Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2021 Volume 47 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 47 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review)

  • Authors:
    • Niladri Ganguly
    • Subrata Chakrabarti
  • View Affiliations / Copyright

    Affiliations: Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5C1, Canada
    Copyright: © Ganguly et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 23
    |
    Published online on: January 18, 2021
       https://doi.org/10.3892/ijmm.2021.4856
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Liver fibrosis is one of the major liver pathologies affecting patients worldwide. It results from an improper tissue repair process following liver injury or inflammation. If left untreated, it ultimately leads to liver cirrhosis and liver failure. Long non‑coding RNAs (lncRNAs) have been implicated in a wide variety of diseases. They can regulate gene expression and modulate signaling. Some of the lncRNAs promote, while others inhibit liver fibrosis. Similarly, other epigenetic processes, such as methylation and acetylation regulate gene transcription and can modulate gene expression. Notably, there are several regulatory associations of lncRNAs with other epigenetic processes. A major mechanism of action of long non‑coding RNAs is to competitively bind to their target microRNAs (miRNAs or miRs), which in turn affects miRNA availability and bioactivity. In the present review, the role of lncRNAs and related epigenetic processes contributing to liver fibrosis is discussed. Finally, various potential therapeutic approaches targeting lncRNAs and related epigenetic processes, which are being considered as possible future treatment targets for liver fibrosis are identified.
View Figures

Figure 1

Figure 2

View References

1 

Aydın MM and Akçalı KC: Liver fibrosis. Turk J Gastroenterol. 29:14–21. 2018. View Article : Google Scholar

2 

Lan T, Li C, Yang G, Sun Y, Zhuang L, Ou Y, Li H, Wang G, Kisseleva T, Brenner D and Guo J: Sphingosine kinase 1 promotes liver fibrosis by preventing miR-19b-3p-mediated inhibition of CCR2. Hepatology. 68:1070–1086. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Bataller R and Brenner DA: Liver fibrosis. J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Karsdal MA, Hjuler ST, Luo Y, Rasmussen DGK, Nielsen MJ, Holm Nielsen S, Leeming DJ, Goodman Z, Arch RH, Patel K and Schuppan D: Assessment of liver fibrosis progression and regression by a serological collagen turnover profile. Am J Physiol Gastrointest Liver Physiol. 316:G25–G31. 2019. View Article : Google Scholar

5 

Chen L, Brenner DA and Kisseleva T: Combatting fibrosis: Exosome-based therapies in the regression of liver fibrosis. Hepatol Commun. 3:180–192. 2018. View Article : Google Scholar

6 

Lledó GM, Carrasco I, Benítez-Gutiérrez LM, Arias A, Royuela A, Requena S, Cuervas-Mons V and de Mendoza C: Regression of liver fibrosis after curing chronic hepatitis C with oral antivirals in patients with and without HIV coinfection. Aids. 32:2347–2352. 2018.PubMed/NCBI

7 

Atta HM: Reversibility and heritability of liver fibrosis: Implications for research and therapy. World J Gastroenterol. 21:5138–5148. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Dong Z, Li S, Wang X, Si L, Ma R, Bao L and Bo A: lncRNA GAS5 restrains CCl4-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway. Am J Physiol Gastrointest Liver Physiol. 316:G539–G550. 2019. View Article : Google Scholar

9 

Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, Wang Y, Wen J, van Deursen J, Sicard D, et al: P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology. 154:2209–2221.e14. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Brandon-Warner E, Benbow JH, Swet JH, Feilen NA, Culberson CR, McKillop IH, de Lemos AS, Russo MW and Schrum LW: Adeno-associated virus serotype 2 Vector-mediated reintroduction of microRNA-19b attenuates hepatic fibrosis. Hum Gene Ther. 29:674–686. 2018. View Article : Google Scholar :

11 

Seki E and Schwabe RF: Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology. 61:1066–1079. 2015. View Article : Google Scholar :

12 

Peng H, Wan LY, Liang JJ, Zhang YQ, Ai WB and Wu JF: The roles of lncRNA in hepatic fibrosis. Cell Biosci. 8:632018. View Article : Google Scholar : PubMed/NCBI

13 

Campana L and Iredale JP: Regression of liver fibrosis. Semin Liver Dis. 37:1–10. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Knolle PA and Wohlleber D: Immunological functions of liver sinusoidal endothelial cells. Cell Mol Immunol. 13:347–353. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Heo MJ, Yun J and Kim SG: Role of non-coding RNAs in liver disease progression to hepatocellular carcinoma. Arch Pharm Res. 42:48–62. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, Xie M, Lei T, Zhang N and Yang M: The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer. 18:1472019. View Article : Google Scholar : PubMed/NCBI

17 

Zhou J, Li Y, Liu X, Long Y and Chen J: LncRNA-regulated autophagy and its potential role in drug-induced liver injury. Ann Hepatol. 17:355–363. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B, Yu Y, Liang Z and Yang Y: LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev. 52:17–31. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Klinge CM: Non-coding RNAs in breast cancer: Intracellular and intercellular communication. Noncoding RNA. 4:402018.

20 

Zoghbi HY and Beaudet AL: Epigenetics and human disease. Cold Spring Harb Perspect Biol. 8:a0194972016. View Article : Google Scholar : PubMed/NCBI

21 

Sahu B, Pani S, Swalsingh G and Bal NC: Non and epigenetic mechanisms in regulation of adaptive thermogenesis in skeletal muscle. Front Endocrinol (Lausanne). 10:5172019. View Article : Google Scholar

22 

Ortuno-Sahagun D, Schleibs R and Pallas M: Editorial: Epigenetic mechanisms regulating neural plasticity. Front Cell Neurosci. 13:1182019. View Article : Google Scholar : PubMed/NCBI

23 

Martinez SR, Gay MS and Zhang L: Epigenetic mechanisms in heart development and disease. Drug Discov Today. 20:799–811. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Maldonado L and Hoque MO: Epigenomics and ovarian carcinoma. Biomark Med. 4:543–570. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Vrtacnik P, Marc J and Ostanek B: Epigenetic mechanisms in bone. Clin Chem Lab Med. 52:589–608. 2014. View Article : Google Scholar

26 

Wu SC and Zhang Y: Active DNA demethylation: Many roads lead to Rome. Nat Rev Mol Cell Biol. 11:607–620. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Barcena-Varela M, Colyn L and Fernandez-Barrena MG: Epigenetic mechanisms in hepatic stellate cell activation during liver fibrosis and carcinogenesis. Int J Mol Sci. 20:25072019. View Article : Google Scholar :

28 

Lachiondo-Ortega S, Mercado-Gómez M, Serrano-Maciá M, Lopitz-Otsoa F, Salas-Villalobos TB, Varela-Rey M, Delgado TC and Martínez-Chantar ML: Ubiquitin-like post-translational modifications (Ubl-PTMs): Small peptides with huge impact in liver fibrosis. Cells. 8:15752019. View Article : Google Scholar

29 

Dooley S and Ten Dijke P: TGF-β in progression of liver disease. Cell Tissue Res. 347:245–256. 2012. View Article : Google Scholar

30 

Zhou C, York SR, Chen JY, Pondick JV, Motola DL, Chung RT and Mullen AC: Long noncoding RNAs expressed in human hepatic stellate cells form networks with extracellular matrix proteins. Genome Med. 8:312016. View Article : Google Scholar : PubMed/NCBI

31 

Li XQ, Ren ZX, Li K, Huang JJ, Huang ZT, Zhou TR, Cao HY, Zhang FX and Tan B: Key anti-fibrosis associated long noncoding RNAs identified in human hepatic stellate cell via transcriptome sequencing analysis. Int J Mol Sci. 19:6752018. View Article : Google Scholar :

32 

Kong Y, Huang T, Zhang H, Zhang Q, Ren J, Guo X, Fan H and Liu L: The lncRNA NEAT1/miR-29b/Atg9a axis regulates IGFBPrP1-induced autophagy and activation of mouse hepatic stellate cells. Life Sci. 237:1169022019. View Article : Google Scholar : PubMed/NCBI

33 

Li XQ, Zhang QQ, Zhang HY, Guo XH, Fan HQ and Liu LX: Interaction between insulin-like growth factor binding protein-related protein 1 and transforming growth factor beta 1 in primary hepatic stellate cells. Hepatobiliary Pancreat Dis Int. 16:395–404. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Yu F, Jiang Z, Chen B, Dong P and Zheng J: NEAT1 accelerates the progression of liver fibrosis via regulation of microRNA-122 and Kruppel-like factor 6. J Mol Med (Berl). 95:1191–1202. 2017. View Article : Google Scholar

35 

Fu WM, Zhu X, Wang WM, Lu YF, Hu BG, Wang H, Liang WC, Wang SS, Ko CH, Waye MM, et al: Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling. J Hepatol. 63:886–895. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Yu F, Chen B, Dong P and Zheng J: HOTAIR epigenetically modulates PTEN expression via MicroRNA-29b: A novel mechanism in regulation of liver fibrosis. Mol Ther. 25:205–217. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Zheng J, Mao Y, Dong P, Huang Z and Yu F: Long noncoding RNA HOTTIP mediates SRF expression through sponging miR-150 in hepatic stellate cells. J Cell Mol Med. 23:1572–1580. 2019. View Article : Google Scholar

38 

Li Z, Wang J, Zeng Q, Hu C, Zhang J, Wang H, Yan J, Li H and Yu Z: Long noncoding RNA HOTTIP promotes mouse hepatic stellate cell activation via downregulating miR-148a. Cell Physiol Biochem. 51:2814–2828. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Wu Y, Liu X, Zhou Q, Huang C, Meng X, Xu F and Li J: Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicol Appl Pharmacol. 289:163–176. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Yu F, Lu Z, Cai J, Huang K, Chen B, Li G, Dong P and Zheng J: MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle. 14:3885–3896. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Leti F, Legendre C, Still CD, Chu X, Petrick A, Gerhard GS and DiStefano JK: Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl Res. 190:25–39.e21. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Shen X, Guo H, Xu J and Wang J: Inhibition of lncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease. J Cell Physiol. 234:18169–18179. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Zhang K, Han Y, Hu Z, Zhang Z, Shao S, Yao Q, Zheng L, Wang J, Han X, Zhang Y, et al: SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker. Theranostics. 9:3622–3638. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Zhang K, Han X, Zhang Z, Zheng L, Hu Z, Yao Q, Cui H, Shu G, Si M, Li C, et al: The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun. 8:1442017. View Article : Google Scholar

45 

Wu JC, Luo SZ, Liu T, Lu LG and Xu MY: Linc-SCRG1 accelerates liver fibrosis by decreasing RNA-binding protein tristetraprolin. FASEB J. 33:2105–2115. 2019. View Article : Google Scholar

46 

Yu F, Dong P, Mao Y, Zhao B, Huang Z and Zheng J: Loss of lncRNA-SNHG7 promotes the suppression of hepatic stellate cell activation via miR-378a-3p and DVL2. Mol Ther Nucleic Acids. 17:235–244. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Zheng J, Yu F, Dong P, Wu L, Zhang Y, Hu Y and Zheng L: Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152. Oncotarget. 7:62886–62897. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Fu N, Zhao SX, Kong LB, Du JH, Ren WG, Han F, Zhang QS, Li WC, Cui P, Wang RQ, et al: LncRNA-ATB/microRNA-200a/β-catenin regulatory axis involved in the progression of HCV-related hepatic fibrosis. Gene. 618:1–7. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Yu F, Guo Y, Chen B, Shi L, Dong P, Zhou M, Zheng J, et al: TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice. Sci Rep. 7:29572017. View Article : Google Scholar

50 

Yu F, Guo Y, Chen B, Shi L, Dong P, Zhou M and Zheng J: LincRNA-p21 inhibits the Wnt/β-catenin pathway in activated hepatic stellate cells via sponging MicroRNA-17-5p. Cell Physiol Biochem. 41:1970–1980. 2017. View Article : Google Scholar

51 

Yu F, Lu Z, Chen B, Dong P and Zheng J: Identification of a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis. Mediators Inflamm. 2016:98565382016. View Article : Google Scholar : PubMed/NCBI

52 

Zheng J, Dong P, Mao Y, Chen S, Wu X, Li G, Lu Z and Yu F: Linc RNA-p21 inhibits hepatic stellate cell activation and liver fibrogenesis via p21. FEBS J. 282:4810–4821. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Yu F, Zhou G, Huang K, Fan X, Li G, Chen B, Dong P and Zheng J: Serum linc RNA-p21 as a potential biomarker of liver fibrosis in chronic hepatitis B patients. J Viral Hepat. 24:580–588. 2017. View Article : Google Scholar : PubMed/NCBI

54 

He Y, Wu YT, Huang C, Meng XM, Ma TT, Wu BM, Xu FY, Zhang L, Lv XW and Li J: Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta. 1842:2204–2215. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Chen MJ, Wang XG, Sun ZX and Liu XC: Diagnostic value of LncRNA-MEG3 as a serum biomarker in patients with hepatitis B complicated with liver fibrosis. Eur Rev Med Pharmacol Sci. 23:4360–4367. 2019.PubMed/NCBI

56 

Yu F, Geng W, Dong P, Huang Z and Zheng J: LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis. 9:10142018. View Article : Google Scholar : PubMed/NCBI

57 

Yu F, Zheng J, Mao Y, Dong P, Lu Z, Li G, Guo C, Liu Z and Fan X: Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. J Biol Chem. 290:28286–28298. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Zhou B, Yuan W and Li X: LncRNA Gm5091 alleviates alcoholic hepatic fibrosis by sponging miR-27b/23b/24 in mice. Cell Biol Int. 42:1330–1339. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Zhang QQ, Xu MY, Qu Y, Hu JJ, Li ZH, Zhang QD and Lu LG: TET3 mediates the activation of human hepatic stellate cells via modulating the expression of long non-coding RNA HIF1A-AS1. Int J Clin Exp Pathol. 7:7744–7751. 2014.

60 

Yang JJ and Yang Y, Zhang C, Li J and Yang Y: Epigenetic silencing of LncRNA ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway. J Cell Mol Med. 24:2677–2687. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Giovarelli M, Bucci G, Ramos A, Bordo D, Wilusz CJ, Chen CY, Puppo M, Briata P and Gherzi R: H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc Natl Acad Sci USA. 111:E5023–E5028. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Liang WC, Fu WM, Wang YB, Sun YX, Xu LL, Wong CW, Chan KM, Li G, Waye MM and Zhang JF: H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep. 6:201212016. View Article : Google Scholar : PubMed/NCBI

63 

Li X, Liu R, Huang Z, Gurley EC, Wang X, Wang J, He H, Yang H, Lai G, Zhang L, et al: Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology. 68:599–615. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Yang JJ, She Q, Yang Y, Tao H and Li J: DNMT1 controls LncRNA H19/ERK signal pathway in hepatic stellate cell activation and fibrosis. Toxicol Lett. 295:325–334. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Yang JJ, Liu LP, Tao H, Hu W, Shi P, Deng ZY and Li J: MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R. Toxicology. 359-360:39–46. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Song Y, Liu C, Liu X, Trottier J, Beaudoin M, Zhang L, Pope C, Peng G, Barbier O, Zhong X, et al: H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology. 66:1183–1196. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Xiao Y, Liu R, Li X, Gurley EC, Hylemon PB, Lu Y, Zhou H and Cai W: Long noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia. Hepatology. 70:1658–1673. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Liu R, Li X, Zhu W, Wang Y, Zhao D, Wang X, Gurley EC, Liang G, Chen W, Lai G, et al: Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis. Hepatology. 70:1317–1335. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Fernandes JCR, Acuña SM, Aoki JI, Floeter-Winter LM and Muxel SM: Long non-coding RNAs in the regulation of gene expression: Physiology and disease. Noncoding RNA. 5:172019.

70 

Xu F, Liu C, Zhou D and Zhang L: TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 64:157–167. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G and Ten Dijke P; IT-LIVER Consortium: TGF-beta signalling and liver disease. FEBS J. 283:2219–2232. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G and Fabregat I: TGF-β and the tissue microenvironment: Relevance in fibrosis and cancer. Int J Mol Sci. 19:12942018. View Article : Google Scholar

73 

Martens L, Rühle F and Stoll M: LncRNA secondary structure in the cardiovascular system. Noncoding RNA Res. 2:137–142. 2017. View Article : Google Scholar

74 

Zampetaki A, Albrecht A and Steinhofel K: Long non-coding RNA structure and function: Is there a link? Front Physiol. 9:12012018. View Article : Google Scholar : PubMed/NCBI

75 

He Z, Yang D, Fan X, Zhang M, Li Y, Gu X and Yang M: The roles and mechanisms of lncRNAs in liver fibrosis. Int J Mol Sci. 21:14822020. View Article : Google Scholar :

76 

Kuo CC, Hänzelmann S, Sentürk Cetin N, Frank S, Zajzon B, Derks JP, Akhade VS, Ahuja G, Kanduri C, Grummt I, et al: Detection of RNA-DNA binding sites in long noncoding RNAs. Nucleic Acids Res. 47:e322019. View Article : Google Scholar : PubMed/NCBI

77 

Teng KY and Ghoshal K: Role of noncoding RNAs as biomarker and therapeutic targets for liver fibrosis. Gene Expr. 16:155–162. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Roderburg C, Mollnow T, Bongaerts B, Elfimova N, Vargas Cardenas D, Berger K, Zimmermann H, Koch A, Vucur M, Luedde M, et al: Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One. 7:e329992012. View Article : Google Scholar : PubMed/NCBI

79 

Klose RJ and Bird AP: Genomic DNA methylation: The mark and its mediators. Trends Biochem Sci. 31:89–97. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Shang Z, Yu J, Sun L, Tian J, Zhu S, Zhang B, Dong Q, Jiang N, Flores-Morales A, Chang C and Niu Y: LncRNA PCAT1 activates AKT and NF-κB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKα complex. Nucleic Acids Res. 47:4211–4225. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Gujar H, Weisenberger DJ and Liang G: The roles of human DNA methyltransferases and their isoforms in shaping the epigenome. Genes (Basel). 10:1722019. View Article : Google Scholar

82 

Edwards JR, Yarychkivska O, Boulard M and Bestor TH: DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 10:232017. View Article : Google Scholar : PubMed/NCBI

83 

Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V and Walter J: In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8:e10027502012. View Article : Google Scholar : PubMed/NCBI

84 

Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI

85 

Du J, Johnson LM, Jacobsen SE and Patel DJ: DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 16:519–532. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Page A, Mann DA and Mann J: The mechanisms of HSC activation and epigenetic regulation of HSCs phenotypes. Curr Pathobiol Rep. 2:163–170. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Wilson CL, Mann DA and Borthwick LA: Epigenetic reprogramming in liver fibrosis and cancer. Adv Drug Deliv Rev. 121:124–132. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Dowson C and O'Reilly S: DNA methylation in fibrosis. Eur J Cell Biol. 95:323–330. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW and Mann DA: Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: Implications for wound healing and fibrogenesis. Cell Death Differ. 14:275–285. 2007. View Article : Google Scholar

90 

Komatsu Y, Waku T, Iwasaki N, Ono W, Yamaguchi C and Yanagisawa J: Global analysis of DNA methylation in early-stage liver fibrosis. BMC Med Genomics. 5:52012. View Article : Google Scholar : PubMed/NCBI

91 

Götze S, Schumacher EC, Kordes C and Häussinger D: Epigenetic changes during hepatic stellate cell activation. PLoS One. 10:e01287452015. View Article : Google Scholar : PubMed/NCBI

92 

El Taghdouini A, Sørensen AL, Reiner AH, Coll M, Verhulst S, Mannaerts I, Øie CI, Smedsrød B, Najimi M, Sokal E, et al: Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget. 6:26729–26745. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Xiong WJ, Hu LJ, Jian YC, Wang LJ, Jiang M, Li W and He Y: Wnt5a participates in hepatic stellate cell activation observed by gene expression profile and functional assays. World J Gastroenterol. 18:1745–1752. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y and Li J: Wnt signaling in liver fibrosis: Progress challenges and potential directions. Biochimie. 95:2326–2335. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Jiang F, Parsons CJ and Stefanovic B: Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol. 45:401–409. 2006. View Article : Google Scholar : PubMed/NCBI

96 

Bian EB, Huang C, Wang H, Chen XX, Zhang L, Lv XW and Li J: Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett. 224:175–185. 2014. View Article : Google Scholar

97 

Bian EB, Huang C, Ma TT, Tao H, Zhang H, Cheng C, Lv XW and Li J: DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol. 264:13–22. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Page A, Paoli PP, Hill SJ, Howarth R, Wu R, Kweon SM, French J, White S, Tsukamoto H, Mann DA and Mann J: Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J Hepatol. 62:388–397. 2015. View Article : Google Scholar :

99 

Tian W, Fan Z, Li J, Hao C, Li M, Xu H, Wu X, Zhou B, Zhang L, Fang M and Xu Y: Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-β signaling. Int J Biochem Cell Biol. 71:35–43. 2016. View Article : Google Scholar

100 

Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, Canaani E and Blobel GA: Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol. 27:8466–8479. 2007. View Article : Google Scholar : PubMed/NCBI

101 

Perugorria MJ, Wilson CL, Zeybel M, Walsh M, Amin S, Robinson S, White SA, Burt AD, Oakley F, Tsukamoto H, et al: Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology. 56:1129–1139. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Cao R and Zhang Y: The functions of E (Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 14:155–164. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H and Mann DA: MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 138:705–714. 714.e1–4. 2010. View Article : Google Scholar :

104 

Martin-Mateos R, De Assuncao TM, Arab JP, Jalan-Sakrikar N, Yaqoob U, Greuter T, Verma VK, Mathison AJ, Cao S, Lomberk G, et al: Enhancer of zeste homologue 2 inhibition attenuates TGF-β dependent hepatic stellate cell activation and liver fibrosis. Cell Mol Gastroenterol Hepatol. 7:197–209. 2019. View Article : Google Scholar

105 

Panebianco C, Oben JA, Vinciguerra M and Pazienza V: Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: A putative synergy between retinoic acid and PPAR-gamma signalings. Clin Exp Med. 17:269–280. 2017. View Article : Google Scholar

106 

Schwartz YB and Pirrotta V: Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet. 8:9–22. 2007. View Article : Google Scholar

107 

Hammond CM, Strømme CB, Huang H, Patel DJ and Groth A: Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol. 18:141–158. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Mannaerts I, Nuytten NR, Rogiers V, Vanderkerken K, van Grunsven LA and Geerts A: Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology. 51:603–614. 2010. View Article : Google Scholar

109 

Mannaerts I, Eysackers N, Onyema OO, Van Beneden K, Valente S, Mai A, Odenthal M and van Grunsven LA: Class II HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA-29. PLoS One. 8:e557862013. View Article : Google Scholar : PubMed/NCBI

110 

Shaker ME, Ghani A, Shiha GE, Ibrahim TM and Mehal WZ: Nilotinib induces apoptosis and autophagic cell death of activated hepatic stellate cells via inhibition of histone deacetylases. Biochim Biophys Acta. 1833:1992–2003. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Duarte S, Baber J, Fujii T and Coito AJ: Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol. 44-46:147–156. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Qin L and Han YP: Epigenetic repression of matrix metalloproteinases in myofibroblastic hepatic stellate cells through histone deacetylases 4: Implication in tissue fibrosis. Am J Pathol. 177:1915–1928. 2010. View Article : Google Scholar : PubMed/NCBI

113 

Ding G, Li W, Liu J, Zeng Y, Mao C, Kang Y and Shang J: LncRNA GHET1 activated by H3K27 acetylation promotes cell tumorigenesis through regulating ATF1 in hepatocellular carcinoma. Biomed Pharmacother. 94:326–331. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F and Sun SH: Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 49:1083–1096. 2013. View Article : Google Scholar : PubMed/NCBI

115 

Pope C, Mishra S, Russell J, Zhou Q and Zhong XB: Targeting H19, an imprinted long non-coding RNA, in hepatic functions and liver diseases. Diseases. 5:112017. View Article : Google Scholar :

116 

Zhu XT, Yuan JH, Zhu TT, Li YY and Cheng XY: Long noncoding RNA glypican 3 (GPC3) antisense transcript 1 promotes hepatocellular carcinoma progression via epigenetically activating GPC3. FEBS J. 283:3739–3754. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Issa JJ, Roboz G, Rizzieri D, Jabbour E, Stock W, O'Connell C, Yee K, Tibes R, Griffiths EA, Walsh K, et al: Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: A multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 16:1099–1110. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Jansen YJL, Verset G, Schats K, Van Dam PJ, Seremet T, Kockx M, Van Laethem JB and Neyns B: Phase I clinical trial of decitabine (5-aza-2′-deoxycytidine) administered by hepatic arterial infusion in patients with unresectable liver-predominant metastases. ESMO Open. 4:e0004642019. View Article : Google Scholar

119 

Kuang Y, El-Khoueiry A, Taverna P, Ljungman M and Neamati N: Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol. 9:1799–1814. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Eckschlager T, Plch J, Stiborova M and Hrabeta J: Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 18:14142017. View Article : Google Scholar :

121 

Park KC, Park JH, Jeon JY, Kim SY, Kim JM, Lim CY, Lee TH, Kim HK, Lee HG, Kim SM, et al: A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells. Br J Pharmacol. 171:4820–4830. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Liu Y, Wang Z, Wang J, Lam W, Kwong S, Li F, Friedman SL, Zhou S, Ren Q, Xu Z, et al: A histone deacetylase inhibitor, largazole, decreases liver fibrosis and angiogenesis by inhibiting transforming growth factor-β and vascular endothelial growth factor signalling. Liver Int. 33:504–515. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Watanabe T, Tajima H, Hironori H, Nakagawara H, Ohnishi I, Takamura H, Ninomiya I, Kitagawa H, Fushida S, Tani T, et al: Sodium valproate blocks the transforming growth factor (TGF)-β1 autocrine loop and attenuates the TGF-β1-induced collagen synthesis in a human hepatic stellate cell line. Int J Mol Med. 28:919–925. 2011.PubMed/NCBI

124 

Niki T, Rombouts K, De Bleser P, De Smet K, Rogiers V, Schuppan D, Yoshida M, Gabbiani G and Geerts A: A histone deacetylase inhibitor, trichostatin A, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. Hepatology. 29:858–867. 1999. View Article : Google Scholar : PubMed/NCBI

125 

Ding D, Chen LL, Zhai YZ, Hou CJ, Tao LL, Lu SH, Wu J and Liu XP: Trichostatin A inhibits the activation of Hepatic stellate cells by Increasing C/EBP-α Acetylation in vivo and in vitro. Sci Rep. 8:43952018. View Article : Google Scholar

126 

Smith E and Shilatifard A: The chromatin signaling pathway: Diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell. 40:689–701. 2010. View Article : Google Scholar : PubMed/NCBI

127 

Yadav T, Quivy JP and Almouzni G: Chromatin plasticity: A versatile landscape that underlies cell fate and identity. Science. 361:1332–1336. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Hu B, Gharaee-Kermani M, Wu Z and Phan SH: Essential role of MeCP2 in the regulation of myofibroblast differentiation during pulmonary fibrosis. Am J Pathol. 178:1500–1508. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Bian EB, Huang C, Wang H, Chen XX, Tao H, Zhang L, Lv XW and Li J: The role of methyl-CpG binding protein 2 in liver fibrosis. Toxicology. 309:9–14. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Mellén M, Ayata P, Dewell S, Kriaucionis S and Heintz N: MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 151:1417–1430. 2012. View Article : Google Scholar : PubMed/NCBI

131 

Bárcena-Varela M, Caruso S, Llerena S, Aacute;lvarez-Sola G, Uriarte I, Latasa MU, Urtasun R, Rebouissou S, Alvarez L, Jimenez M, et al: Dual targeting of histone methyltransferase G9a and DNA-Methyltransferase 1 for the treatment of experimental hepatocellular carcinoma. Hepatology. 69:587–603. 2019. View Article : Google Scholar

132 

Moran-Salvador E, Garcia-Macia M, Sivaharan A, Sabater L, Zaki MYW, Oakley F, Knox A, Page A, Luli S, Mann J and Mann DA: Fibrogenic activity of MECP2 is regulated by phosphorylation in hepatic stellate cells. Gastroenterology. 157:1398–1412.e9. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Florean C: Food that shapes you: How diet can change your epigenome. Science in School. May 13–2014.Epub ahead of print.

134 

Yang JJ, Tao H, Deng ZY, Lu C and Li J: Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metabolism. 64:1386–1394. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Jiang X, Tsitsiou E, Herrick SE and Lindsay MA: MicroRNAs and the regulation of fibrosis. FEBS J. 277:2015–2021. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ganguly N and Chakrabarti S: Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review). Int J Mol Med 47: 23, 2021.
APA
Ganguly, N., & Chakrabarti, S. (2021). Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review). International Journal of Molecular Medicine, 47, 23. https://doi.org/10.3892/ijmm.2021.4856
MLA
Ganguly, N., Chakrabarti, S."Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review)". International Journal of Molecular Medicine 47.3 (2021): 23.
Chicago
Ganguly, N., Chakrabarti, S."Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review)". International Journal of Molecular Medicine 47, no. 3 (2021): 23. https://doi.org/10.3892/ijmm.2021.4856
Copy and paste a formatted citation
x
Spandidos Publications style
Ganguly N and Chakrabarti S: Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review). Int J Mol Med 47: 23, 2021.
APA
Ganguly, N., & Chakrabarti, S. (2021). Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review). International Journal of Molecular Medicine, 47, 23. https://doi.org/10.3892/ijmm.2021.4856
MLA
Ganguly, N., Chakrabarti, S."Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review)". International Journal of Molecular Medicine 47.3 (2021): 23.
Chicago
Ganguly, N., Chakrabarti, S."Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review)". International Journal of Molecular Medicine 47, no. 3 (2021): 23. https://doi.org/10.3892/ijmm.2021.4856
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team