|
1
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L,
Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gorbalenya AE, Baker SC, Baric RS, de
Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber CL,
Leontovich AM, Neuman BW, et al: Severe acute respiratory
syndrome-related coronavirus: The species and its viruses- A
statement of the Coronavirus Study Group. Microbiology. 2020.
|
|
3
|
Cucinotta D and Vanelli M: WHO declares
COVID-19 a pandemic. Acta Biomed. 91:157–160. 2020.PubMed/NCBI
|
|
4
|
Shang J, Wan Y, Luo C, Ye G, Geng Q,
Auerbach A and Li F: Cell entry mechanisms of SARS-CoV-2. Proc Natl
Acad Sci USA. 117:11727–11734. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nitulescu GM, Paunescu H, Moschos SA,
Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK,
Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to
treat SARSCoV2 infection: Mechanistic insights into current COVID19
therapies (Review). Int J Mol Med. 46:467–488. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Read SA, Obeid S, Ahlenstiel C and
Ahlenstiel G: The role of zinc in antiviral immunity. Adv Nutr.
10:696–710. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Teymoori-Rad M, Shokri F, Salimi V and
Marashi SM: The interplay between vitamin D and viral infections.
Rev Med Virol. 29:e20322019. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Uyangaa E, Lee HK and Eo SK: Glutamine and
leucine provide enhanced protective immunity against mucosal
infection with herpes simplex virus type 1. Immune Netw.
12:196–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bringhurst RM, Dominguez AA and Schaffer
PA: Glutamine deprivation causes enhanced plating efficiency of a
herpes simplex virus type 1 ICP0-null mutant. J Virol.
82:11472–11475. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Arvinte C, Singh M and Marik PE: Serum
levels of vitamin C and vitamin D in a cohort of critically ill
COVID-19 patients of a North American Community Hospital Intensive
Care Unit in May 2020: A pilot study. Med Drug Discov.
8:1000642020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Alexander J, Tinkov A, Strand TA, Alehagen
U, Skalny A and Aaseth J: Early nutritional interventions with
zinc, selenium and vitamin D for raising anti-viral resistance
against progressive COVID-19. Nutrients. 12:23582020. View Article : Google Scholar :
|
|
12
|
Bauer SR, Kapoor A, Rath M and Thomas SA:
What is the role of supplementation with ascorbic acid, zinc,
vitamin D, or N-acetylcysteine for prevention or treatment of
COVID-19? Cleve Clin J Med. Jun 8–2020.Epub ahead of print.
View Article : Google Scholar
|
|
13
|
Benskin LL: A basic review of the
preliminary evidence that COVID-19 risk and severity is increased
in vitamin D deficiency. Front Public Health. 8:5132020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Brewer J, Gomez Marti JL and Brufsky A:
Potential interventions for SARS-CoV-2 infections: Zinc showing
promise. J Med Virol. Sep 17–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Calder PC, Carr AC, Gombart AF and
Eggersdorfer M: Optimal nutritional status for a well-functioning
immune system is an important factor to protect against viral
infections. Nutrients. 12:11812020. View Article : Google Scholar :
|
|
16
|
Chakhtoura M, Napoli N and El Hajj
Fuleihan G: Commentary: Myths and facts on vitamin D amidst the
COVID-19 pandemic. Metabolism. 109:1542762020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Durán N and Fávaro WJ: Immunomodulators
acting on covid-19: Actual knowledge and perspectives. J Appl
Microb Res. 3:37–44. 2020.
|
|
18
|
Ebadi M and Montano-Loza AJ: Perspective:
Improving vitamin D status in the management of COVID-19. Eur J
Clin Nutr. 74:856–859. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ferrara F, De Rosa F and Vitiello A: The
central role of clinical nutrition in COVID-19 patients during and
after hospitalization in intensive care unit. SN Compr Clin Med.
1–5. 2020.
|
|
20
|
Grant WB, Lahore H, McDonnell SL, Baggerly
CA, French CB, Aliano JL and Bhattoa HP: Evidence that vitamin D
supplementation could reduce risk of influenza and COVID-19
infections and deaths. Nutrients. 12:9882020. View Article : Google Scholar :
|
|
21
|
Jovic TH, Ali SR, Ibrahim N, Jessop ZM,
Tarassoli SP, Dobbs TD, Holford P, Thornton CA and Whitaker IS:
Could vitamins help in the fight against COVID-19? Nutrients.
12:25502020. View Article : Google Scholar :
|
|
22
|
Siuka D, Pfeifer M and Pinter B: Vitamin D
supplementation during the COVID-19 pandemic. Mayo Clin Proc.
95:1804–1805. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Skalny AV, Rink L, Ajsuvakova OP, Aschner
M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos
DA, Aaseth J, et al: Zinc and respiratory tract infections:
Perspectives for COVID19 (Review). Int J Mol Med. 46:17–26.
2020.PubMed/NCBI
|
|
24
|
Xu Y, Baylink DJ, Chen CS, Reeves ME, Xiao
J, Lacy C, Lau E and Cao H: The importance of vitamin d metabolism
as a potential prophylactic, immunoregulatory and neuroprotective
treatment for COVID-19. J Transl Med. 18:3222020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Weir EK, Thenappan T, Bhargava M and Chen
Y: Does vitamin D deficiency increase the severity of COVID-19?
Clin Med (Lond). 20:e107–e108. 2020. View Article : Google Scholar
|
|
26
|
Zhang J, McCullough PA and Tecson KM:
Vitamin D deficiency in association with endothelial dysfunction:
Implications for patients with COVID-19. Rev Cardiovasc Med.
21:339–344. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bergman P: The link between vitamin D and
COVID-19: Distinguishing facts from fiction. J Intern Med. Jul
11–2020.Epub ahead of print.
|
|
28
|
Totura AL and Bavari S: Broad-spectrum
coronavirus antiviral drug discovery. Expert Opin Drug Discov.
14:397–412. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Berg K, Bolt G, Andersen H and Owen TC:
Zinc potentiates the antiviral action of human IFN-alpha tenfold. J
Interferon Cytokine Res. 21:471–474. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Foster M and Samman S: Zinc and regulation
of inflammatory cytokines: Implications for cardiometabolic
disease. Nutrients. 4:676–694. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cakman I, Kirchner H and Rink L: Zinc
supplementation reconstitutes the production of interferon-alpha by
leukocytes from elderly persons. J Interferon Cytokine Res.
17:469–472. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fabri M, Stenger S, Shin DM, Yuk JM, Liu
PT, Realegeno S, Lee HM, Krutzik SR, Schenk M, Sieling PA, et al:
Vitamin D is required for IFN-gamma-mediated antimicrobial activity
of human macrophages. Sci Transl Med. 3:104ra1022011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Carr EL, Kelman A, Wu GS, Gopaul R,
Senkevitch E, Aghvanyan A, Turay AM and Frauwirth KA: Glutamine
uptake and metabolism are coordinately regulated by ERK/MAPK during
T lymphocyte activation. J Immunol. 185:1037–1044. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hörig H, Spagnoli GC, Filgueira L, Babst
R, Gallati H, Harder F, Juretic A and Heberer M: Exogenous
glutamine requirement is confined to late events of T cell
activation. J Cell Biochem. 53:343–351. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Klysz D, Tai X, Robert PA, Craveiro M,
Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI,
et al: Glutamine-dependent alpha-ketoglutarate production regulates
the balance between T helper 1 cell and regulatory T cell
generation. Sci Signal. 8:ra972015. View Article : Google Scholar
|
|
36
|
Fávaro WJ, Iantas SR, Gonçalves JM, Dias
QC, Reis IB, Billis A, Duran N and Alonso JC: Role of OncoTherad
immunotherapy in the regulation of toll-like receptors-mediated
immune system and RANK/RANKL signaling: New therapeutic perspective
for non-muscle invasive bladder cancer. J Clin Oncol.
37:e160042019. View Article : Google Scholar
|
|
37
|
Durán N, Dias QC and Fávaro WJ:
OncoTherad: A new nanobiological response modifier, its
toxicological and anticancer activities. J Phys Conf Ser. Oct
2–2019.Epub ahead of print. View Article : Google Scholar
|
|
38
|
Fávaro W and Durán N: Process of obtaining
a nanostructured complex (CFI-1), associated to nanostructured
CFI-1 with a protein (MRB-CFI-1) and its use. Patent
BR1020170127680. June 14–2017
|
|
39
|
Challem JJ: Toward a new definition of
essential nutrients: Is it now time for a third 'vitamin' paradigm?
Med Hypotheses. 52:417–422. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Greiller CL and Martineau AR: Modulation
of the immune response to respiratory viruses by vitamin D.
Nutrients. 7:4240–4270. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Platanias LC: Mechanisms of type-I- and
type-II-interferon-mediated signalling. Nat Rev Immunol. 5:375–386.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Le Page C, Génin P, Baines MG and Hiscott
J: Interferon activation and innate immunity. Rev Immunogenet.
2:374–386. 2000.
|
|
43
|
O'Brien TR, Thomas DL, Jackson SS,
Prokunina-Olsson L, Donnelly RP and Hartmann R: Weak induction of
interferon expression by SARS-CoV-2 supports clinical trials of
interferon lambda to treat early COVID-19. Clin Infect Dis.
71:1410–1412. 2020.PubMed/NCBI
|
|
44
|
Benveniste EN and Qin H: Type I
interferons as anti-inflammatory mediators. Sci STKE.
2007:pe702007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Karimi Y, Giles EC, Vahedi F, Chew MV,
Nham T, Loukov D, Lee AJ, Bowdish DM and Ashkar AA: IFN-beta
signalling regulates RAW 264.7 macrophage activation, cytokine
production, and killing activity. Innate Immun. 26:172–182. 2020.
View Article : Google Scholar
|
|
46
|
Billiau A: Anti-inflammatory properties of
Type I interferons. Antiviral Res. 71:108–116. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
González-Navajas JM, Lee J, David M and
Raz E: Immunomodulatory functions of type I interferons. Nat Rev
Immunol. 12:125–135. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Guarda G, Braun M, Staehli F, Tardivel A,
Mattmann C, Förster I, Farlik M, Decker T, Du Pasquier RA, Romero P
and Tschopp J: Type I interferon inhibits interleukin-1 production
and inflammasome activation. Immunity. 34:213–223. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Arimori Y, Nakamura R, Yamada H, Shibata
K, Maeda N, Kase T and Yoshikai Y: Type I interferon limits
influenza virus-induced acute lung injury by regulation of
excessive inflammation in mice. Antiviral Res. 99:230–237. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Doherty PC, Turner SJ, Webby RG and Thomas
PG: Influenza and the challenge for immunology. Nat Immunol.
7:449–455. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
51
|
Maines TR, Szretter KJ, Perrone L, Belser
JA, Bright RA, Zeng H, Tumpey TM and Katz JM: Pathogenesis of
emerging avian influenza viruses in mammals and the host innate
immune response. Immunol Rev. 225:68–84. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Taubenberger JK and Morens DM: The
pathology of influenza virus infections. Annu Rev Pathol.
3:499–522. 2008. View Article : Google Scholar :
|
|
53
|
Li X, Geng M, Peng Y, Meng L and Lu S:
Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm
Anal. 10:102–108. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xu Z, Shi L, Wang Y, Zhang J, Huang L,
Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings
of COVID-19 associated with acute respiratory distress syndrome.
Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gralinski LE and Menachery VD: Return of
the coronavirus: 2019-nCoV. Viruses. 12:1352020. View Article : Google Scholar :
|
|
57
|
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W,
Xie L, Wang Y and Guo X: Systematic comparison of two
animal-to-human transmitted human coronaviruses: SARS-CoV-2 and
SARS-CoV. Viruses. 12:2442020. View Article : Google Scholar :
|
|
58
|
Sarzi-Puttini P, Giorgi V, Sirotti S,
Marotto D, Ardizzone S, Rizzardini G, Antinori S and Galli M:
COVID-19, cytokines and immunosuppression: What can we learn from
severe acute respiratory syndrome? Clin Exp Rheumatol. 38:337–342.
2020.PubMed/NCBI
|
|
59
|
Kindler E, Thiel V and Weber F:
Interaction of SARS and MERS coronaviruses with the antiviral
interferon response. Adv Virus Res. 96:219–243. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Perlman S and Dandekar AA:
Immunopathogenesis of coronavirus infections: Implications for
SARS. Nat Rev Immunol. 5:917–927. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pedersen SF and Ho YC: SARS-CoV-2: A storm
is raging. J Clin Invest. 130:2202–2205. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chu H, Chan JF, Wang Y, Yuen TT, Chai Y,
Hou Y, Shuai H, Yang D, Hu B, Huang X, et al: Comparative
replication and immune activation profiles of SARS-CoV-2 and
SARS-CoV in human lungs: An ex vivo study with implications for the
pathogenesis of COVID-19. Clin Infect Dis. 71:1400–1409. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li SF, Gong MJ, Zhao FR, Shao JJ, Xie YL,
Zhang YG and Chang HY: Type I interferons: Distinct biological
activities and current applications for viral infection. Cell
Physiol Biochem. 51:2377–2396. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Haagmans BL, Kuiken T, Martina BE,
Fouchier RA, Rimmelzwaan GF, van Amerongen G, van Riel D, de Jong
T, Itamura S, Chan KH, et al: Pegylated interferon-alpha protects
type 1 pneumocytes against SARS coronavirus infection in macaques.
Nat Med. 10:290–293. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cinatl J, Morgenstern B, Bauer G, Chandra
P, Rabenau H and Doerr HW: Treatment of SARS with human
interferons. Lancet. 362:293–294. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Falzarano D, de Wit E, Rasmussen AL,
Feldmann F, Okumura A, Scott DP, Brining D, Bushmaker T, Martellaro
C, Baseler L, et al: Treatment with interferon-α2b and ribavirin
improves outcome in MERS-CoV-infected rhesus macaques. Nat Med.
19:1313–1317. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ströher U, DiCaro A, Li Y, Strong JE, Aoki
F, Plummer F, Jones SM and Feldmann H: Severe acute respiratory
syndrome-related coronavirus is inhibited by interferon-alpha. J
Infect Dis. 189:1164–1167. 2004. View
Article : Google Scholar
|
|
68
|
Channappanavar R, Fehr AR, Zheng J,
Wohlford-Lenane C, Abrahante JE, Mack M, Sompallae R, McCray PB Jr,
Meyerholz DK and Perlman S: IFN-I response timing relative to virus
replication determines MERS coronavirus infection outcomes. J Clin
Invest. 130:3625–3639. 2019. View Article : Google Scholar
|
|
69
|
Hensley LE, Fritz LE, Jahrling PB, Karp
CL, Huggins JW and Geisbert TW: Interferon-beta 1a and SARS
coronavirus replication. Emerg Infect Dis. 10:317–319. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Turner RB, Felton A, Kosak K, Kelsey DK
and Meschievitz CK: Prevention of experimental coronavirus colds
with intranasal alpha-2b interferon. J Infect Dis. 154:443–447.
1986. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Falzarano D, de Wit E, Martellaro C,
Callison J, Munster VJ and Feldmann H: Inhibition of novel beta
coronavirus replication by a combination of interferon-alpha2b and
ribavirin. Sci Rep. 3:16862013. View Article : Google Scholar
|
|
72
|
Thiel V and Weber F: Interferon and
cytokine responses to SARS-coronavirus infection. Cytokine Growth
Factor Rev. 19:121–132. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sainz B Jr, Mossel EC, Peters CJ and Garry
RF: Interferon-beta and interferon-gamma synergistically inhibit
the replication of severe acute respiratory syndrome-associated
coronavirus (SARS-CoV). Virology. 329:11–17. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mossel EC, Sainz B Jr, Garry RF and Peters
CJ: Synergistic inhibition of SARS-coronavirus replication by type
I and type II IFN. Adv Exp Med Biol. 581:503–506. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yoshikawa T, Hill TE, Yoshikawa N, Popov
VL, Galindo CL, Garner HR, Peters CJ and Tseng CT: Dynamic innate
immune responses of human bronchial epithelial cells to severe
acute respiratory syndrome-associated coronavirus infection. PLoS
One. 5:e87292010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Larkin J, Jin L, Farmen M, Venable D,
Huang Y, Tan SL and Glass JI: Synergistic antiviral activity of
human interferon combinations in the hepatitis C virus replicon
system. J Interferon Cytokine Res. 23:247–257. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li G and De Clercq E: Therapeutic options
for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov.
19:149–150. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fávaro WJ, Iantas SR, Gonçalves JM, Socca
EAR, Durán N and Billis A: Single-arm phase I/II study of the
safety and efficacy of OncoTherad immunomodulator in patients
BCG-refractory or relapsed non-muscle invasive bladder cancer. J
Clin Oncol. 37:e160002019. View Article : Google Scholar
|
|
79
|
Böckelmann PK, Tizziani SH, Durán N and
Fávaro WJ: New therapeutic perspective for bladder cancer in dogs:
Toxicological and clinical effects of oncotherad nanostructured
immunotherapy. J Phys Conf Ser. 1323:0120222019. View Article : Google Scholar
|
|
80
|
Fávaro WJ and Caballero NE: A method for
producing a nanostructured complex (cfi-1), a protein-associated
nanostructured complex (mrb-cfi-1) and use. US Patent 20200156951.
June 14–2018, issued May 21, 2020.
|
|
81
|
Fávaro WJ and Caballero NED: A method for
producing a nanostructured complex (cfi-1), a protein-associated
nanostructured complex (mrb-cfi-1) And use. Patent WO2018227261.
Filed June 13, 2018; issued December 19, 2018.
|
|
82
|
Alonso JCC, Reis IB, Gonçalves JM, Sasaki
BR, Cintra AA, Duran N, Billis A and Fávaro WJ: Oncotherad
immunotherapy elicits promising responses in Bacillus
Calmette-Guérin-unresponsive non-muscle invasive bladder cancer:
Results from phase I/II study. J Clin Oncol. 38:e170482020.
View Article : Google Scholar
|
|
83
|
Totura AL, Whitmore A, Agnihothram S,
Schäfer A, Katze MG, Heise MT and Baric RS: Toll-like receptor 3
signaling via TRIF contributes to a protective innate immune
response to severe acute respiratory syndrome coronavirus
infection. mBio. 6:e00638–00615. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Delafiori J, Alonso JCC, Santos LA,
Oliveira DN, Navarro LC, Brandt Busanello EN, Sales GM, Oliveira
AN, Rocha AR, Durán N, et al: A 78-year old urothelial cancer
patient with faster recovery from COVID-19: Potential benefit from
adjuvant active immunotherapy. SSRN. Jun 4–2020.Epub ahead of
print. View Article : Google Scholar
|
|
85
|
Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T,
Li F, Xu Q, Zhang Y, Xu S, et al: Clinical progression of patients
with COVID-19 in Shanghai, China. J Infect. 80:e1–e6. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wei Z, Burwinkel M, Palissa C, Ephraim E
and Schmidt MF: Antiviral activity of zinc salts against
transmissible gastroenteritis virus in vitro. Vet Microbiol.
160:468–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Korant BD, Kauer JC and Butterworth BE:
Zinc ions inhibit replication of rhinoviruses. Nature. 248:588–590.
1974. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Suara RO and Crowe JE Jr: Effect of zinc
salts on respiratory syncytial virus replication. Antimicrob Agents
Chemother. 48:783–790. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
te Velthuis AJ, van den Worm SH, Sims AC,
Baric RS, Snijder EJ and van Hemert MJ: Zn(2+) inhibits coronavirus
and arterivirus RNA polymerase activity in vitro and zinc
ionophores block the replication of these viruses in cell culture.
PLoS Pathog. 6:e10011762010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kaushik N, Anang S, Ganti KP and Surjit M:
Zinc: A potential antiviral against Hepatitis E virus infection?
DNA Cell Biol. 37:593–599. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Aydemir TB, Liuzzi JP, McClellan S and
Cousins RJ: Zinc transporter ZIP8 (SLC39A8) and zinc influence
IFN-gamma expression in activated human T cells. J Leukoc Biol.
86:337–348. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bao S and Knoell DL: Zinc modulates
cytokine-induced lung epithelial cell barrier permeability. Am J
Physiol Lung Cell Mol Physiol. 291:L1132–L1141. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Reiber C, Brieger A, Engelhardt G, Hebel
S, Rink L and Haase H: Zinc chelation decreases IFN-β-induced STAT1
upregulation and iNOS expression in RAW 264.7 macrophages. J Trace
Elem Med Biol. 44:76–82. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Huang IC, Bailey CC, Weyer JL, Radoshitzky
SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, et al:
Distinct patterns of IFITM-mediated restriction of filoviruses,
SARS coronavirus, and influenza A virus. PLoS Pathog.
7:e10012582011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Fu B, Wang L, Li S and Dorf ME: ZMPSTE24
defends against influenza and other pathogenic viruses. J Exp Med.
214:919–929. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li S, Fu B, Wang L and Dorf ME: ZMPSTE24
is downstream effector of interferon-induced transmembrane
antiviral activity. DNA Cell Biol. 36:513–517. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Brieger A, Rink L and Haase H:
Differential regulation of TLR-dependent MyD88 and TRIF signaling
pathways by free zinc ions. J Immunol. 191:1808–1817. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Newton K and Dixit VM: Signaling in innate
immunity and inflammation. Cold Spring Harb Perspect Biol.
4:a0060492012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Costarelli L, Giacconi R, Malavolta M,
Basso A, Piacenza F, DeMartiis M, Giannandrea E, Renieri C, Busco
F, Galeazzi R and Mocchegiani E: Effects of zinc-fortified drinking
skim milk (as functional food) on cytokine release and thymic
hormone activity in very old persons: A pilot study. Age (Dordr).
36:96562014. View Article : Google Scholar
|
|
100
|
Kahmann L, Uciechowski P, Warmuth S,
Plümäkers B, Gressner AM, Malavolta M, Mocchegiani E and Rink L:
Zinc supplementation in the elderly reduces spontaneous
inflammatory cytokine release and restores T cell functions.
Rejuvenation Res. 11:227–237. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
ILSI Brasil International Life Sciences
Institute do Brasil: Vitamina D. Funções Plenamente Reconhecidas de
Nutrientes. 2. Brazil: pp. 432018
|
|
102
|
Pludowski P, Holick MF, Pilz S, Wagner CL,
Hollis BW, Grant WB, Shoenfeld Y, Lerchbaum E, Llewellyn DJ,
Kienreich K and Soni M: Vitamin D effects on musculoskeletal
health, immunity, autoimmunity, cardiovascular disease, cancer,
fertility, pregnancy, dementia and mortality-a review of recent
evidence. Autoimmun Rev. 12:976–989. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Catarino AM, Claro C and Viana I: Vitamin
D-current perspectives. J Portug Soc Dermatol Venereol. 74:345–353.
2016. View Article : Google Scholar
|
|
104
|
White JH: Regulation of intracrine
production of 1,25-dihydroxyvitamin D and its role in innate immune
defense against infection. Arch Biochem Biophys. 523:58–63. 2012.
View Article : Google Scholar
|
|
105
|
Evans KN, Taylor H, Zehnder D, Kilby MD,
Bulmer JN, Shah F, Adams JS and Hewison M: Increased expression of
25-hydroxyvitamin D-1alpha-hydroxylase in dysgerminomas: A novel
form of humoral hypercalcemia of malignancy. Am J Pathol.
165:807–813. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Stoffels K, Overbergh L, Giulietti A,
Verlinden L, Bouillon R and Mathieu C: Immune regulation of
25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone
Miner Res. 21:37–47. 2006. View Article : Google Scholar
|
|
107
|
Hewison M, Freeman L, Hughes SV, Evans KN,
Bland R, Eliopoulos AG, Kilby MD, Moss PA and Chakraverty R:
Differential regulation of vitamin D receptor and its ligand in
human monocyte-derived dendritic cells. J Immunol. 170:5382–5390.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Fritsche J, Mondal K, Ehrnsperger A,
Andreesen R and Kreutz M: Regulation of 25-hydroxyvitamin D3-1
alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3
by human dendritic cells. Blood. 102:3314–3316. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Enioutina EY, Bareyan D and Daynes RA:
TLR-induced local metabolism of vitamin D3 plays an important role
in the diversification of adaptive immune responses. J Immunol.
182:4296–4305. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Enioutina EY, Bareyan D and Daynes RA: TLR
ligands that stimulate the metabolism of vitamin D3 in activated
murine dendritic cells can function as effective mucosal adjuvants
to subcutaneously administered vaccines. Vaccine. 26:601–613. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Hansdottir S, Monick MM, Hinde SL, Lovan
N, Look DC and Hunninghake GW: Respiratory epithelial cells convert
inactive vitamin D to its active form: Potential effects on host
defense. J Immunol. 181:7090–7099. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Overbergh L, Stoffels K, Waer M, Verstuyf
A, Bouillon R and Mathieu C: Immune regulation of 25-hydroxyvitamin
D-1alpha-hydroxylase in human monocytic THP1 cells: Mechanisms of
interferon-gamma-mediated induction. J Clin Endocrinol Metab.
91:3566–3574. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Rhodes JM, Subramanian S, Laird E, Griffin
G and Kenny RA: Perspective: Vitamin D deficiency and COVID-19
severity-plausibly linked by latitude, ethnicity, impacts on
cytokines, ACE2 and thrombosis. J Intern Med. Jul 2–2020.Epub ahead
of print.
|
|
114
|
Yan T, Xiao R and Lin G:
Angiotensin-converting enzyme 2 in severe acute respiratory
syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J.
34:6017–6026. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan
B, Yang P, Sarao R, Wada T, Leong-Poi H, et al:
Angiotensin-converting enzyme 2 protects from severe acute lung
failure. Nature. 436:112–116. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan
B, Huan Y, Yang P, Zhang Y, Deng W, et al: A crucial role of
angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced
lung injury. Nat Med. 11:875–879. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kumar D, Gupta P and Banerjee D: Letter:
Does vitamin D have a potential role against COVID-19? Aliment
Pharmacol Ther. 52:409–411. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Musavi H, Abazari O, Barartabar Z,
Kalaki-Jouybari F, Hemmati-Dinarvand M, Esmaeili P and Mahjoub S:
The benefits of vitamin D in the COVID-19 pandemic: Biochemical and
immunological mechanisms. Arch Physiol Biochem:. Oct 8–2020.Epub
ahead of print. View Article : Google Scholar
|
|
119
|
Malek Mahdavi A: A brief review of
interplay between vitamin D and angiotensin-converting enzyme 2:
Implications for a potential treatment for COVID-19. Rev Med Virol.
30:e21192020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Omori-Mizuno Y, Nakayama N, Inao M, Funyu
J, Asabe S, Tomita K, Nishikawa K, Hosoda Y, Tanaka M, Hashimoto Y,
et al: Randomized study comparing vitamin D3 and
1alpha-Hydroxyvitamin D3 in combination with pegylated
interferon/ribavirin therapy for chronic hepatitis C. J
Gastroenterol Hepatol. 30:1384–1390. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Abu-Mouch S, Fireman Z, Jarchovsky J,
Zeina AR and Assy N: Vitamin D supplementation improves sustained
virologic response in chronic hepatitis C (genotype 1)-naive
patients. World J Gastroenterol. 17:5184–5190. 2011. View Article : Google Scholar
|
|
122
|
Nimer A and Mouch A: Vitamin D improves
viral response in hepatitis C genotype 2-3 naive patients. World J
Gastroenterol. 18:800–805. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yokoyama S, Takahashi S, Kawakami Y, Hayes
CN, Kohno H, Kohno H, Tsuji K, Aisaka Y, Kira S, Yamashina K, et
al: Effect of vitamin D supplementation on pegylated
interferon/ribavirin therapy for chronic hepatitis C genotype 1b: A
randomized controlled trial. J Viral Hepat. 21:348–356. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Petta S, Cammà C, Scazzone C, Tripodo C,
Di Marco V, Bono A, Cabibi D, Licata G, Porcasi R, Marchesini G and
Craxí A: Low vitamin D serum level is related to severe fibrosis
and low responsiveness to interferon-based therapy in genotype 1
chronic hepatitis C. Hepatology. 51:1158–1167. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Behera MK, Shukla SK, Dixit VK, Nath P,
Abhilash VB, Asati PK and Jain AK: Effect of vitamin D
supplementation on sustained virological response in genotype 1/4
chronic hepatitis C treatment-naive patients from India. Indian J
Med Res. 148:200–206. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wang K, Hoshino Y, Dowdell K, Bosch-Marce
M, Myers TG, Sarmiento M, Pesnicak L, Krause PR and Cohen JI:
Glutamine supplementation suppresses herpes simplex virus
reactivation. J Clin Invest. 127:2626–2630. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang R, Dillon CP, Shi LZ, Milasta S,
Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger
J and Green DR: The transcription factor Myc controls metabolic
reprogramming upon T lymphocyte activation. Immunity. 35:871–882.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Nakaya M, Xiao Y, Zhou X, Chang JH, Chang
M, Cheng X, Blonska M, Lin X and Sun SC: Inflammatory T cell
responses rely on amino acid transporter ASCT2 facilitation of
glutamine uptake and mTORC1 kinase activation. Immunity.
40:692–705. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Sinclair LV, Rolf J, Emslie E, Shi YB,
Taylor PM and Cantrell DA: Control of amino-acid transport by
antigen receptors coordinates the metabolic reprogramming essential
for T cell differentiation. Nat Immunol. 14:500–508. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Chang WK, Yang KD and Shaio MF: Effect of
glutamine on Th1 and Th2 cytokine responses of human peripheral
blood mononuclear cells. Clin Immunol. 93:294–301. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Kim J, Zhang J, Cha Y, Kolitz S, Funt J,
Escalante Chong R, Barrett S, Kusko R, Zeskind B and Kaufman H:
Advanced bioinformatics rapidly identifies existing therapeutics
for patients with coronavirus disease-2019 (COVID-19). J Transl
Med. 18:2572020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Oudemans-van Straaten HM, Bosman RJ,
Treskes M, van der Spoel HJ and Zandstra DF: Plasma glutamine
depletion and patient outcome in acute ICU admissions. Intensive
Care Med. 27:84–90. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
O'Mahony JB, Palder SB, Wood JJ, McIrvine
A, Rodrick ML, Demling RH and Mannick JA: Depression of cellular
immunity after multiple trauma in the absence of sepsis. J Trauma.
24:869–875. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
O'Sullivan ST, Lederer JA, Horgan AF, Chin
DH, Mannick JA and Rodrick ML: Major injury leads to predominance
of the T helper-2 lymphocyte phenotype and diminished
interleukin-12 production associated with decreased resistance to
infection. Ann Surg. 222:482–490; discussion 490-492. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Fläring UB, Rooyackers OE, Wernerman J and
Hammarqvist F: Glutamine attenuates post-traumatic glutathione
depletion in human muscle. Clin Sci (Lond). 104:275–282. 2003.
View Article : Google Scholar
|
|
136
|
Mittendorfer B, Gore DC, Herndon DN and
Wolfe RR: Accelerated glutamine synthesis in critically ill
patients cannot maintain normal intramuscular free glutamine
concentration. JPEN J Parenter Enteral Nutr. 23:243–252. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Houdijk AP, Rijnsburger ER, Jansen J,
Wesdorp RI, Weiss JK, McCamish MA, Teerlink T, Meuwissen SG,
Haarman HJ, Thijs LG and van Leeuwen PA: Randomised trial of
glutamine-enriched enteral nutrition on infectius morbidity in
patients with multiple trauma. Lancet. 352:772–776. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Boelens PG, Houdijk AP, Fonk JC, Puyana
JC, Haarman HJ, von Blomberg-van der Flier ME and van Leeuwen PA:
Glutamine-enriched enteral nutrition increases in vitro
interferon-gamma production but does not influence the in vivo
specific antibody response to KLH after severe trauma. A
prospective, double blind, randomized clinical study. Clin Nutr.
23:391–400. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Tao KM, Li XQ, Yang LQ, Yu WF, Lu ZJ, Sun
YM and Wu FX: Glutamine supplementation for critically ill adults.
Cochrane Database Syst Rev. 2014:CD0100502014.
|