|
1
|
Sorimachi H, Hata S and Ono Y: Calpain
chronicle-an enzyme family under multidisciplinary
characterization. Proc Jpn Acad Ser B Phys Biol Sci. 87:287–327.
2011. View Article : Google Scholar :
|
|
2
|
Moretti D, Del Bello B, Allavena G and
Maellaro E: Calpains and cancer: Friends or enemies? Arch Biochem
Biophys. 564:26–36. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dear N, Matena K, Vingron M and Boehm T: A
new subfamily of vertebrate calpains lacking a calmodulin-like
domain: Implications for calpain regulation and evolution.
Genomics. 45:175–184. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sorimachi H, Hata S and Ono Y: Impact of
genetic insights into calpain biology. J Biochem. 150:23–37. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Matena K, Boehm T and Dear N: Genomic
organization of mouse Capn5 and Capn6 genes confirms that they are
a distinct calpain subfamily. Genomics. 48:117–120. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dear TN and Boehm T: Diverse mRNA
expression patterns of the mouse calpain genes Capn5, Capn6 and
Capn11 during development. Mech Dev. 89:201–209. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tonami K, Kurihara Y, Aburatani H,
Uchijima Y, Asano T and Kurihara H: Calpain 6 is involved in
microtubule stabilization and cytoskeletal organization. Mol Cell
Biol. 27:2548–2561. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hanna RA, Campbell RL and Davies PL:
Calcium-bound structure of calpain and its mechanism of inhibition
by calpastatin. Nature. 456:409–412. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Glading A, Lauffenburger DA and Wells A:
Cutting to the chase: Calpain proteases in cell motility. Trends
Cell Biol. 12:46–54. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Suzuki K and Sorimachi H: A novel aspect
of calpain activation. FEBS Lett. 433:1–4. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Campbell RL and Davies PL:
Structure-function relationships in calpains. Biochem J.
447:335–351. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu Y, Mei C, Sun L, Li X, Liu M, Wang L,
Li Z, Yin P, Zhao C, Shi Y, et al: The PI3K-Akt pathway regulates
calpain 6 expression, proliferation, and apoptosis. Cell Signal.
23:827–836. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Barnes TM and Hodgkin J: The tra-3 sex
determination gene of Caenorhabditis elegans encodes a member of
the calpain regulatory protease family. EMBO J. 15:4477–4484. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Goll DE, Thompson VF, Li H, Wei W and Cong
J: The calpain system. Physiol Rev. 83:731–801. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mugita N, Kimura Y, Ogawa M, Saya H and
Nakao M: Identification of a novel, tissue-specific calpain htra-3;
a human homologue of the Caenorhabditis elegans sex determination
gene. Biochem Biophys Res Commun. 239:845–850. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hosseini M, Najmabadi H and Kahrizi K:
Calpains: Diverse functions but enigmatic. Arch Iran Med.
21:170–179. 2018.PubMed/NCBI
|
|
17
|
Lebart MC and Benyamin Y: Calpain
involvement in the remodeling of cytoskeletal anchorage complexes.
FEBS J. 273:3415–3426. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sato K and Kawashima S: Calpain function
in the modulation of signal transduction molecules. Biol Chem.
382:743–751. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hong JM, Teitelbaum SL, Kim TH, Ross FP,
Kim SY and Kim HJ: Calpain-6, a target molecule of glucocorticoids,
regulates osteoclastic bone resorption via cytoskeletal
organization and microtubule acetylation. J Bone Miner Res.
26:657–665. 2011. View Article : Google Scholar
|
|
20
|
Tonami K, Kurihara Y, Arima S, Nishiyama
K, Uchijima Y, Asano T, Sorimachi H and Kurihara H: Calpain-6, a
microtubule-stabilizing protein, regulates Rac1 activity and cell
motility through interaction with GEF-H1. J Cell Sci.
124:1214–1223. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tonami K, Hata S, Ojima K, Ono Y, Kurihara
Y, Amano T, Sato T, Kawamura Y, Kurihara H and Sorimachi H:
Calpain-6 deficiency promotes skeletal muscle development and
regeneration. PLoS Genet. 9:e10036682013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Margiotta A, Progida C, Bakke O and Bucci
C: Rab7a regulates cell migration through Rac1 and vimentin.
Biochim Biophys Acta Mol Cell Res. 1864:367–381. 2017. View Article : Google Scholar
|
|
23
|
Rodriguez OC, Schaefer AW, Mandato CA,
Forscher P, Bement WM and Waterman-Storer CM: Conserved
microtubule-actin interactions in cell movement and morphogenesis.
Nat Cell Biol. 5:599–609. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mogessie B, Roth D, Rahil Z and Straube A:
A novel isoform of MAP4 organises the paraxial microtubule array
required for muscle cell differentiation. Elife. 4:e056972015.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bryan BA, Li D, Wu X and Liu M: The Rho
family of small GTPases: Crucial regulators of skeletal myogenesis.
Cell Mol Life Sci. 62:1547–1555. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Skubitz KM and Skubitz AP: Differential
gene expression in uterine leiomyoma. J Lab Clin Med. 141:297–308.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Marion A, Dieudonné FX, Patiño-Garcia A,
Lecanda F, Marie PJ and Modrowski D: Calpain-6 is an endothelin-1
signaling dependent protective factor in chemoresistant
osteosarcoma. Int J Cancer. 130:2514–2525. 2012. View Article : Google Scholar
|
|
28
|
Liu Y, Wang Y, Sun X, Mei C, Wang L, Li Z
and Zha X: miR-449a promotes liver cancer cell apoptosis by
downregulation of Calpain 6 and POU2F1. Oncotarget. 7:13491–13501.
2016. View Article : Google Scholar :
|
|
29
|
Su X, Xiao D, Huang L, Li S, Ying J, Tong
Y, Ye Q, Mu D and Qu Y: MicroRNA alteration in developing rat
oligodendrocyte precursor cells induced by hypoxia-ischemia. J
Neuropathol Exp Neurol. 78:900–909. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mahaman YAR, Huang F, Kessete Afewerky H,
Maibouge TMS, Ghose B and Wang X: Involvement of calpain in the
neuropatho-genesis of Alzheimer's disease. Med Res Rev. 39:608–630.
2019. View Article : Google Scholar
|
|
31
|
Peng P, Wu W, Zhao J, Song S, Wang X, Jia
D, Shao M, Zhang M, Li L, Wang L, et al: Decreased expression of
Calpain-9 predicts unfavorable prognosis in patients with gastric
cancer. Sci Rep. 6:296042016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fichna JP, Macias A, Piechota M,
Korostyński M, Potulska- Chromik A, Redowicz MJ and Zekanowski C:
Whole-exome sequencing identifies novel pathogenic mutations and
putative phenotype-influencing variants in Polish limb-girdle
muscular dystrophy patients. Hum Genomics. 12:342018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Stumvoll M, Goldstein BJ and van Haeften
TW: Type 2 diabetes: Principles of pathogenesis and therapy.
Lancet. 365:1333–1346. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Miyazaki T, Taketomi Y, Takimoto M, Lei
XF, Arita S, Kim-Kaneyama JR, Arata S, Ohata H, Ota H, Murakami M
and Miyazaki A: m-Calpain induction in vascular endothelial cells
on human and mouse atheromas and its roles in VE-cadherin
disorganization and atherosclerosis. Circulation. 124:2522–2532.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Matsushita Y, Shimada Y, Kawara S,
Takehara K and Sato S: Autoantibodies directed against the protease
inhibitor calpastatin in psoriasis. Clin Exp Immunol. 139:355–362.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ono Y, Saido TC and Sorimachi H: Calpain
research for drug discovery: Challenges and potential. Nat Rev Drug
Discov. 15:854–876. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Drag M and Salvesen GS: Emerging
principles in protease-based drug discovery. Nat Rev Drug Discov.
9:690–701. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nikkel AL, Martino B, Markosyan S,
Brederson JD, Medeiros R, Moeller A and Bitner RS: The novel
calpain inhibitor A-705253 prevents stress-induced tau
hyperphosphorylation in vitro and in vivo. Neuropharmacology.
63:606–612. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ono Y, Ojima K, Shinkai-Ouchi F, Hata S
and Sorimachi H: An eccentric calpain, CAPN3/p94/calpain-3.
Biochimie. 122:169–187. 2016. View Article : Google Scholar
|
|
40
|
Skubitz KM and Skubitz AP: Differential
gene expression in leiomyosarcoma. Cancer. 98:1029–1038. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Marion A, Dieudonné F, Patiño-García A,
Lecanda F, Marie P and Modrowski D: Identification of calpain-6 as
a new target involved in cell death of bone cancer cells. Bone.
44:S2472009. View Article : Google Scholar
|
|
42
|
Xiang Y, Li F, Wang L, Zheng A, Zuo J, Li
M, Wang Y, Xu Y, Chen C, Chen S, et al: Decreased calpain 6
expression is associated with tumorigenesis and poor prognosis in
HNSCC. Oncol Lett. 13:2237–2243. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Filali H, Vidal E, Bolea R, Márquez M,
Marco P, Vargas A, Pumarola M, Martin-Burriel I and Badiola JJ:
Gene and protein patterns of potential prion-related markers in the
central nervous system of clinical and preclinical infected sheep.
Vet Res. 44:142013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Markmann A, Schäfer S, Linz W, Löhn M,
Busch AE and Wohlfart P: Down-regulation of calpain 9 is linked to
hypertensive heart and kidney disease. Cell Physiol Biochem.
15:109–116. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Guttula SV, Rao AA, Sridhar GR,
Chakravarthy MS, Nageshwararo K and Rao PV: Cluster analysis and
phylogenetic relationship in biomarker identification of type 2
diabetes and nephropathy. Int J Diabetes Dev Ctries. 30:52–56.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Miyazaki T, Tonami K, Hata S, Aiuchi T,
Ohnishi K, Lei XF, Kim-Kaneyama JR, Takeya M, Itabe H, Sorimachi H,
et al: Calpain-6 confers atherogenicity to macrophages by
dysregulating pre-mRNA splicing. J Clin Invest. 126:3417–3432.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yin SJ, Lee JR, Kwak H, Lee BN, Han JW,
Hahn MJ, Park YD and Yang JM: Functional study of 143-3 protein
epsilon (YWHAE) in keratinocytes: Microarray integrating
bioinformatics approaches. J Biomol Struct Dyn. 38:2633–2649. 2020.
View Article : Google Scholar
|
|
48
|
Xia L, Liu Y, Fu Y, Dongye S and Wang D:
Integrated analysis reveals candidate mRNA and their potential
roles in uterine leiomyomas. J Obstet Gynaecol Res. 43:149–156.
2017. View Article : Google Scholar
|
|
49
|
Zhu L, Sun Y, Wu Q, Zhang C and Ling J:
CAPN6 regulates uterine leiomyoma cell proliferation and apoptosis
through the Rac1-dependent signaling pathway. Ann Clin Lab Sci.
50:24–30. 2020.PubMed/NCBI
|
|
50
|
Lee SJ, Choi YL, Lee EJ, Kim BG, Bae DS,
Ahn GH and Lee JH: Increased expression of calpain 6 in uterine
sarcomas and carci-nosarcomas: An immunohistochemical analysis. Int
J Gynecol Cancer. 17:248–253. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Rho SB, Byun HJ, Park SY and Chun T:
Calpain 6 supports tumorigenesis by inhibiting apoptosis and
facilitating angiogenesis. Cancer Lett. 271:306–313. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lee SJ, Kim BG, Choi YL and Lee JW:
Increased expression of calpain 6 during the progression of uterine
cervical neoplasia: Immunohistochemical analysis. Oncol Rep.
19:859–863. 2008.PubMed/NCBI
|
|
53
|
LoRusso PM: Inhibition of the
PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol. 34:3803–3815.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wu XX and Kakehi Y: Enhancement of
lexatumumab-induced apoptosis in human solid cancer cells by
Cisplatin in caspase-dependent manner. Clin Cancer Res.
15:2039–2047. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Grgic I, Eichler I, Heinau P, Si H,
Brakemeier S, Hoyer J and Köhler R: Selective blockade of the
intermediate-conductance Ca2+-activated K+
channel suppresses proliferation of micro-vascular and
macrovascular endothelial cells and angiogenesis in vivo.
Arterioscler Thromb Vasc Biol. 25:704–709. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tomatis C, Fiorio Pla A and Munaron L:
Cytosolic calcium microdomains by arachidonic acid and nitric oxide
in endothelial cells. Cell Calcium. 41:261–269. 2007. View Article : Google Scholar
|
|
57
|
Apte RS, Chen DS and Ferrara N: VEGF in
signaling and disease: Beyond discovery and development. Cell.
176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li J, Meng X, Hu J, Zhang Y, Dang Y, Wei L
and Shi M: Heparanase promotes radiation resistance of cervical
cancer by upregulating hypoxia inducible factor 1. Am J Cancer Res.
7:234–244. 2017.PubMed/NCBI
|
|
59
|
Oh M, Rho SB, Son C, Park K and Song SY:
Non-proteolytic calpain-6 interacts with VEGFA and promotes
angiogenesis by increasing VEGF secretion. Sci Rep. 9:157712019.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Marion A, Dieudonné FX, Marie PJ and
Modrowski D: Endothelin-1 up regulates the survival factor
calpain-6 in osteo-sarcoma cells through Mapk and PI3K pathways.
Bone. 47:S1122010. View Article : Google Scholar
|
|
61
|
Marion A, Dieudonné FX, Patiño-Garcia A,
Lecanda F, Marie PJ and Modrowski D: Abnormal expression of
calpain-6 due to endothelin-1/NFκB signalling contributes to cell
survival and chemoresistance in osteosarcoma cells. Bone.
48:S382011. View Article : Google Scholar
|
|
62
|
Jin W, Wu L, Liang K, Liu B, Lu Y and Fan
Z: Roles of the PI-3K and MEK pathways in Ras-mediated
chemoresistance in breast cancer cells. Br J Cancer. 89:185–191.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Geismann C, Schäfer H, Gundlach JP, Hauser
C, Egberts JH, Schneider G and Arlt A: NF-κB dependent chemokine
signaling in pancreatic cancer. Cancers (Basel). 11:14452019.
View Article : Google Scholar
|
|
64
|
Andrique C, Morardet L, Linares LK, Cissé
MY, Merle C, Chibon F, Provot S, Haÿ E, Ea HK, Cohen-Solal M and
Modrowski D: Calpain-6 controls the fate of sarcoma stem cells by
promoting autophagy and preventing senescence. JCI insight.
3:e1212252018. View Article : Google Scholar :
|
|
65
|
Orosco A, Fromigué O, Bazille C,
Entz-Werle N, Levillain P, Marie PJ and Modrowski D: Syndecan-2
affects the basal and chemotherapy-induced apoptosis in
osteosarcoma. Cancer Res. 67:3708–3715. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Dieudonné FX, Marion A, Marie PJ and
Modrowski D: Targeted inhibition of T-cell factor activity promotes
syndecan-2 expression and sensitization to doxorubicin in
osteosarcoma cells and bone tumors in mice. J Bone Miner Res.
27:2118–2129. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhao Y, Liao Q, Zhu Y and Long H:
Endothelin-1 promotes osteosarcoma cell invasion and survival
against cisplatin-induced apoptosis. Clin Orthop Relat Res.
469:3190–3199. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kaci I, Mansouri R, Marie P and Modrowski
D: Hypoxia upregulates calpain-6expression in osteosarcoma cells:
Implication in cancer stem cells. J Bone Min Res. 28:2013.
|
|
69
|
Bouanga JT, Yoon J and Modrowski D:
Contribution of cancer stem cells to the metastatic capacities of
osteosarcoma. Calcif Tissue Int. 104:S852019.
|
|
70
|
Zha X: The PI3K-Akt pathway regulates
calpain 6 expression, proliferation, and apoptosis. FASEB J.
25:2011.
|
|
71
|
Singh NK: microRNAs databases:
Developmental methodologies, structural and functional annotations.
Interdiscip Sci. 9:357–377. 2017. View Article : Google Scholar
|
|
72
|
Wong CM, Tsang FH and Ng IO: Non-coding
RNAs in hepatocellular carcinoma: Molecular functions and
pathological implications. Nat Rev Gastroenterol Hepatol.
15:137–151. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Raimbourg Q, Perez J, Vandermeersch S,
Prignon A, Hanouna G, Haymann JP, Baud L and Letavernier E: The
calpain/calpastatin system has opposing roles in growth and
metastatic dissemination of melanoma. PLoS One. 8:e604692013.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Birch D, Britt BC, Dukes SC, Kessler JA
and Dizon ML: MicroRNAs participate in the murine oligodendroglial
response to perinatal hypoxia-ischemia. Pediatr Res. 76:334–340.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Guo Y, Gong HS, Zhang J, Xie WL, Tian C,
Chen C, Shi Q, Wang SB, Xu Y, Zhang BY and Dong XP: Remarkable
reduction of MAP2 in the brains of scrapie-infected rodents and
human prion disease possibly correlated with the increase of
calpain. PLoS One. 7:e301632012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yadavalli R, Guttmann RP, Seward T,
Centers AP, Williamson RA and Telling GC: Calpain-dependent
endoproteolytic cleavage of PrPSc modulates scrapie prion
propagation. J Biol Chem. 279:21948–21956. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Donkor I: An update on the therapeutic
potential of calpain inhibitors: A patent review. Expert Opin Ther
Pat. 1–17. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Miyazaki T and Miyazaki A: Dysregulation
of calpain proteolytic systems underlies degenerative vascular
disorders. J Atheroscler Thromb. 25:1–15. 2018. View Article : Google Scholar :
|
|
79
|
Miyazaki T and Miyazaki A: Emerging roles
of calpain proteolytic systems in macrophage cholesterol handling.
Cell Mol Life Sci. 74:3011–3021. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Miyazaki T and Miyazaki A: Impact of
dysfunctional protein catabolism on macrophage cholesterol
handling. Curr Med Chem. 26:1631–1643. 2019. View Article : Google Scholar
|
|
81
|
Kang MY, Zhang Y, Matkovich SJ, Diwan A,
Chishti AH and Dorn GW II: Receptor-independent cardiac protein
kinase Calpha activation by calpain-mediated truncation of
regulatory domains. Circ Res. 107:903–912. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Taneike M, Mizote I, Morita T, Watanabe T,
Hikoso S, Yamaguchi O, Takeda T, Oka T, Tamai T, Oyabu J, et al:
Calpain protects the heart from hemodynamic stress. J Biol Chem.
286:32170–32177. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Galvez AS, Diwan A, Odley AM, Hahn HS,
Osinska H, Melendez JG, Robbins J, Lynch RA, Marreez Y and Dorn GW
II: Cardiomyocyte degeneration with calpain deficiency reveals a
critical role in protein homeostasis. Circ Res. 100:1071–1078.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Moyen C, Goudenege S, Poussard S, Sassi A,
Brustis J and Cottin P: Involvement of micro-calpain (CAPN 1) in
muscle cell differentiation. Int J Biochem Cell Biol. 36:728–743.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sáenz A, Azpitarte M, Armañanzas R,
Leturcq F, Alzualde A, Inza I, García-Bragado F, De la Herran G,
Corcuera J, Cabello A, et al: Gene expression profiling in
limb-girdle muscular dystrophy 2A. PLoS One. 3:e37502008.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hollinger K and Selsby J: The
physiological response of protease inhibition in dystrophic muscle.
Acta Physiol (Oxf). 208:234–244. 2013. View Article : Google Scholar
|
|
87
|
Raaby L, Otkjær K, Salvskov-Iversen ML,
Johansen C and Iversen L: Characterization of the expression of
143-3 isoforms in psoriasis, basal cell carcinoma, atopic
dermatitis and contact dermatitis. Dermatol Rep. 2:e142010.
View Article : Google Scholar
|