|
1
|
Jamwal S, Gautam A, Elsworth J, Kumar M,
Chawla R and Kumar P: An updated insight into the molecular
pathogenesis, secondary complications and potential therapeutics of
COVID-19 pandemic. Life Sci. 257:1181052020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nalleballe K, Reddy Onteddu S, Sharma R,
Dandu V, Brown A, Jasti M, Yadala S, Veerapaneni K, Siddamreddy S,
Avula A, et al: Spectrum of neuropsychiatric manifestations in
COVID-19. Brain Behav Immun. 88:71–74. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q,
Chang J, Hong C, Zhou Y, Wang D, et al: Neurologic manifestations
of hospitalized patients with coronavirus disease 2019 in Wuhan,
China. JAMA Neurol. 77:683–690. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Han H, Yang L, Liu R, Liu F, Wu KL, Li J,
Liu XH and Zhu CL: Prominent changes in blood coagulation of
patients with SARS-CoV-2 infection. Clin Chem Lab Med.
58:1116–1120. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Tang N, Li D, Wang X and Sun Z: Abnormal
coagulation parameters are associated with poor prognosis in
patients with novel coronavirus pneumonia. J Thromb Haemost.
18:844–847. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yin S, Huang M, Li D and Tang N:
Difference of coagulation features between severe pneumonia induced
by SARS-CoV2 and non-SARS-CoV2. J Thromb Thrombolysis. 1–4.
2020.
|
|
7
|
Helms J, Tacquard C, Severac F,
Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clere-Jehl R,
Schenck M, Fagot Gandet F, et al: High risk of thrombosis in
patients with severe SARS-CoV-2 infection: A multicenter
prospective cohort study. Intensive Care Med. 46:1089–1098. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Whyte CS, Morrow GB, Mitchell JL, Chowdary
P and Mutch NJ: Fibrinolytic abnormalities in acute respiratory
distress syndrome (ARDS) and versatility of thrombolytic drugs to
treat COVID-19. J Thromb Haemost. 18:1548–1555. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wichmann D, Sperhake JP, Lütgehetmann M,
Steurer S, Edler C, Heinemann A, Heinrich F, Mushumba H, Kniep I,
Schröder AS, et al: Autopsy findings and venous thromboembolism in
patients With COVID-19: A prospective cohort study. Ann Intern Med.
173:268–277. 2020. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xiong M, Liang X and Wei YD: Changes in
blood coagulation in patients with severe coronavirus disease 2019
(COVID-19): A meta-analysis. Br J Haematol. 189:1050–1052. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lodigiani C, Iapichino G, Carenzo L,
Cecconi M, Ferrazzi P, Sebastian T, Kucher N, Studt JD, Sacco C,
Bertuzzi A, et al: Venous and arterial thromboembolic complications
in COVID-19 patients admitted to an academic hospital in Milan,
Italy. Thromb Res. 191:9–14. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Avula A, Nalleballe K, Narula N,
Sapozhnikov S, Dandu V, Toom S, Glaser A and Elsayegh D: COVID-19
presenting as stroke. Brain Behav Immun. 87:115–119. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fara MG, Stein LK, Skliut M, Morgello S,
Fifi JT and Dhamoonr MS: Macrothrombosis and stroke in patients
with mild Covid-19 infection. J Thromb Haemost. 18:2031–2033. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Beyrouti R, Adams ME, Benjamin L, Cohen H,
Farmer SF, Goh YY, Humphries F, Jäger HR, Losseff NA, Perry RJ, et
al: Characteristics of ischaemic stroke associated with COVID-19. J
Neurol Neurosurg Psychiatry. 91:889–891. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li YC, Bai WZ and Hashikawa T: The
neuroinvasive potential of SARS-CoV2 may play a role in the
respiratory failure of COVID-19 patients. J Med Virol. 92:552–555.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yaghi S, Ishida K, Torres J, Mac Grory B,
Raz E, Humbert K, Henninger N, Trivedi T, Lillemoe K, Alam S, et
al: SARS-CoV-2 and stroke in a New York healthcare system. Stroke.
51:2002–2011. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Oxley TJ, Mocco J, Majidi S, Kellner CP,
Shoirah H, Singh IP, De Leacy RA, Shigematsu T, Ladner TR, Yaeger
KA, et al: Large-vessel stroke as a presenting feature of Covid-19
in the young. N Engl J Med. 382:e602020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pacha O, Sallman MA and Evans SE:
COVID-19: A case for inhibiting IL-17? Nat Rev Immunol. 20:345–346.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mehta P, McAuley DF, Brown M, Sanchez E,
Tattersall RS and Manson JJ; HLH Across Speciality Collaboration
UK: COVID-19: Consider cytokine storm syndromes and
immunosuppression. Lancet. 395:1033–1034. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sawdey MS and Loskutoff DJ: Regulation of
murine type 1 plasminogen activator inhibitor gene expression in
vivo. Tissue specificity and induction by lipopolysaccharide, tumor
necrosis factor-alpha, and transforming growth factor-beta. J Clin
Invest. 88:1346–1353. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Fourrier F, Chopin C, Goudemand J,
Hendrycx S, Caron C, Rime A, Marey A and Lestavel P: Septic shock,
multiple organ failure, and disseminated intravascular coagulation.
Compared patterns of antithrombin III, protein C, and protein S
deficiencies. Chest. 101:816–823. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jose RJ and Manuel A: COVID-19 cytokine
storm: The interplay between inflammation and coagulation. Lancet
Respir Med. 8:e46–e47. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hudock KM, Collins MS, Imbrogno M,
Snowball J, Kramer EL, Brewington JJ, Gollomp K, McCarthy C,
Ostmann AJ, Kopras EJ, et al: Neutrophil extracellular traps
activate IL-8 and IL-1 expression in human bronchial epithelia. Am
J Physiol Lung Cell Mol Physiol. 319:L137–L147. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pliyev BK and Menshikov M: Differential
effects of the autophagy inhibitors 3-methyladenine and chloroquine
on spontaneous and TNF-α-induced neutrophil apoptosis. Apoptosis.
17:1050–1065. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Varga Z, Flammer AJ, Steiger P, Haberecker
M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka
F and Moch H: Endothelial cell infection and endotheliitis in
COVID-19. Lancet. 395:1417–1418. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Leisman DE, Deutschman CS and Legrand M:
Facing COVID-19 in the ICU: Vascular dysfunction, thrombosis, and
dysregulated inflammation. Intensive Care Med. 46:1105–1108. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li T, Wang C, Liu Y, Li B, Zhang W, Wang
L, Yu M, Zhao X, Du J, Zhang J, et al: Neutrophil extracellular
traps induce intestinal damage and thrombotic tendency in
inflammatory bowel disease. J Crohns Colitis. 14:240–253. 2020.
View Article : Google Scholar
|
|
28
|
Zubair AS, McAlpine LS, Gardin T,
Farhadian S, Kuruvilla DE and Spudich S: Neuropathogenesis and
neurologic manifestations of the coronaviruses in the age of
coronavirus disease 2019: A review. JAMA Neurol. 77:1018–1027.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Al Saiegh F, Ghosh R, Leibold A, Avery MB,
Schmidt RF, Theofanis T, Mouchtouris N, Philipp L, Peiper SC, Wang
ZX, et al: Status of SARS-CoV-2 in cerebrospinal fluid of patients
with COVID-19 and stroke. J Neurol Neurosurg Psychiatry.
91:846–848. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xu P, Zhou Q and Xu J: Mechanism of
thrombocytopenia in COVID-19 patients. Ann Hematol. 99:1205–1208.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hottz ED, Bozza FA and Bozza PT: Platelets
in immune response to virus and immunopathology of viral
infections. Front Med (Lausanne). 5:1212018. View Article : Google Scholar
|
|
33
|
Zhou P, Li T, Jin J, Liu Y, Li B, Sun Q,
Tian J, Zhao H, Liu Z, Ma S, et al: Interactions between neutrophil
extracellular traps and activated platelets enhance procoagulant
activity in acute stroke patients with ICA occlusion. EBioMedicine.
53:1026712020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Brinkmann V, Reichard U, Goosmann C,
Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A:
Neutrophil extracellular traps kill bacteria. Science.
303:1532–1535. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Martinod K and Wagner DD: Thrombosis:
Tangled up in NETs. Blood. 123:2768–2776. 2014. View Article : Google Scholar :
|
|
36
|
Barnes BJ, Adrover JM, Baxter-Stoltzfus A,
Borczuk A, Cools-Lartigue J, Crawford JM, Dassler-Plenker J, Guerci
P, Huynh C, Knight JS, et al: Targeting potential drivers of
COVID-19: Neutrophil extracellular traps. J Exp Med.
217:e202006522020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo
M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, et al:
Neutrophil extracellular traps in COVID-19. JCI Insight.
5:e1389992020.
|
|
38
|
Hargett LA and Bauer NN: On the origin of
microparticles: From 'platelet dust' to mediators of intercellular
communication. Pulm Circu. 3:329–340. 2013. View Article : Google Scholar
|
|
39
|
Yao Z, Wang L, Wu X, Zhao L, Chi C, Guo L,
Tong D, Yang X, Dong Z, Deng R, et al: Enhanced procoagulant
activity on blood cells after acute ischemic stroke. Transl Stroke
Res. 8:83–91. 2017. View Article : Google Scholar
|
|
40
|
Yu M, Xie R, Zhang Y, Liang H, Hou L, Yu
C, Zhang J, Dong Z, Tian Y, Bi Y, et al: Phosphatidylserine on
microparticles and associated cells contributes to the
hypercoagulable state in diabetic kidney disease. Nephrol Dial
Transplant. 33:2115–2127. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Vance JE and Steenbergen R: Metabolism and
functions of phosphatidylserine. Prog Lipid Res. 44:207–234. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang Y, Du F, Hawez A, Mörgelin M and
Thorlacius H: Neutrophil extracellular trap-microparticle complexes
trigger neutrophil recruitment via high-mobility group protein 1
(HMGB1)-toll-like receptors(TLR2)/TLR4 signalling. Br J Pharmacol.
176:3350–3363. 2019.PubMed/NCBI
|
|
43
|
Wang Y, Luo L, Braun OÖ, Westman J, Madhi
R, Herwald H, Mörgelin M and Thorlacius H: Neutrophil extracellular
trap-microparticle complexes enhance thrombin generation via the
intrinsic pathway of coagulation in mice. Sci Rep. 8:40202018.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nieri D, Neri T, Petrini S, Vagaggini B,
Paggiaro P and Celi A: Cell-derived microparticles and the lung.
Eur Respir Rev. 25:266–277. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Balvers K, Curry N, Kleinveld DJ, Böing
AN, Nieuwland R, Goslings JC and Juffermans NP: Endogenous
microparticles drive the proinflammatory host immune response in
severely injured trauma patients. Shock. 43:317–321. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Riedl M, Fakhouri F, Le Quintrec M, Noone
DG, Jungraithmayr TC, Fremeaux-Bacchi V and Licht C: Spectrum of
complement-mediated thrombotic microangiopathies: Pathogenetic
insights identifying novel treatment approaches. Semin Thromb
Hemost. 40:444–464. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cugno M, Meroni PL, Gualtierotti R,
Griffini S, Grovetti E, Torri A, Panigada M, Aliberti S, Blasi F,
Tedesco F and Peyvandi F: Complement activation in patients with
COVID-19: A novel therapeutic target. J Allergy Clin Immunol.
146:215–217. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Magro C, Mulvey JJ, Berlin D, Nuovo G,
Salvatore S, Harp J, Baxter-Stoltzfus A and Laurence J: Complement
associated microvascular injury and thrombosis in the pathogenesis
of severe COVID-19 infection: A report of five cases. Transl Res.
220:1–13. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Stites E, Renner B, Laskowski J, Le
Quintrec M, You Z, Freed B, Cooper J, Jalal D and Thurman JM:
Complement fragments are biomarkers of antibody-mediated
endothelial injury. Mol Immunol. 118:142–152. 2020. View Article : Google Scholar
|
|
50
|
Heydenreich N, Nolte MW, Göb E, Langhauser
F, Hofmeister M, Kraft P, Albert-Weissenberger C, Brede M,
Varallyay C, Göbel K, et al: C1-inhibitor protects from brain
ischemia-reperfusion injury by combined antiinflammatory and
antithrombotic mechanisms. Stroke. 43:2457–2467. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pugh CW and Ratcliffe PJ: New horizons in
hypoxia signaling pathways. Exp Cell Res. 356:116–121. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cameron SJ, Mix DS, Ture SK, Schmidt RA,
Mohan A, Pariser D, Stoner MC, Shah P, Chen L, Zhang H, et al:
Hypoxia and ischemia promote a maladaptive platelet phenotype.
Arterioscler Thromb Vasc Biol. 38:1594–1606. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gupta N, Zhao YY and Evans CE: The
stimulation of thrombosis by hypoxia. Thromb Res. 181:77–83. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Frangou E, Chrysanthopoulou A, Mitsios A,
Kambas K, Arelaki S, Angelidou I, Arampatzioglou A, Gakiopoulou H,
Bertsias GK, Verginis P, et al: REDD1/autophagy pathway promotes
thromboinflammation and fibrosis in human systemic lupus
erythematosus (SLE) through NETs decorated with tissue factor (TF)
and inter-leukin-17A (IL-17A). Ann Rheum Dis. 78:238–248. 2019.
View Article : Google Scholar
|
|
55
|
Zhang Y, Xiao M, Zhang S, Xia P, Cao W,
Jiang W, Chen H, Ding X, Zhao H, Zhang H, et al: Coagulopathy and
antiphospholipid antibodies in patients with Covid-19. N Engl J
Med. 382:e382020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Müller-Calleja N, Hollerbach A, Ritter S,
Pedrosa DG, Strand D, Graf C, Reinhardt C, Strand S, Poncelet P,
Griffin JH, et al: Tissue factor pathway inhibitor primes monocytes
for antiphospholipid antibody-induced thrombosis. Blood.
134:1119–1131. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gašperšič N, Zaletel M, Kobal J, Žigon P,
Čučnik S, Šemrl SS, Tomšič M and Ambrožič A: Stroke and
antiphospholipid syndrome-antiphospholipid antibodies are a risk
factor for an ischemic cerebrovascular event. Clin Rheumatol.
38:379–384. 2019. View Article : Google Scholar
|
|
58
|
Tang N, Bai H, Chen X, Gong J, Li D and
Sun Z: Anticoagulant treatment is associated with decreased
mortality in severe coronavirus disease 2019 patients with
coagulopathy. J Thromb Haemost. 18:1094–1099. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Oudkerk M, Buller HR and Kuijpers D:
Diagnosis, prevention, and treatment of thromboembolic
complications in COVID-19: Report of the National Institute for
Public Health of the Netherlands. Radiology. 297:E216–E222. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Klok FA, Kruip MJHA, van der Meer NJM,
Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J,
Stals MAM, Huisman MV and Endeman H: Incidence of thrombotic
complications in critically ill ICU patients with COVID-19. Thromb
Res. 191:145–147. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Bikdeli B, Madhavan MV, Jimenez D, Chuich
T, Dreyfus I, Driggin E, Nigoghossian C, Ageno W, Madjid M, Guo Y,
et al: COVID-19 and thrombotic or thromboembolic disease:
Implications for prevention, antithrombotic therapy, and follow-up.
J Am Coll Cardiol. 75:2950–2973. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hermans C and Lambert C: Impact of the
COVID-19 pandemic on therapeutic choices in thrombosis-hemostasis.
J Thromb Haemost. 18:1794–1795. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang J, Hajizadeh N, Moore EE, McIntyre
RC, Moore PK, Veress LA, Yaffe MB, Moore HB and Barrett CD: Tissue
plasminogen activator (tPA) treatment for COVID-19 associated acute
respiratory distress syndrome (ARDS): A case series. J Thromb
Haemost. 18:1752–1755. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Quiros Roldan E, Biasiotto G, Magro P and
Zanella I: The possible mechanisms of action of 4-aminoquinolines
(chloroquine/hydroxychloroquine) against Sars-Cov-2 infection
(COVID-19): A role for iron homeostasis? Pharmacol Res.
158:1049042020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rodrigues-Diez RR, Tejera-Muñoz A,
Marquez-Exposito L, Rayego-Mateos S, Sanchez LS, Marchant V,
Santamaria LT, Ramos AM, Ortiz A, Egido J and Ruiz-Ortega M:
Statins: Could an old friend help the fight against COVID-19? Br J
Pharmacol. 177:4873–4886. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ascierto PA, Fox BA, Urba WJ, Anderson AC,
Atkins MB, Borden EC, Brahmer JR, Butterfield LH, Cesano A, Chen
DC, et al: Insights from immuno-oncology: The Society for
Immunotherapy of Cancer Statement on access to IL-6-targeting
therapies for COVID-19. J Immunother Cancer. 8:e0008782020.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Paniri A and Akhavan-Niaki H: Emerging
role of IL-6 and NLRP3 inflammasome as potential therapeutic
targets to combat COVID-19: Role of lncRNAs in cytokine storm
modulation. Life Sci. 118114:2020.
|
|
68
|
Alhenc-Gelas F and Drueke TB: Blockade of
SARS-CoV-2 infection by recombinant soluble ACE2. Kidney Int.
97:1091–1093. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Haschke M, Schuster M, Poglitsch M,
Loibner H, Salzberg M, Bruggisser M, Penninger J and Krähenbühl S:
Pharmacokinetics and pharmacodynamics of recombinant human
angiotensin-converting enzyme 2 in healthy human subjects. Clin
Pharmacokinet. 52:783–792. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Khan A, Benthin C, Zeno B, Albertson TE,
Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, et
al: A pilot clinical trial of recombinant human
angiotensin-converting enzyme 2 in acute respiratory distress
syndrome. Crit Care. 21:2342017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sardu C, Gambardella J, Morelli MB, Wang
X, Marfella R and Santulli G: Hypertension, thrombosis, kidney
failure, and diabetes: Is COVID-19 an endothelial disease? A
comprehensive evaluation of clinical and basic evidence. J Clin
Med. 9:14172020. View Article : Google Scholar :
|
|
72
|
Fan E, Brodie D and Slutsky AS: Acute
respiratory distress syndrome: Advances in diagnosis and treatment.
JAMA. 319:698–710. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pulavendran S, Rudd JM, Maram P, Thomas
PG, Akhilesh R, Malayer JR, Chow VTK and Teluguakula N: Combination
therapy targeting platelet activation and virus replication
Protects mice against lethal influenza pneumonia. Am J Respir Cell
Mol Biol. 61:689–701. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
De Meyer SF, Suidan GL, Fuchs TA,
Monestier M and Wagner DD: Extracellular chromatin is an important
mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol.
32:1884–1891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Papayannopoulos V, Staab D and Zychlinsky
A: Neutrophil elastase enhances sputum solubilization in cystic
fibrosis patients receiving DNase therapy. PLoS One. 6:e285262011.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Laridan E, Denorme F, Desender L, François
O, Andersson T, Deckmyn H, Vanhoorelbeke K and De Meyer SF:
Neutrophil extracellular traps in ischemic stroke thrombi. Ann
Neurol. 82:223–232. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mistry P, Carmona-Rivera C, Ombrello AK,
Hoffmann P, Seto NL, Jones A, Stone DL, Naz F, Carlucci P,
Dell'Orso S, et al: Dysregulated neutrophil responses and
neutrophil extracellular trap formation and degradation in PAPA
syndrome. Ann Rheum Dis. 77:1825–1833. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kim SW, Lee H, Lee HK, Kim ID and Lee JK:
Neutrophil extracellular trap induced by HMGB1 exacerbates damages
in the ischemic brain. Acta Neuropathol Commun. 7:942019.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Neri T, Scalise V, Passalacqua I,
Sanguinetti C, Lombardi S, Pergoli L, Bollati V, Pedrinelli R,
Paggiaro P and Celi A: Tiotropium inhibits proinflammatory
microparticle generation by human bronchial and endothelial cells.
Sci Rep. 9:116312019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Neri T, Lombardi S, Faìta F, Petrini S,
Balìa C, Scalise V, Pedrinelli R, Paggiaro P and Celi A:
Pirfenidone inhibits p38-mediated generation of procoagulant
microparticles by human alveolar epithelial cells. Pulm Pharmacol
Ther. 39:1–6. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gralinski LE, Sheahan TP, Morrison TE,
Menachery VD, Jensen K, Leist SR, Whitmore A, Heise MT and Baric
RS: Complement activation contributes to severe acute respiratory
syndrome coronavirus pathogenesis. mBio. 9:e01753–18. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mastellos DC, Ricklin D and Lambris JD:
Clinical promise of next-generation complement therapeutics. Nat
Rev Drug Discov. 18:707–729. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hadanny A, Rittblat M, Bitterman M,
May-Raz I, Suzin G, Boussi-Gross R, Zemel Y, Bechor Y, Catalogna M
and Efrati S: Hyperbaric oxygen therapy improves neurocognitive
functions of post-stroke patients-a retrospective analysis. Restor
Neurol Neurosci. 38:93–107. 2020.
|
|
84
|
Beyls C, Huette P, Abou-Arab O, Berna P
and Mahjoub Y: Extracorporeal membrane oxygenation for
COVID-19-associated severe acute respiratory distress syndrome and
risk of thrombosis. Br J Anaesth. 125:e260–e262. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Fan H, Zhang L, Huang B, Zhu M, Zhou Y,
Zhang H, Tao X, Cheng S, Yu W, Zhu L and Chen J: Cardiac injuries
in patients with coronavirus disease 2019: Not to be ignored. Inter
J Infect Dis. 96:294–297. 2020. View Article : Google Scholar
|
|
86
|
Zou Y, Guo H, Zhang Y, Zhang Z, Liu Y,
Wang J, Lu H and Qian Z: Analysis of coagulation parameters in
patients with COVID-19 in Shanghai, China. Biosci Trends.
14:285–289. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Fogarty H, Townsend L, Ni Cheallaigh C,
Bergin C, Martin-Loeches I, Browne P, Bacon CL, Gaule R, Gillett A,
Byrne M, et al: COVID19 coagulopathy in Caucasian patients. Br J
Haematol. 189:1044–1049. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S,
Huang H, Zhang L, Zhou X, Du C, et al: Risk factors associated with
acute respiratory distress syndrome and death in patients with
coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern
Med. 180:934–943. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Cui S, Chen S, Li X, Liu S and Wang F:
Prevalence of venous thromboembolism in patients with severe novel
coronavirus pneumonia. J Thromb Haemost. 18:1421–1424. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Stoneham SM, Milne KM, Nuttall E, Frew GH,
Sturrock BR, Sivaloganathan H, Ladikou EE, Drage S, Phillips B,
Chevassut TJ and Eziefula AC: Thrombotic risk in COVID-19: A case
series and case-control study. Clin Med (Lond). 20:e76–e81. 2020.
View Article : Google Scholar
|
|
92
|
Léonard-Lorant I, Delabranche X, Séverac
F, Helms J, Pauzet C, Collange O, Schneider F, Labani A, Bilbault
P, Molière S, et al: Acute pulmonary embolism in COVID-19 patients
on CT angiography and relationship to D-Dimer levels. Radiology.
296:E189–E191. 2020. View Article : Google Scholar
|
|
93
|
Llitjos JF, Leclerc M, Chochois C,
Monsallier JM, Ramakers M, Auvray M and Merouani K: High incidence
of venous thromboembolic events in anticoagulated severe COVID-19
patients. J Thromb Haemost. 18:1743–1746. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Poillon G, Obadia M, Perrin M, Savatovsky
J and Lecler A: Cerebral venous thrombosis associated with COVID-19
infection: Causality or coincidence? J Neuroradiol.
S0150-986:30167–X. 2020.
|
|
95
|
Paranjpe I, Fuster V, Lala A, Russak AJ,
Glicksberg BS, Levin MA, Charney AW, Narula J, Fayad ZA, Bagiella
E, et al: Association of treatment dose anticoagulation with
in-hospital survival among hospitalized patients with COVID-19. J
Am Coll Cardiol. 76:122–124. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
White D, MacDonald S, Bull T, Hayman M, de
Monteverde-Robb R, Sapsford D, Lavinio A, Varley J, Johnston A,
Besser M and Thomas W: Heparin resistance in COVID-19 patients in
the intensive care unit. J Thromb Thrombolysis. 50:287–291. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Arachchillage DJ, Remmington C, Rosenberg
A, Xu T, Passariello M, Hall D, Laffan M and Patel BV:
Anticoagulation with argatroban in patients with acute antithrombin
deficiency in severe COVID-19. Br J Haematol. 190:e286–e288. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ranucci M, Ballotta A, Di Dedda U,
Bayshnikova E, Dei Poli M, Resta M, Falco M, Albano G and Menicanti
L: The procoagulant pattern of patients with COVID-19 acute
respiratory distress syndrome. J Thromb Haemost. 18:1747–1751.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Thachil J, Tang N, Gando S, Falanga A,
Cattaneo M, Levi M, Clark C and Iba T: ISTH interim guidance on
recognition and management of coagulopathy in COVID-19. J Thromb
Haemost. 18:1023–1026. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Connors JM and Levy JH: COVID-19 and its
implications for thrombosis and anticoagulation. Blood.
135:2033–2040. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Thachil J, Tang N, Gando S, Falanga A,
Cattaneo M, Levi M, Clark C and Iba T: DOACs and 'newer'
haemophilia therapies in COVID-19. J Thromb Haemost. 18:1795–1796.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bikdeli B, Madhavan MV, Gupta A, Jimenez
D, Burton JR, Der Nigoghossian C, Chuich T, Nouri SN, Dreyfus I,
Driggin E, et al: Pharmacological agents targeting
thromboinflammation in COVID-19: Review and implications for future
research. Thromb Haemost. 120:1004–1023. 2020. View Article : Google Scholar : PubMed/NCBI
|