauset-Rubio M, Tomaso H, El-Shahawi MS,
Bashammakh AS, Al-Youbi AO and O'Sullivan CK: Duplex lateral flow
assay for the simultaneous detection of yersinia pestis and
francisella tularensis. Anal Chem. 90:12745–12751. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Toldrà A, Jauset-Rubio M, Andree KB,
Fernández-Tejedor M, Diogène J, Katakis I, O'Sullivan CK and Campàs
M: Detection and quantification of the toxic marine microalgae
karlodinium veneficum and karlodinium armiger using recombinase
polymerase amplification and enzyme-linked oligonucleotide assay.
Anal Chim Acta. 1039:140–148. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Al-Madhagi S, Joda H, Jauset-Rubio M,
Ortiz M, Katakis I and O' Sullivan CK: Isothermal amplification
using modified primers for rapid electrochemical analysis of
coeliac disease associated DQB1*02 HLA allele. Anal
Biochem. 556:16–22. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sabaté del Río J, Steylaerts T, Henry OYF,
Bienstman P, Stakenborg T, Van Roy W and O′Sullivan CK: Real-time
and label-free ring-resonator monitoring of solid-phase recombinase
polymerase amplification. Biosens Bioelectron. 73:130–137. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wiedenheft B, Sternberg SH and Doudna JA:
RNA-guided genetic silencing systems in bacteria and archaea.
Nature. 482:331–338. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gootenberg JS, Abudayyeh OO, Lee JW,
Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer
NM, Freije CA, et al: Nucleic acid detection with
CRISPR-Cas13a/C2c2. Science. 356:438–442. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gootenberg JS, Abudayyeh OO, Kellner MJ,
Joung J, Collins JJ and Zhang F: Multiplexed and portable nucleic
acid detection platform with Cas13, Cas12a, and Csm6. Science.
360:439–444. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen JS, Ma E, Harrington LB, Da Costa M,
Tian X, Palefsky JM and Doudna JA: CRISPR-Cas12a target binding
unleashes indiscriminate single-stranded DNase activity. Science.
360:436–439. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chakrabarti R and Schutt CE: The
enhancement of PCR amplification by low molecular weight amides.
Nucleic Acids Res. 29:2377–2381. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kovárová M and Dráber P: New specificity
and yield enhancer of polymerase chain reactions. Nucleic Acids
Res. 28:E702000. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chester N and Marshak DR: Dimethyl
sulfoxide-mediated primer Tm reduction: A method for analyzing the
role of renaturation temperature in the polymerase chain reaction.
Anal Biochem. 209:284–290. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sarkar G, Kapelner S and Sommer SS:
Formamide can dramatically improve the specificity of PCR. Nucleic
Acids Res. 18:74651990. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yasukawa K, Konishi A and Inouye K:
Effects of organic solvents on the reverse transcription reaction
catalyzed by reverse transcriptases from avian myeloblastosis virus
and Moloney murine leukemia virus. Biosci Biotechnol Biochem.
74:1925–1930. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ahokas H and Erkkilä MJ: Interference of
PCR amplification by the polyamines, spermine and spermidine. PCR
Methods Appl. 3:65–68. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Roperch JP, Benzekri K, Mansour H and
Incitti R: Improved amplification efficiency on stool samples by
addition of spermi-dine and its use for non-invasive detection of
colorectal cancer. BMC Biotechnol. 15:412015. View Article : Google Scholar
|
|
93
|
Kikuchi A, Sawamura T, Kawase N, Kitajima
Y, Yoshida T, Daimaru O, Nakakita T and Itoh S: Utility of
spermidine in PCR amplification of stool samples. Biochem Genet.
48:428–432. 2010. View Article : Google Scholar : PubMed/NCBI
|