Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2021 Volume 48 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 48 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2

  • Authors:
    • Zhen Li
    • Zekang Ye
    • Jiazheng Ma
    • Qian Gu
    • Jianzhen Teng
    • Xiaoxuan Gong
  • View Affiliations / Copyright

    Affiliations: Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 125
    |
    Published online on: May 11, 2021
       https://doi.org/10.3892/ijmm.2021.4958
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Doxorubicin is one of the most important chemotherapeutic drugs for the treatment of malignant tumors, but the cardiotoxicity of doxorubicin severely limits its clinical application. Increasing numbers of microRNAs (miRNAs/miRs) have been found to be dysregulated in doxorubicin‑treated cardiomyocytes or animal hearts. The current study aimed to investigate the role of miR‑133b in doxorubicin‑induced cardiomyocyte injury. Doxorubicin was used to treat HL‑1 cardiomyocytes to mimic cardiomyocyte injury in vitro. A mouse model of cardiac injury was generated by chronic intraperitoneal injections of doxorubicin. Masson's trichrome staining was performed on cardiac tissues to reveal cardiac fibrosis. Bioinformatics analysis and luciferase reporter assays were applied to explore the downstream targets of miR‑133b. Flow cytometry and western blotting were conducted to detect cardiomyocyte apoptosis. Protein expression levels of collagen I, III and IV, and fibronectin were detected to reveal extracellular matrix deposition. The results revealed that doxorubicin decreased miR‑133b expression in the treated HL‑1 cardiomyocytes and mouse hearts. Overexpression of miR‑133b restrained cardiomyocyte apoptosis, inhibited collagen accumulation and alleviated cardiac fibrosis in vivo. Mechanistically, polypyrimidine tract binding protein 1 (PTBP1) and transgelin 2 (TAGLN2) were confirmed to bind to miR‑133b after prediction and screening. Moreover, miR‑133b negatively regulated the protein expression levels of PTBP1 and TAGLN2. Finally, overexpression of PTBP1 or TAGLN2 reversed the effects of miR‑133b on apoptosis and collagen accumulation. Thus, the current results indicated that miR‑133b alleviated doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2, implying that miR‑133b may be a potential biomarker for doxorubicin‑induced cardiac injury.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Rivankar S: An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 10:853–858. 2014. View Article : Google Scholar

2 

Genovese I, Fiorillo A, Ilari A, Masciarelli S, Fazi F and Colotti G: Binding of doxorubicin to Sorcin impairs cell death and increases drug resistance in cancer cells. Cell Death Dis. 8:e29502017. View Article : Google Scholar : PubMed/NCBI

3 

Borlle L, Dergham A, Wund Z, Zumbo B, Southard T and Hume KR: Salinomycin decreases feline sarcoma and carcinoma cell viability when combined with doxorubicin. BMC Vet Res. 15:362019. View Article : Google Scholar : PubMed/NCBI

4 

Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M and Muggia FM: Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 91:710–717. 1979. View Article : Google Scholar : PubMed/NCBI

5 

du Pré BC, Dierickx P, Crnko S, Doevendans PA, Vos MA, Geijsen N, Neutel D, van Veen TAB and van Laake LW: Neonatal rat cardiomyocytes as an in vitro model for circadian rhythms in the heart. J Mol Cell Cardiol. 112:58–63. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Hole LD, Larsen TH, Fossan KO, Limé F and Schjøtt J: Diazoxide protects against doxorubicin-induced cardiotoxicity in the rat. BMC Pharmacol Toxicol. 15:282014. View Article : Google Scholar : PubMed/NCBI

7 

De Beer EL, Bottone AE and Voest EE: Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: A review. Eur J Pharmacol. 415:1–11. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Unverferth DV, Magorien RD, Leier CV and Balcerzak SP: Doxorubicin cardiotoxicity. Cancer Treat Rev. 9:149–164. 1982. View Article : Google Scholar : PubMed/NCBI

9 

Cecen E, Dost T, Culhaci N, Karul A, Ergur B and Birincioglu M: Protective effects of silymarin against doxorubicin-induced toxicity. Asian Pac J Cancer Prev. 12:2697–2704. 2011.

10 

Burlacu A, Siriopol D, Voroneanu L, Nistor I, Hogas S, Nicolae A, Nedelciuc I, Tinica G and Covic A: Atherosclerotic renal artery stenosis prevalence and correlations in acute myocardial infarction patients undergoing primary percutaneous coronary interventions: Data from Nonrandomized Single-Center Study (REN-ACS)-A single center, prospective, observational study. J Am Heart Assoc. 4:e0023792015. View Article : Google Scholar

11 

Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar :

12 

Bernardo BC, Ooi JY, Lin RC and McMullen JR: MiRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 7:1771–1792. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L and Peng J: MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol. 15:284–296. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Gupta SK, Garg A, Avramopoulos P, Engelhardt S, Streckfuss-Bömeke K, Batkai S and Thum T: MiR-212/132 cluster modulation prevents Doxorubicin-Mediated atrophy and cardiotoxicity. Mol Ther. 27:17–28. 2019. View Article : Google Scholar :

16 

Li N, Zhou H and Tang Q: MiR-133: A suppressor of cardiac remodeling? Front Pharmacol. 9:9032018. View Article : Google Scholar : PubMed/NCBI

17 

Wang Y, Li M, Xu L, Liu J, Wang D, Li Q, Wang L, Li P, Chen S and Liu T: Expression of Bcl-2 and microRNAs in cardiac tissues of patients with dilated cardiomyopathy. Mol Med Rep. 15:359–365. 2017. View Article : Google Scholar

18 

Cortez-Dias N, Costa MC, Carrilho-Ferreira P, Silva D, Jorge C, Calisto C, Pessoa T, Robalo Martins S, de Sousa JC, da Silva PC, et al: Circulating miR-122-5p/miR-133b Ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ J. 80:2183–2191. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Zhang L and Wang H: Long Non-coding RNA in CNS injuries: A new target for therapeutic intervention. Mol Ther Nucleic Acids. 17:754–766. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Atef MM, Amer AI, Hafez YM, Elsebaey MA, Saber SA and Abd El-Khalik SR: Long non-coding RNA EGFR-AS1 in colorectal cancer: A potential factor in tumorigenesis and survival via miRNA-133b sponge and EGFR/STAT3 axis regulation. Br J Biomed Sci. 2020.Epub ahead of print.

21 

Zhao N, Liu H, Zhang A and Wang M: Expression levels and clinical significance of miR-203 and miR-133b in laryngeal carcinoma. Oncol Lett. 20:2132020. View Article : Google Scholar : PubMed/NCBI

22 

Chen J, Li Y, Li Z and Cao L: LncRNA MST1P2/miR-133b axis affects the chemoresistance of bladder cancer to cisplatin-based therapy via Sirt1/p53 signaling. J Biochem Mol Toxicol. 34:e224522020. View Article : Google Scholar : PubMed/NCBI

23 

Sandhu H, Cooper S, Hussain A, Mee C and Maddock H: Attenuation of Sunitinib-induced cardiotoxicity through the A3 adenosine receptor activation. Eur J Pharmacol. 814:95–105. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Cooper SL, Sandhu H, Hussain A, Mee C and Maddock H: Involvement of mitogen activated kinase kinase 7 intracellular signalling pathway in Sunitinib-induced cardiotoxicity. Toxicology. 394:72–83. 2018. View Article : Google Scholar

25 

Hanousková B, Skála M, Brynychová V, Zárybnický T, Skarková V, Kazimírová P, Vernerová A, Souček P, Skálová L, Pudil R and Matoušková P: Imatinib-induced changes in the expression profile of microRNA in the plasma and heart of mice-A comparison with doxorubicin. Biomed Pharmacother. 115:1088832019. View Article : Google Scholar : PubMed/NCBI

26 

He SF, Zhu HJ, Han ZY, Wu H, Jin SY, Irwin MG and Zhang Y: MicroRNA-133b-5p is involved in cardioprotection of morphine preconditioning in rat cardiomyocytes by targeting fas. Can J Cardiol. 32:996–1007. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Panizo S, Carrillo-López N, Naves-Díaz M, Solache-Berrocal G, Martínez-Arias L, Rodrigues-Díez RR, Fernández-Vázquez A, Martínez-Salgado C, Ruiz-Ortega M, Dusso A, et al: Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrol Dial Transplant. 32:1831–1840. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Roca-Alonso L, Castellano L, Mills A, Dabrowska AF, Sikkel MB, Pellegrino L, Jacob J, Frampton AE, Krell J, Coombes RC, et al: Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis. 6:e17542015. View Article : Google Scholar

29 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

30 

Tao L, Bei Y, Chen P, Lei Z, Fu S, Zhang H, Xu J, Che L, Chen X, Sluijter JP, et al: Crucial role of miR-433 in regulating cardiac fibrosis. Theranostics. 6:2068–2083. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Zhang Y, Sun L, Sun H, Liu X, Luo X, Li C, Sun D and Li T: Overexpression of microRNA-133b reduces myocardial injuries in children with viral myocarditis by targeting Rab27B gene. Cell Mol Biol (Noisy-le-grand). 63:80–86. 2017. View Article : Google Scholar

32 

Balli E, Mete UO, Tuli A, Tap O and Kaya M: Effect of melatonin on the cardiotoxicity of doxorubicin. Histol Histopathol. 19:1101–1108. 2004.PubMed/NCBI

33 

Ganey PE, Carter LS, Mueller RA and Thurman RG: Doxorubicin toxicity in perfused rat heart. Decreased cell death at low oxygen tension. Circ Res. 68:1610–1613. 1991. View Article : Google Scholar : PubMed/NCBI

34 

Saltiel E and McGuire W: Doxorubicin (adriamycin) cardiomyopathy. West J Med. 139:332–341. 1983.PubMed/NCBI

35 

Mitani I, Jain D, Joska TM, Burtness B and Zaret BL: Doxorubicin cardiotoxicity: Prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol. 10:132–139. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Li J, Zhang S, Zou Y, Wu L, Pei M and Jiang Y: MiR-145 promotes miR-133b expression through c-myc and DNMT3A-mediated methylation in ovarian cancer cells. J Cell Physiol. 235:4291–4301. 2020. View Article : Google Scholar

37 

Ruggeri C, Gioffré S, Achilli F, Colombo GI and D'Alessandra Y: Role of microRNAs in doxorubicin-induced cardiotoxicity: An overview of preclinical models and cancer patients. Heart Fail Rev. 23:109–122. 2018. View Article : Google Scholar :

38 

Lu Q, Huo J, Liu P, Bai L and Ma A: lncRNA HOXB-AS3 protects doxorubicin-induced cardiotoxicity by targeting miRNA-875-3p. Exp Ther Med. 19:1388–1392. 2020.PubMed/NCBI

39 

Zeng W, Zhu JF, Liu JY, Li YL, Dong X, Huang H and Shan L: MiR-133b inhibits cell proliferation, migration and invasion of esophageal squamous cell carcinoma by targeting EGFR. Biomed Pharmacother. 111:476–484. 2019. View Article : Google Scholar

40 

Sugiyama T, Taniguchi K, Matsuhashi N, Tajirika T, Futamura M, Takai T, Akao Y and Yoshida K: MiR-133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle-splicer polypyrimidine tract-binding protein 1. Cancer Sci. 107:1767–1775. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Zhao F, Zhou LH, Ge YZ, Ping WW, Wu X, Xu ZL, Wang M, Sha ZL and Jia RP: MicroRNA-133b suppresses bladder cancer malignancy by targeting TAGLN2-mediated cell cycle. J Cell Physiol. 234:4910–4923. 2019. View Article : Google Scholar

42 

Coelho MB, Ascher DB, Gooding C, Lang E, Maude H, Turner D, Llorian M, Pires DE, Attig J and Smith CW: Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins. Biochem Soc Trans. 44:1058–1065. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Zhang H, Wang D, Li M, Plecitá-Hlavatá L, D'Alessandro A, Tauber J, Riddle S, Kumar S, Flockton A, McKeon BA, et al: Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a MicroRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis. Circulation. 136:2468–2485. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Pina JM, Reynaga JM, Truong AAM and Keppetipola NM: Post-Translational modifications in polypyrimidine tract binding proteins PTBP1 and PTBP2. Biochemistry. 57:3873–3882. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Zhang J, Bahi N, Llovera M, Comella JX and Sanchis D: Polypyrimidine tract binding proteins (PTB) regulate the expression of apoptotic genes and susceptibility to caspase-dependent apoptosis in differentiating cardiomyocytes. Cell Death Differ. 16:1460–1468. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR, et al: Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2. Circulation. 136:2451–2467. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Belanger K, Nutter CA, Li J, Yu P and Kuyumcu-Martinez MN: A developmentally regulated spliced variant of PTBP1 is upregulated in type 1 diabetic hearts. Biochem Biophys Res Commun. 509:384–389. 2019. View Article : Google Scholar :

48 

Li AY, Yang Q and Yang K: MiR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes. Mol Cell Biochem. 400:173–181. 2015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Z, Ye Z, Ma J, Gu Q, Teng J and Gong X: MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2. Int J Mol Med 48: 125, 2021.
APA
Li, Z., Ye, Z., Ma, J., Gu, Q., Teng, J., & Gong, X. (2021). MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2. International Journal of Molecular Medicine, 48, 125. https://doi.org/10.3892/ijmm.2021.4958
MLA
Li, Z., Ye, Z., Ma, J., Gu, Q., Teng, J., Gong, X."MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2". International Journal of Molecular Medicine 48.1 (2021): 125.
Chicago
Li, Z., Ye, Z., Ma, J., Gu, Q., Teng, J., Gong, X."MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2". International Journal of Molecular Medicine 48, no. 1 (2021): 125. https://doi.org/10.3892/ijmm.2021.4958
Copy and paste a formatted citation
x
Spandidos Publications style
Li Z, Ye Z, Ma J, Gu Q, Teng J and Gong X: MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2. Int J Mol Med 48: 125, 2021.
APA
Li, Z., Ye, Z., Ma, J., Gu, Q., Teng, J., & Gong, X. (2021). MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2. International Journal of Molecular Medicine, 48, 125. https://doi.org/10.3892/ijmm.2021.4958
MLA
Li, Z., Ye, Z., Ma, J., Gu, Q., Teng, J., Gong, X."MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2". International Journal of Molecular Medicine 48.1 (2021): 125.
Chicago
Li, Z., Ye, Z., Ma, J., Gu, Q., Teng, J., Gong, X."MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2". International Journal of Molecular Medicine 48, no. 1 (2021): 125. https://doi.org/10.3892/ijmm.2021.4958
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team