Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2021 Volume 48 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 48 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review)

  • Authors:
    • Zhimin Ye
    • Yongbin Hu
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
    Copyright: © Ye et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 132
    |
    Published online on: May 18, 2021
       https://doi.org/10.3892/ijmm.2021.4965
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Idiopathic pulmonary fibrosis (IPF) is a worldwide disease characterized by the chronic and irreversible decline of lung function. Currently, there is no drug to successfully treat the disease except for lung transplantation. Numerous studies have been devoted to the study of the fibrotic process of IPF and findings showed that transforming growth factor‑β1 (TGF‑β1) plays a central role in the development of IPF. TGF‑β1 promotes the fibrotic process of IPF through various signaling pathways, including the Smad, MAPK, and ERK signaling pathways. There are intersections between these signaling pathways, which provide new targets for researchers to study new drugs. In addition, TGF‑β1 can affect the fibrosis process of IPF by affecting oxidative stress, epigenetics and other aspects. Most of the processes involved in TGF‑β1 promote IPF, but TGF‑β1 can also inhibit it. This review discusses the role of TGF‑β1 in IPF.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, Swigris JJ, Taniguchi H and Wells AU: Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 3:170742017. View Article : Google Scholar : PubMed/NCBI

2 

George PM, Spagnolo P, Kreuter M, Altinisik G, Bonifazi M, Martinez FJ, Molyneaux PL, Renzoni EA, Richeldi L, Tomassetti S, et al: Progressive fibrosing interstitial lung disease: Clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir Med. 8:925–934. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP and Thannickal VJ: Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med. 65:56–69. 2019. View Article : Google Scholar :

4 

Hutchinson J, Fogarty A, Hubbard R and McKeever T: Global incidence and mortality of idiopathic pulmonary fibrosis: A systematic review. Eur Respir J. 46:795–806. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Nalysnyk L, Cid-Ruzafa J, Rotella P and Esser D: Incidence and prevalence of idiopathic pulmonary fibrosis: Review of the literature. Eur Respir Rev. 21:355–361. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Park Y, Ahn C and Kim TH: Occupational and environmental risk factors of idiopathic pulmonary fibrosis: A systematic review and meta-analyses. Sci Rep. 11:43182021. View Article : Google Scholar : PubMed/NCBI

7 

Lv M, Liu Y, Ma S and Yu Z: Current advances in idiopathic pulmonary fibrosis: The pathogenesis, therapeutic strategies and candidate molecules. Future Med Chem. 11:2595–2620. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Hadjicharalambous MR and Lindsay MA: Idiopathic pulmonary fibrosis: Pathogenesis and the emerging role of long non-coding RNAs. Int J Mol Sci. 21:5242020. View Article : Google Scholar :

9 

Hewlett JC, Kropski JA and Blackwell TS: Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol. 71-72:112–127. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND and Zhao YY: New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 292:76–83. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Prashanth Goud M, Bale S, Pulivendala G and Godugu C: Therapeutic effects of Nimbolide, an autophagy regulator, in ameliorating pulmonary fibrosis through attenuation of TGF-β1 driven epithelial-to-mesenchymal transition. Int Immunopharmacol. 75:1057552019. View Article : Google Scholar

12 

Feng F, Cheng P, Xu S, Li N, Wang H, Zhang Y and Wang W: Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling. Chem Biol Interact. 319:1090242020. View Article : Google Scholar

13 

Moustafa EM, Ibrahim SI and Salem FAF: Methylsulfonylmethane inhibits lung fibrosis progression, inflammatory response, and epithelial-mesenchymal transition via the transforming growth factor-Beta 1/SMAD2/3 pathway in rats exposed to both γ-radiation and Bisphenol-A. Toxin Rev. 1–10. 2020.

14 

He J, Peng H, Wang M, Liu Y, Guo X, Wang B, Dai L, Cheng X, Meng Z, Yuan L, et al: Isoliquiritigenin inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta Biochim Biophys Sin (Shanghai). 52:810–820. 2020. View Article : Google Scholar

15 

Sgalla G, Iovene B, Calvello M, Ori M, Varone F and Richeldi L: Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir Res. 19:322018. View Article : Google Scholar : PubMed/NCBI

16 

Kim KK, Sheppard D and Chapman HA: TGF-beta 1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol. 10:a0222932018. View Article : Google Scholar

17 

Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA and Lee ME: Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem. 275:36653–36658. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Flanders KC: Smad3 as a mediator of the fibrotic response. Int J Exp Pathol. 85:47–64. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Zheng R, Xiong Q, Zuo B, Jiang S, Li F, Lei M, Deng C and Xiong Y: Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells. Cell Biochem Funct. 26:548–556. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Roberts AB, Piek E, Bottinger EP, Ashcroft G, Mitchell JB and Flanders KC: Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest. 120(1 Suppl): 43S–47S. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Evans RA, Tian YC, Steadman R and Phillips AO: TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp Cell Res. 282:90–100. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Gu L, Zhu YJ, Yang X, Guo ZJ, Xu WB and Tian XL: Effect of TGF-beta/Smad signaling pathway on lung myofibroblast differentiation. Acta Pharmacol Sin. 28:382–391. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Kobayashi T, Liu X, Wen FQ, Kohyama T, Shen L, Wang XQ, Hashimoto M, Mao L, Togo S, Kawasaki S, et al: Smad3 mediates TGF-beta1-induced collagen gel contraction by human lung fibroblasts. Biochem Biophys Res Commun. 339:290–295. 2006. View Article : Google Scholar

24 

Deng X, Jin K, Li Y, Gu W, Liu M and Zhou L: Platelet-derived growth factor and transforming growth factor β1 Regulate ARDS-associated lung fibrosis through distinct signaling pathways. Cell Physiol Biochem. 36:937–946. 2015. View Article : Google Scholar

25 

Lim MJ, Ahn J, Yi JY, Kim MH, Son AR, Lee SL, Lim DS, Kim SS, Kang MA, Han Y and Song JY: Induction of galectin-1 by TGF-β1 accelerates fibrosis through enhancing nuclear retention of Smad2. Exp Cell Res. 326:125–135. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Huang Y, Xie Y, Abel PW, Wei P, Plowman J, Toews ML, Strah H, Siddique A, Bailey KL and Tu Y: TGF-β1-induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression. Biochem Pharmacol. 180:1141722020. View Article : Google Scholar

27 

Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ and Thannickal VJ: NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 15:1077–1081. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Fierro-Fernández M, Busnadiego Ó, Sandoval P, Espinosa-Díez C, Blanco-Ruiz E, Rodríguez M, Pian H, Ramos R, López-Cabrera M, García-Bermejo ML and Lamas S: miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO Rep. 16:1358–1377. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Guo W, Saito S, Sanchez CG, Zhuang Y, Gongora Rosero RE, Shan B, Luo F and Lasky JA: TGF-β1 stimulates HDAC4 nucleus-to-cytoplasm translocation and NADPH oxidase 4-derived reactive oxygen species in normal human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 312:L936–L944. 2017. View Article : Google Scholar

30 

Zhang Q, Tu W, Tian K, Han L, Wang Q, Chen P and Zhou X: Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor-β1/Smad2 and nuclear factor-κB signaling pathways in human fetal lung fibroblasts. J Cell Biochem. 120:93–104. 2019. View Article : Google Scholar

31 

Ji H, Tang H, Lin H, Mao J, Gao L, Liu J and Wu T: Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation. Biomed Rep. 2:787–792. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Câmara J and Jarai G: Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair. 3:22010. View Article : Google Scholar : PubMed/NCBI

33 

Kasai H, Allen JT, Mason RM, Kamimura T and Zhang Z: TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res. 6:562005. View Article : Google Scholar : PubMed/NCBI

34 

Li LC, Li DL, Xu L, Mo XT, Cui WH, Zhao P, Zhou WC, Gao J and Li J: High-mobility group box 1 mediates epithelial-to-mesenchymal transition in pulmonary fibrosis involving transforming growth factor-β1/Smad2/3 signaling. J Pharmacol Exp Ther. 354:302–309. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Guan S and Zhou J: CXCR7 attenuates the TGF-β-induced endothelial-to-mesenchymal transition and pulmonary fibrosis. Mol Biosyst. 13:2116–2124. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Jiang Y, Zhou X, Hu R and Dai A: TGF-β1-induced SMAD2/3/4 activation promotes RELM-β transcription to modulate the endothelium-mesenchymal transition in human endothelial cells. Int J Biochem Cell Biol. 105:52–60. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Kolosionek E, Savai R, Ghofrani HA, Weissmann N, Guenther A, Grimminger F, Seeger W, Banat GA, Schermuly RT and Pullamsetti SS: Expression and activity of phosphodiesterase isoforms during epithelial mesenchymal transition: The role of phosphodiesterase 4. Mol Biol Cell. 20:4751–4765. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Ramirez A, Ballard EN and Roman J: TGFβ1 controls PPARγ expression, transcriptional potential, and activity, in part, through Smad3 signaling in murine lung fibroblasts. PPAR Res. 2012:3758762012. View Article : Google Scholar

39 

Li HH, Cai Q, Wang YP, Liu HR and Huang M: The role of transforming growth factor-β1/connective tissue growth factor signaling pathway in paraquat-induced pulmonary fibrosis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 34:484–488. 2016.In Chinese. PubMed/NCBI

40 

Zheng X, Qi C, Zhang S, Fang Y and Ning W: TGF-β1 induces Fstl1 via the Smad3-c-Jun pathway in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 313:L240–L251. 2017. View Article : Google Scholar

41 

Huang C, Liang Y, Zeng X, Yang X, Xu D, Gou X, Sathiaseelan R, Senavirathna LK, Wang P and Liu L: Long noncoding RNA FENDRR exhibits antifibrotic activity in pulmonary fibrosis. Am J Respir Cell Mol Biol. 62:440–453. 2020. View Article : Google Scholar :

42 

Kadoya K, Togo S, Tulafu M, Namba Y, Iwai M, Watanabe J, Okabe T, Jin J, Kodama Y, Kitamura H, et al: Specific features of fibrotic lung fibroblasts highly sensitive to fibrotic processes mediated via TGF-β-ERK5 interaction. Cell Physiol Biochem. 52:822–837. 2019. View Article : Google Scholar

43 

Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV and Lü J: miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 45:287–294. 2011. View Article : Google Scholar :

44 

Yang T, Liang Y, Lin Q, Liu J, Luo F, Li X, Zhou H, Zhuang S and Zhang H: miR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J Cell Biochem. 114:1336–1342. 2013. View Article : Google Scholar

45 

Xiao J, Meng XM, Huang XR, Chung AC, Feng YL, Hui DS, Yu CM, Sung JJ and Lan HY: miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 20:1251–1260. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Chen Y, Zhang Q, Zhou Y, Yang Z and Tan M: Inhibition of miR-182-5p attenuates pulmonary fibrosis via TGF-β/Smad pathway. Hum Exp Toxicol. 39:683–695. 2020. View Article : Google Scholar

47 

Kang HR, Lee CG, Homer RJ and Elias JA: Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med. 204:1083–1093. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Mukherjee D, Bercz LS, Torok MA and Mace TA: Regulation of cellular immunity by activating transcription factor 4. Immunol Lett. 228:24–34. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Selvarajah B, Azuelos I, Platé M, Guillotin D, Forty EJ, Contento G, Woodcock HV, Redding M, Taylor A, Brunori G, et al: mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF-β1-induced collagen biosynthesis. Sci Signal. 12:eaav30482019. View Article : Google Scholar

50 

Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, Peace S, Joberty G, Poeckel D, Good RB, et al: The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun. 10:62019. View Article : Google Scholar : PubMed/NCBI

51 

Cong LH, Li T, Wang H, Wu YN, Wang SP, Zhao YY, Zhang GQ and Duan J: IL-17A-producing T cells exacerbate fine particulate matter-induced lung inflammation and fibrosis by inhibiting PI3K/Akt/mTOR-mediated autophagy. J Cell Mol Med. 24:8532–8544. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Fang L, Chen H, Kong R and Que J: Endogenous tryptophan metabolite 5-methoxytryptophan inhibits pulmonary fibrosis by downregulating the TGF-β/SMAD3 and PI3K/AKT signaling pathway. Life Sci. 260:1183992020. View Article : Google Scholar

53 

Hettiarachchi SU, Li YH, Roy J, Zhang F, Puchulu-Campanella E, Lindeman SD, Srinivasarao M, Tsoyi K, Liang X, Ayaub EA, et al: Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models. Sci Transl Med. 12:eaay37242020. View Article : Google Scholar : PubMed/NCBI

54 

Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, Gao Y and He Z: PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest. 100:801–811. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Graves DT and Milovanova TN: Mucosal immunity and the FOXO1 transcription factors. Front Immunol. 10:25302019. View Article : Google Scholar : PubMed/NCBI

56 

Shi L, Dong N, Fang X and Wang X: Regulatory mechanisms of TGF-β1-induced fibrogenesis of human alveolar epithelial cells. J Cell Mol Med. 20:2183–2193. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Wygrecka M, Zakrzewicz D, Taborski B, Didiasova M, Kwapiszewska G, Preissner KT and Markart P: TGF-β1 induces tissue factor expression in human lung fibroblasts in a PI3K/JNK/Akt-dependent and AP-1-dependent manner. Am J Respir Cell Mol Biol. 47:614–627. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Bengal E, Aviram S and Hayek T: p38 MAPK in glucose metabolism of skeletal muscle: Beneficial or harmful? Int J Mol Sci. 21:64802020. View Article : Google Scholar :

59 

Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI

60 

He X and Wang C, Wang H, Li L and Wang C: The function of MAPK cascades in response to various stresses in horticultural plants. Front Plant Sci. 11:9522020. View Article : Google Scholar : PubMed/NCBI

61 

Magnelli L, Schiavone N, Staderini F, Biagioni A and Papucci L: MAP kinases pathways in gastric cancer. Int J Mol Sci. 21:28932020. View Article : Google Scholar :

62 

Jablonska E, Markart P, Zakrzewicz D, Preissner KT and Wygrecka M: Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts. J Biol Chem. 285:11638–11651. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Chen HH, Zhou XL, Shi YL and Yang J: Roles of p38 MAPK and JNK in TGF-β1-induced human alveolar epithelial to mesenchymal transition. Arch Med Res. 44:93–98. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Khalil N, Xu YD, O'Connor R and Duronio V: Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem. 280:43000–43009. 2005. View Article : Google Scholar

65 

Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S and Horie T: Transforming growth factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 163:152–157. 2001. View Article : Google Scholar : PubMed/NCBI

66 

Cui Y, Osorio JC, Risquez C, Wang H, Shi Y, Gochuico BR, Morse D, Rosas IO and El-Chemaly S: Transforming growth factor-β1 downregulates vascular endothelial growth factor-D expression in human lung fibroblasts via the Jun NH2-terminal kinase signaling pathway. Mol Med. 20:120–134. 2014. View Article : Google Scholar : PubMed/NCBI

67 

van der Velden JL, Wagner DE, Lahue KG, Abdalla ST, Lam YW, Weiss DJ and Janssen-Heininger YMW: TGF-β1-induced deposition of provisional extracellular matrix by tracheal basal cells promotes epithelial-to-mesenchymal transition in a c-Jun NH2-terminal kinase-1-dependent manner. Am J Physiol Lung Cell Mol Physiol. 314:L984–L997. 2018. View Article : Google Scholar

68 

Kulasekaran P, Scavone CA, Rogers DS, Arenberg DA, Thannickal VJ and Horowitz JC: Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol. 41:484–493. 2009. View Article : Google Scholar : PubMed/NCBI

69 

García-Alvarez J, Ramirez R, Checa M, Nuttall RK, Sampieri CL, Edwards DR, Selman M and Pardo A: Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis. Exp Lung Res. 32:201–214. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Gu H, Mickler EA, Cummings OW, Sandusky GE, Weber DJ, Gracon A, Woodruff T, Wilkes DS and Vittal R: Crosstalk between TGF-β1 and complement activation augments epithelial injury in pulmonary fibrosis. FASEB J. 28:4223–4234. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Finlay GA, Thannickal VJ, Fanburg BL and Paulson KE: Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor. J Biol Chem. 275:27650–27656. 2000. View Article : Google Scholar : PubMed/NCBI

72 

Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, Sortino MA, Nicoletti F, Copani A and Vancheri C: TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res. 57:274–282. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Ghatak S, Markwald RR, Hascall VC, Dowling W, Lottes RG, Baatz JE, Beeson G, Beeson CC, Perrella MA, Thannickal VJ and Misra S: Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem. 292:10465–10489. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Xiao L, Du Y, Shen Y, He Y, Zhao H and Li Z: TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed). 17:2667–2674. 2012. View Article : Google Scholar

75 

Lu M, Munger JS, Steadele M, Busald C, Tellier M and Schnapp LM: Integrin alpha8beta1 mediates adhesion to LAP-TGFbeta1. J Cell Sci. 115:4641–4648. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Bugter JM, Fenderico N and Maurice MM: Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer. 21:5–21. 2021. View Article : Google Scholar

77 

Rapetti-Mauss R, Berenguier C, Allegrini B and Soriani O: Interplay between ion channels and the Wnt/β-catenin signaling pathway in cancers. Front Pharmacol. 11:5250202020. View Article : Google Scholar

78 

Söderholm S and Cantù C: The WNT/β-catenin dependent transcription: A tissue-specific business. Wiley Interdiscip Rev Syst Biol Med. Oct 21–2020.Epub ahead of print. View Article : Google Scholar

79 

Lu Y, Zhang T, Shan S, Wang S, Bian W, Ren T and Yang D: MiR-124 regulates transforming growth factor-β1 induced differentiation of lung resident mesenchymal stem cells to myofibroblast by repressing Wnt/β-catenin signaling. Dev Biol. 449:115–121. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Xu L, Cui WH, Zhou WC, Li DL, Li LC, Zhao P, Mo XT, Zhang Z and Gao J: Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med. 21:1545–1554. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Baarsma HA, Engelbertink LH, van Hees LJ, Menzen MH, Meurs H, Timens W, Postma DS, Kerstjens HA and Gosens R: Glycogen synthase kinase-3 (GSK-3) regulates TGF-β1-induced differentiation of pulmonary fibroblasts. Br J Pharmacol. 169:590–603. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Liu J, Wang Y, Pan Q, Su Y, Zhang Z, Han J, Zhu X, Tang C and Hu D: Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to-myofibroblast transition. J Dermatol Sci. 65:38–49. 2012. View Article : Google Scholar

83 

Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, Nguyen C, Flodby P, Zhong Q, Krishnaveni MS, et al: Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 287:7026–7038. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Wang Y, Liu J, Chen J, Feng T and Guo Q: MiR-29 mediates TGFβ 1-induced extracellular matrix synthesis through activation of Wnt/β-catenin pathway in human pulmonary fibroblasts. Technol Health Care. 23(Suppl 1): S119–S125. 2015. View Article : Google Scholar

85 

Noskovičová N, Heinzelmann K, Burgstaller G, Behr J and Eickelberg O: Cub domain-containing protein 1 negatively regulates TGF-β signaling and myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol. 314:L695–L707. 2018. View Article : Google Scholar

86 

Uhal BD, Kim JK, Li X and Molina-Molina M: Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: Autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des. 13:1247–1256. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T and Tu Y: Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 10:6702019. View Article : Google Scholar

88 

Yamasaki M, Kang HR, Homer RJ, Chapoval SP, Cho SJ, Lee BJ, Elias JA and Lee CG: P21 regulates TGF-beta1-induced pulmonary responses via a TNF-alpha-signaling pathway. Am J Respir Cell Mol Biol. 38:346–353. 2008. View Article : Google Scholar

89 

Yamauchi Y, Kohyama T, Takizawa H, Kamitani S, Desaki M, Takami K, Kawasaki S, Kato J and Nagase T: Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta 1. Exp Lung Res. 36:12–24. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Bissonnette EY, Enciso JA and Befus AD: TGF-beta1 inhibits the release of histamine and tumor necrosis factor-alpha from mast cells through an autocrine pathway. Am J Respir Cell Mol Biol. 16:275–282. 1997. View Article : Google Scholar : PubMed/NCBI

91 

Zhou Y, Lee JY, Lee CM, Cho WK, Kang MJ, Koff JL, Yoon PO, Chae J, Park HO, Elias JA and Lee CG: Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-β-induced pulmonary fibrosis. J Biol Chem. 287:41991–42000. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Bonner JC, Badgett A, Lindroos PM and Osornio-Vargas AR: Transforming growth factor beta 1 downregulates the platelet-derived growth factor alpha-receptor subtype on human lung fibroblasts in vitro. Am J Respir Cell Mol Biol. 13:496–505. 1995. View Article : Google Scholar : PubMed/NCBI

93 

Ng B, Dong J, D'Agostino G, Viswanathan S, Widjaja AA, Lim WW, Ko NSJ, Tan J, Chothani SP, Huang B, et al: Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med. 11:eaaw12372019. View Article : Google Scholar : PubMed/NCBI

94 

Zhang L, Zhang J, Zhang Y and Yi Z: Expression of interleukin-11 and its receptor in lung of mice with idiopathic pulmonary fibrosis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 43:1083–1088. 2018.In Chinese. PubMed/NCBI

95 

Otsuki T, Hayashi H, Nishimura Y, Hyodo F, Maeda M, Kumagai N, Miura Y, Kusaka M and Uragami K: Dysregulation of autoimmunity caused by silica exposure and alteration of Fas-mediated apoptosis in T lymphocytes derived from silicosis patients. Int J Immunopathol Pharmacol. 24(Suppl): 11S–16S. 2011.PubMed/NCBI

96 

Hagimoto N, Kuwano K, Inoshima I, Yoshimi M, Nakamura N, Fujita M, Maeyama T and Hara N: TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol. 168:6470–6478. 2002. View Article : Google Scholar : PubMed/NCBI

97 

Yu W, Mi L and Wang F: Effect of the alteration of Tribbles homologue 3 expression on epithelial-mesenchymal transition of transforming growth factor β1-induced mouse alveolar epithelial cells through the Wnt/β-catenin signaling pathway. Mol Med Rep. 21:615–622. 2020.PubMed/NCBI

98 

Andonegui G, Ni A, Leger C, Kelly MM, Wong JF, Jalloul A and Winston BW: Sequential expression of IGF-IB followed by active TGF-β1 induces synergistic pulmonary fibroproliferation in vivo. Am J Physiol Lung Cell Mol Physiol. 303:L788–L798. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Negreros M, Hagood JS, Espinoza CR, Balderas-Martinez YI, Selman M and Pardo A: Transforming growth factor beta 1 induces methylation changes in lung fibroblasts. PLoS One. 14:e02235122019. View Article : Google Scholar : PubMed/NCBI

100 

Sanders YY, Liu H, Scruggs AM, Duncan SR, Huang SK and Thannickal VJ: Epigenetic regulation of caveolin-1 gene expression in lung fibroblasts. Am J Respir Cell Mol Biol. 56:50–61. 2017. View Article : Google Scholar :

101 

Arsalane K, Dubois CM, Muanza T, Bégin R, Boudreau F, Asselin C and Cantin AM: Transforming growth factor-beta1 is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549: Transcriptional effect on the GSH rate-limiting enzyme gamma-glutamylcysteine synthetase. Am J Respir Cell Mol Biol. 17:599–607. 1997. View Article : Google Scholar : PubMed/NCBI

102 

Jardine H, MacNee W, Donaldson K and Rahman I: Molecular mechanism of transforming growth factor (TGF)-beta1-induced glutathione depletion in alveolar epithelial cells. Involvement of AP-1/ARE and Fra-1. J Biol Chem. 277:21158–21166. 2002. View Article : Google Scholar : PubMed/NCBI

103 

Boustani MR, Hertig IA, Maloney EK, Fanburg BL and White AC: Transforming growth factor B1 decreases uptake of glutathione precursor amino acids in bovine pulmonary artery endothelial cells. Endothelium. 5:1–10. 1997. View Article : Google Scholar : PubMed/NCBI

104 

Cho SJ and Stout-Delgado HW: Aging and lung disease. Annu Rev Physiol. 82:433–459. 2020. View Article : Google Scholar

105 

Wakwaya Y and Brown KK: Idiopathic pulmonary fibrosis: Epidemiology, diagnosis and outcomes. Am J Med Sci. 357:359–369. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Abramson MJ, Murambadoro T, Alif SM, Benke GP, Dharmage SC, Glaspole I, Hopkins P, Hoy RF, Klebe S, Moodley Y, et al: Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Australia: Case-control study. Thorax. 75:864–869. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V and Kreuter M: The therapy of idiopathic pulmonary fibrosis: What is next? Eur Respir Rev. 28:1900212019. View Article : Google Scholar : PubMed/NCBI

108 

Amor MS, Rosengarten D, Shitenberg D, Pertzov B, Shostak Y and Kramer MR: Lung transplantation in idiopathic pulmonary fibrosis: Risk factors and outcome. Isr Med Assoc J. 22:741–746. 2020.

109 

Yang S, Liu P, Jiang Y, Wang Z, Dai H and Wang C: Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 9:6396572021. View Article : Google Scholar : PubMed/NCBI

110 

Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI

111 

Chang X, Tian M, Zhang Q, Gao J, Li S and Sun Y: Nano nickel oxide promotes epithelial-mesenchymal transition through transforming growth factor β1/smads signaling pathway in A549 cells. Environ Toxicol. 35:1308–1317. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Rosell-García T, Palomo-Álvarez O and Rodríguez-Pascual F: A hierarchical network of hypoxia-inducible factor and SMAD proteins governs procollagen lysyl hydroxylase 2 induction by hypoxia and transforming growth factor β1. J Biol Chem. 294:14308–14318. 2019. View Article : Google Scholar

113 

Ko J, Mills T, Huang J, Chen NY, Mertens TCJ, Collum SD, Lee G, Xiang Y, Han L, Zhou Y, et al: Transforming growth factor β1 alters the 3′-UTR of mRNA to promote lung fibrosis. J Biol Chem. 294:15781–15794. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Senavirathna LK, Huang C, Pushparaj S, Xu D and Liu L: Hypoxia and transforming growth factor β1 regulation of long non-coding RNA transcriptomes in human pulmonary fibroblasts. Physiol Rep. 8:e143432020. View Article : Google Scholar

115 

Neveu WA, Mills ST, Staitieh BS and Sueblinvong V: TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol. 309:C616–C626. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Kim S, Han JH, Kim S, Lee H, Kim JR, Lim JH and Woo CH: p90RSK inhibition ameliorates TGF-β1 signaling and pulmonary fibrosis by inhibiting Smad3 transcriptional activity. Cell Physiol Biochem. 54:195–210. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Miyake Y, Sasaki S, Yokoyama T, Chida K, Azuma A, Suda T, Kudoh S, Sakamoto N, Okamoto K, Kobashi G, et al: Occupational and environmental factors and idiopathic pulmonary fibrosis in Japan. Ann Occup Hyg. 49:259–265. 2005.PubMed/NCBI

118 

Kim SY, Kang DM, Lee HK, Kim KH and Choi J: Occupational and environmental risk factors for chronic fibrosing idiopathic interstitial pneumonia in South Korea. J Occup Environ Med. 59:e221–e226. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Baumgartner KB, Samet JM, Coultas DB, Stidley CA, Hunt WC, Colby TV and Waldron JA: Occupational and environmental risk factors for idiopathic pulmonary fibrosis: A multicenter case-control study. Collaborating centers. Am J Epidemiol. 152:307–315. 2000. View Article : Google Scholar : PubMed/NCBI

120 

García-Sancho Figueroa MC, Carrillo G, Pérez-Padilla R, Fernández-Plata MR, Buendía-Roldán I, Vargas MH and Selman M: Risk factors for idiopathic pulmonary fibrosis in a Mexican population. A case-control study. Respir Med. 104:305–309. 2010. View Article : Google Scholar

121 

Awadalla NJ, Hegazy A, Elmetwally RA and Wahby I: Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Egypt: A multicenter case-control study. Int J Occup Environ Med. 3:107–116. 2012.PubMed/NCBI

122 

Koo JW, Myong JP, Yoon HK, Rhee CK, Kim Y, Kim JS, Jo BS, Cho Y, Byun J, Choi M, et al: Occupational exposure and idiopathic pulmonary fibrosis: A multicentre case-control study in Korea. Int J Tuberc Lung Dis. 21:107–112. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Paolocci G, Folletti I, Torén K, Ekström M, Dell'Omo M, Muzi G and Murgia N: Occupational risk factors for idiopathic pulmonary fibrosis in Southern Europe: A case-control study. BMC Pulm Med. 18:752018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ye Z and Hu Y: TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med 48: 132, 2021.
APA
Ye, Z., & Hu, Y. (2021). TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). International Journal of Molecular Medicine, 48, 132. https://doi.org/10.3892/ijmm.2021.4965
MLA
Ye, Z., Hu, Y."TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review)". International Journal of Molecular Medicine 48.1 (2021): 132.
Chicago
Ye, Z., Hu, Y."TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review)". International Journal of Molecular Medicine 48, no. 1 (2021): 132. https://doi.org/10.3892/ijmm.2021.4965
Copy and paste a formatted citation
x
Spandidos Publications style
Ye Z and Hu Y: TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med 48: 132, 2021.
APA
Ye, Z., & Hu, Y. (2021). TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). International Journal of Molecular Medicine, 48, 132. https://doi.org/10.3892/ijmm.2021.4965
MLA
Ye, Z., Hu, Y."TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review)". International Journal of Molecular Medicine 48.1 (2021): 132.
Chicago
Ye, Z., Hu, Y."TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review)". International Journal of Molecular Medicine 48, no. 1 (2021): 132. https://doi.org/10.3892/ijmm.2021.4965
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team