|
1
|
Taruc-Uy RL and Lynch SA: Diagnosis and
treatment of osteoarthritis. Prim Care. 40:821–836. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Felson DT, Naimark A, Anderson J, Kazis L,
Castelli W and Meenan RF: The prevalence of knee osteoarthritis in
the elderly. The framingham osteoarthritis study. Arthritis Rheum.
30:914–918. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Oliveria SA, Felson DT, Reed JI, Cirillo
PA and Walker AM: Incidence of symptomatic hand, hip, and knee
osteoarthritis among patients in a health maintenance organization.
Arthritis Rheum. 38:1134–1141. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Prieto-Alhambra D, Judge A, Javaid MK,
Cooper C, Diez-Perez A and Arden NK: Incidence and risk factors for
clinically diagnosed knee, hip and hand osteoarthritis: Influences
of age, gender and osteoarthritis affecting other joints. Ann Rheum
Dis. 73:1659–1664. 2014. View Article : Google Scholar
|
|
5
|
Murphy L, Schwartz TA, Helmick CG, Renner
JB, Tudor G, Koch G, Dragomir A, Kalsbeek WD, Luta G and Jordan JM:
Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum.
59:1207–1213. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang W: Risk factors of knee
osteoarthritis-excellent evidence but little has been done.
Osteoarthritis Cartilage. 18:1–2. 2010. View Article : Google Scholar
|
|
7
|
Glyn-Jones S, Palmer AJ, Agricola R, Price
AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet.
386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Su AI, Wiltshire T, Batalov S, Lapp H,
Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al:
A gene atlas of the mouse and human protein-encoding
transcriptomes. Proc Natl Acad Sci USA. 101:6062–6067. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mattick JS and Makunin IV: Non-coding RNA.
Hum Mol Genet. 15(Spec No 1): R17–R29. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Elling R, Chan J and Fitzgerald KA:
Emerging role of long noncoding RNAs as regulators of innate immune
cell development and inflammatory gene expression. Eur J Immunol.
46:504–512. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lander ES, Linton LM, Birren B, Nusbaum C,
Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, Fitzhugh W, et al:
Initial sequencing and analysis of the human genome. Nature.
409:860–921. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Costa FF: Non-coding RNAs: New players in
eukaryotic biology. Gene. 357:83–94. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sosińska P, Mikuła-Pietrasik J and Książek
K: The double-edged sword of long non-coding RNA: The role of human
brain-specific BC200 RNA in translational control,
neurodegenerative diseases, and cancer. Mutat Res Rev Mutat Res.
766:58–67. 2015. View Article : Google Scholar
|
|
14
|
Jeck WR and Sharpless NE: Detecting and
characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ma L, Bajic VB and Zhang Z: On the
classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Guo X, Gao L, Liao Q, Xiao H, Ma X, Yang
X, Luo H, Zhao G, Bu D, Jiao F, et al: Long non-coding RNAs
function annotation: A global prediction method based on bi-colored
networks. Nucleic Acids Res. 41:e352013. View Article : Google Scholar :
|
|
18
|
Mercer TR, Dinger Me and Mattick JS: Long
non-coding RNAs: Insights into functions. Nat Rev genet.
10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fitzgerald KA and Caffrey DR: Long
noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol.
26:140–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Reynard LN and Loughlin J: Genetics and
epigenetics of osteoarthritis. Maturitas. 71:200–204. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu Q, Zhang X, Dai L, Hu X, Zhu J, Li L,
Zhou C and Ao Y: Long noncoding RNA related to cartilage injury
pro-motes chondrocyte extracellular matrix degradation in
osteoarthritis. Arthritis Rheumatol. 66:969–978. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fu M, Huang G, Zhang Z, Liu J, Zhang Z,
Huang Z, Yu B and Meng F: Expression profile of long noncoding RNAs
in cartilage from knee osteoarthritis patients. Osteoarthritis
Cartilage. 23:423–432. 2015. View Article : Google Scholar
|
|
23
|
Rinn JL and Chang HY: Genome regulation by
long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ulitsky I and Bartel DP: LincRNAs:
Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Feng J, Bi C, Clark BS, Mady R, Shah P and
Kohtz JD: The evf-2 noncoding RNA is transcribed from the Dlx-5/6
ultraconserved region and functions as a Dlx-2 transcriptional
coactivator. Genes Dev. 20:1470–1484. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ohno M, Fukagawa T, Lee JS and Ikemura T:
Triplex-forming DNAs in the human interphase nucleus visualized in
situ by polypurine/polypyrimidine DNA probes and antitriplex
antibodies. Chromosoma. 111:201–213. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Smart F, Aschrafi A, Atkins A, Owens GC,
Pilotte J, Cunningham BA and Vanderklish PW: Two isoforms of the
cold-inducible mRNA-binding protein RBM3 localize to dendrites and
promote translation. J Neurochem. 101:1367–1379. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Paraskevopoulou MD and Hatzigeorgiou AG:
Analyzing MiRNA-LncRNA interactions. Methods Mol Biol.
1402:271–286. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gibb EA, Brown CJ and Lam WL: The
functional role of long non-coding RNA in human carcinomas. Mol
Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Marques-Rocha JL, Samblas M, Milagro FI,
Bressan J, Martínez JA and Marti A: Noncoding RNAs, cytokines, and
inflammation-related diseases. FASEB J. 29:3595–3611. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Aigner T, Söder S, Gebhard PM, McAlinden A
and Haag J: Mechanisms of disease: Role of chondrocytes in the
pathogenesis of osteoarthritis-structure, chaos and senescence. Nat
Clin Pract Rheumatol. 3:391–399. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Le LT, Swingler TE and Clark IM: Review:
The role of microRNAs in osteoarthritis and chondrogenesis.
Arthritis Rheum. 65:1963–1974. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jiang SD, Lu J, Deng ZH, Li YS and Lei GH:
Long noncoding RNAs in osteoarthritis. Joint Bone Spine.
84:553–556. 2017. View Article : Google Scholar
|
|
36
|
Xing D, Liang JQ, Li Y, Lu J, Jia HB, Xu
LY and Ma XL: Identification of long noncoding RNA associated with
osteoarthritis in humans. Orthop Surg. 6:288–293. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Su W, Xie W, Shang Q and Su B: The long
noncoding RNA MEG3 is Downregulated and inversely associated with
VEGF levels in osteoarthritis. Biomed Res Int. 2015:3568932015.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Pearson MJ, Philp AM, Heward JA, Roux BT,
Walsh DA, Davis ET, Lindsay MA and Jones SW: Long intergenic
noncoding RNAs mediate the human chondrocyte inflammatory response
and are differentially expressed in osteoarthritis cartilage.
Arthritis Rheumatol. 68:845–856. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou Q, Tang X, Tian X, Tian J, Zhang Y,
Ma J, Xu H and Wang S: LncRNA MALAT1 negatively regulates MDSCs in
patients with lung cancer. J Cancer. 9:2436–2442. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhang Y, Wang F, Chen G, He R and Yang L:
LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3
axis. Cell Biosci. 9:542019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pan L, Liu D, Zhao L, Wang L, Xin M and Li
X: Long noncoding RNA MALAT1 alleviates lipopolysaccharide-induced
inflammatory injury by upregulating microRNA-19b in murine
chondrogenic ATDC5 cells. J Cell Biochem. 119:10165–10175. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liang J, Xu L, Zhou F, Liu AM, Ge HX, Chen
YY and Tu M: MALAT1/miR-127-5p regulates osteopontin (OPN)-Mediated
proliferation of human chondrocytes through PI3K/Akt pathway. J
Cell Biochem. 119:431–439. 2018. View Article : Google Scholar
|
|
43
|
Li X, Tang C, Wang J, Guo P, Wang C, Wang
Y, Zhang Z and Wu H: Methylene blue relieves the development of
osteoarthritis by upregulating lncRNA Meg3. Exp Ther Med.
15:3856–3864. 2018.PubMed/NCBI
|
|
44
|
Chen K, Zhu H, Zheng MQ and Dong QR:
LncRNA MEG3 inhibits the degradation of the extracellular matrix of
chondrocytes in osteoarthritis via targeting miR-93/TGFBR2 axis.
Cartilage. Jun 28–2019.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhou H, Wu G, Ma X, Xiao J, Yu G, Yang C,
Xu N, Zhang B, Zhou J, Ye Z and Wang Z: Attenuation of TGFBR2
expression and tumour progression in prostate cancer involve
diverse hypoxia-regulated pathways. J Exp Clin Cancer Res.
37:892018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang Z, Chi X, Liu L, Wang Y, Mei X, Yang
Y and Jia T: Long noncoding RNA maternally expressed gene 3
knockdown alleviates lipopolysaccharide-induced inflammatory injury
by up-regulation of miR-203 in ATDC5 cells. Biomed Pharmacother.
100:240–249. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fujita N, Matsushita T, Ishida K, Kubo S,
Matsumoto T, Takayama K, Kurosaka M and Kuroda R: Potential
involvement of SIRT1 in the pathogenesis of osteoarthritis through
the modulation of chondrocyte gene expressions. J Orthop Res.
29:511–515. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Niederer F, Ospelt C, Brentano F, Hottiger
MO, Gay RE, Gay S, Detmar M and Kyburz D: SIRT1 overexpression in
the rheumatoid arthritis synovium contributes to proinflammatory
cytokine production and apoptosis resistance. Ann Rheum Dis.
70:1866–1873. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xu J and Xu Y: The lncRNA MEG3
downregulation leads to osteoarthritis progression via miR-16/SMAD7
axis. Cell Biosci. 7:692017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Svoboda M, Slyskova J, Schneiderova M,
Makovicky P, Bielik L, Levy M, Lipska L, Hemmelova B, Kala Z,
Protivankova M, et al: HOTAIR long non-coding RNA is a negative
prognostic factor not only in primary tumors, but also in the blood
of colorectal cancer patients. Carcinogenesis. 35:1510–1515. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hu J, Wang Z, Pan Y, Ma J, Miao X, Qi X,
Zhou H and Jia L: MiR-26a and miR-26b mediate osteoarthritis
progression by targeting FUT4 via NF-κB signaling pathway. Int J
Biochem Cell Biol. 94:79–88. 2018. View Article : Google Scholar
|
|
52
|
Hu J, Wang Z, Shan Y, Pan Y, Ma J and Jia
L: Long non-coding RNA HOTAIR promotes osteoarthritis progression
via miR-17-5p/FUT2/β-catenin axis. Cell Death Dis. 9:7112018.
View Article : Google Scholar
|
|
53
|
Dou P, Hu R, Zhu W, Tang Q, Li D, Li H and
Wang W: Long non-coding RNA HOTAIR promotes expression of ADAMTS-5
in human osteoarthritic articular chondrocytes. Pharmazie.
72:113–117. 2017.
|
|
54
|
Hu Y, Li S and Zou Y: Knockdown of LncRNA
H19 Relieves LPS-Induced damage by modulating miR-130a in
osteoarthritis. Yonsei Med J. 60:381–388. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Steck E, Boeuf S, Gabler J, Werth N,
Schnatzer P, Diederichs S and Richter W: Regulation of H19 and its
encoded microRNA-675 in osteoarthritis and under anabolic and
catabolic in vitro conditions. J Mol Med (Berl). 90:1185–1195.
2012. View Article : Google Scholar
|
|
56
|
Hu Y, Deng C, Zhang H, Zhang J, Peng B and
Hu C: Long non-coding RNA XIST promotes cell growth and metastasis
through regulating miR-139-5p mediated Wnt/β-catenin signaling
pathway in bladder cancer. Oncotarget. 8:94554–94568. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang T, Liu Y, Wang Y, Huang X, Zhao W and
Zhao Z: Long non-coding RNA XIST promotes extracellular matrix
degradation by functioning as a competing endogenous RNA of
miR-1277-5p in osteoarthritis. Int J Mol Med. 44:630–642.
2019.PubMed/NCBI
|
|
58
|
Pattoli MA, MacMaster JF, Gregor KR and
Burke JR: Collagen and aggrecan degradation is blocked in
interleukin-1-treated cartilage explants by an inhibitor of IkappaB
kinase through suppression of metalloproteinase expression. J
Pharmacol Exp Ther. 315:382–388. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen P, Tao J, Zhu S, Cai Y, Mao Q, Yu D,
Dai J and Ouyang H: Radially oriented collagen scaffold with SDF-1
promotes osteochondral repair by facilitating cell homing.
Biomaterials. 39:114–123. 2015. View Article : Google Scholar
|
|
60
|
Thomas NP, Li P, Fleming BC, Chen Q, Wei
X, Xiao-hua P, Li G and Wei L: Attenuation of cartilage
pathogenesis in post-traumatic osteoarthritis (PTOA) in mice by
blocking the stromal derived factor 1 receptor (CXCR4) with the
specific inhibitor, AMD3100. J Orthop Res. 33:1071–1078. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang W, Chen J, Tao J, Jiang Y, Hu C,
Huang L, Ji J and Ouyang HW: The use of type 1 collagen scaffold
containing stromal cell-derived factor-1 to create a matrix
environment conducive to partial-thickness cartilage defects
repair. Biomaterials. 34:713–723. 2013. View Article : Google Scholar
|
|
62
|
Li L, Lv G, Wang B and Kuang L: The role
of lncRNA XIST/miR-211 axis in modulating the proliferation and
apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK
signaling. Biochem Biophys Res Commun. 503:2555–2562. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhu JK, He TD, Wei ZX and Wang YM: LncRNA
FAS-AS1 promotes the degradation of extracellular matrix of
cartilage in osteoarthritis. Eur Rev Med Pharmacol Sci.
22:2966–2972. 2018.PubMed/NCBI
|
|
64
|
Takeda K, Kaisho T and Akira S: Toll-like
receptors. Annu Rev Immunol. 21:335–376. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hausmann M, Kiessling S, Mestermann S,
Webb G, Spöttl T, Andus T, Schölmerich J, Herfarth H, Ray K, Falk W
and Rogler G: Toll-like receptors 2 and 4 are up-regulated during
intestinal inflammation. Gastroenterology. 122:1987–2000. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gomez R, Villalvilla A, Largo R, Gualillo
O and Herrero-Beaumont G: TLR4 signalling in osteoarthritis-finding
targets for candidate DMOADs. Nat Rev Rheumatol. 11:159–170. 2015.
View Article : Google Scholar
|
|
67
|
Wang Y, Cao L, Wang Q, Huang J and Xu S:
LncRNA FOXD2-AS1 induces chondrocyte proliferation through sponging
miR-27a-3p in osteoarthritis. Artif Cells Nanomed Biotechnol.
47:1241–1247. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zan PF, Yao J, Wu Z, Yang Y, Hu S and Li
GD: Cyclin D1 gene silencing promotes IL-1beta-induced apoptosis in
rat chondrocytes. J Cell Biochem. 119:290–299. 2018. View Article : Google Scholar
|
|
69
|
Cao L, Wang Y, Wang Q and Huang J: LncRNA
FOXD2-AS1 regulates chondrocyte proliferation in osteoarthritis by
acting as a sponge of miR-206 to modulate CCND1 expression. Biomed
Pharmacother. 106:1220–1226. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hu L, Ye H, Huang G, Luo F, Liu Y, Liu Y,
Yang X, Shen J, Liu Q and Zhang J: Long noncoding RNA GAS5
suppresses the migration and invasion of hepatocellular carcinoma
cells via miR-21. Tumor Biol. 37:2691–2702. 2016. View Article : Google Scholar
|
|
71
|
Pickard MR and Williams GT: Molecular and
cellular mechanisms of action of tumour suppressor GAS5 LncRNA.
Genes (Basel). 6:484–499. 2015. View Article : Google Scholar
|
|
72
|
Nagini S: Breast cancer: Current molecular
therapeutic targets and new players. Anticancer Agents Med Chem.
17:152–163. 2017. View Article : Google Scholar
|
|
73
|
Li F, Sun J, Huang S, Su G and Pi G:
LncRNA GAS5 overexpression reverses LPS-Induced inflammatory injury
and apoptosis through up-regulating KLF2 expression in ATDC5
chondrocytes. Cell Physiol Biochem. 45:1241–1251. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Song J, Ahn C, Chun Ch and Jin EJ: A long
non-coding RNA, GAS5, plays a critical role in the regulation of
miR-21 during osteoarthritis. J Orthop Res. 32:1628–1635. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Caramés B, Hasegawa A, Taniguchi N, Miyaki
S, Blanco FJ and Lotz M: Autophagy activation by rapamycin reduces
severity of experimental osteoarthritis. Ann Rheum Dis. 71:575–581.
2012. View Article : Google Scholar :
|
|
76
|
Caramés B, Taniguchi N, Otsuki S, Blanco
FJ and Lotz M: Autophagy is a protective mechanism in normal
cartilage, and its aging-related loss is linked with cell death and
osteoarthritis. Arthritis Rheum. 62:791–801. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sasaki H, Kubo S, Matsumoto T, Muratsu H,
Matsushita T, Ishida K, Takayama K, Oka S, Kurosaka M and Kuroda R:
The influence of patella height on intra-operative soft tissue
balance in posterior-stabilized total knee arthroplasty. Knee Surg
Sports Traumatol Arthrosc. 20:2191–2196. 2012. View Article : Google Scholar
|
|
78
|
Wang CL, Peng JP and Chen XD: LncRNA-CIR
promotes articular cartilage degeneration in osteoarthritis by
regulating autophagy. Biochem Biophys Res Commun. 505:692–698.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li YF, Li SH, Liu Y and Luo YT: Long
noncoding RNA CIR promotes chondrocyte extracellular matrix
degradation in osteoarthritis by acting as a sponge for Mir-27b.
Cell Physiol Biochem. 43:602–610. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang L, Yang C, Chen S, Wang G, Shi B,
Tao X, Zhou L and Zhao J: Long noncoding RNA DANCR is a positive
regulator of proliferation and chondrogenic differentiation in
human synovium-derived stem cells. DNA Cell Biol. 36:136–142. 2017.
View Article : Google Scholar
|
|
81
|
Zhang L, Zhang P, Sun X, Zhou L and Zhao
J: Long non-coding RNA DANCR regulates proliferation and apoptosis
of chondrocytes in osteoarthritis via miR-216a-5p-JAK2-STAT3 axis.
Biosci Rep. 38:BSR201812282018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lynch KR, Thorpe SB and Santos WL:
Sphingosine kinase inhibitors: A review of patent literature
(2006-2015). Expert Opin Ther Pat. 26:1409–1416. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Marfe G, Mirone G, Shukla A and Di Stefano
C: Sphingosine kinases signalling in carcinogenesis. Mini Rev Med
Chem. 15:300–314. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fan X, Yuan J, Xie J, Pan Z, Yao X, Sun X,
Zhang P and Zhang L: Long non-protein coding RNA DANCR functions as
a competing endogenous RNA to regulate osteoarthritis progression
via miR-577/SphK2 axis. Biochem Biophys Res Commun. 500:658–664.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ishii N, Ozaki K, Sato H, Mizuno H, Susumu
Saito, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, et
al: Identification of a novel non-coding RNA, MIAT, that confers
risk of myocardial infarction. J Hum Genet. 51:1087–1099. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Barry G, Briggs JA, Vanichkina DP, Poth
EM, Beveridge NJ, Ratnu VS, Nayler SP, Nones K, Hu J, Bredy TW, et
al: The long non-coding RNA Gomafu is acutely regulated in response
to neuronal activation and involved in schizophrenia-associated
alternative splicing. Mol Psychiatry. 19:486–494. 2014. View Article : Google Scholar
|
|
87
|
Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li
YJ, Tao ZF, Song YC, Chen Q and Jiang Q: lncRNA-MIAT regulates
microvascular dysfunction by functioning as a competing endogenous
RNA. Circ Res. 116:1143–1156. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Crea F, Venalainen E, Ci X, Cheng H, Pikor
L, Parolia A, Xue H, Nur Saidy NR, Lin D, Lam W, et al: The role of
epigenetics and long noncoding RNA MIAT in neuroendocrine prostate
cancer. Epigenomics. 8:721–731. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sun C, Huang L, Li Z, Leng K, Xu Y, Jiang
X and Cui Y: Long non-coding RNA MIAT in development and disease: A
new player in an old game. J Biomed Sci. 25:232018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhou X, Luo D, Sun H, Qi Y, Xu W, Jin X,
Li C, Lin Z and Li G: MiR-132-3p regulates ADAMTS-5 expression and
promotes chondrogenic differentiation of rat mesenchymal stem
cells. J Cell Biochem. 119:2579–2587. 2018. View Article : Google Scholar
|
|
91
|
Liu Z, Wang H, Cai H, Hong Y, Li Y, Su D
and Fan Z: Long non-coding RNA MIAT promotes growth and metastasis
of colorectal cancer cells through regulation of miR-132/Derlin-1
pathway. Cancer Cell Int. 18:592018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li C, Pan S, Song Y, Li Y and Qu J:
Silence of lncRNA MIAT protects ATDC5 cells against
lipopolysaccharides challenge via up-regulating miR-132. Artif
Cells Nanomed Biotechnol. 47:2521–2527. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhao Y, Zhao J, Guo X, She J and Liu Y:
Long non-coding RNA PVT1, a molecular sponge for miR-149,
contributes aberrant metabolic dysfunction and inflammation in
IL-1β-simulated osteoarthritic chondrocytes. Biosci Rep.
38:BSR201805762018. View Article : Google Scholar
|
|
94
|
Li Y, Li S, Luo Y, Liu Y and Yu N: LncRNA
PVT1 regulates chondrocyte apoptosis in Osteoarthritis by acting as
a Sponge for miR-488-3p. DNA Cell Biol. 36:571–580. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jiang M, Liu J, Luo T, Chen Q, Lu M and
Meng D: LncRNA PACER is down-regulated in osteoarthritis and
regulates chondrocyte apoptosis and lncRNA HOTAIR expression.
Biosci Rep. Jun 7–2019.Epub ahead of print. View Article : Google Scholar
|
|
96
|
Pei Z, Du X, Song Y, Fan L, Li F, Gao Y,
Wu R, Chen Y, Li W, Zhou H, et al: Down-regulation of lncRNA CASC2
promotes cell proliferation and metastasis of bladder cancer by
activation of the Wnt/β-catenin signaling pathway. Oncotarget.
8:18145–18153. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo
Y, Peng R and Cheng L: LncRNA CASC2 interacts with miR-181a to
modulate glioma growth and resistance to TMZ through PTEN pathway.
J Cell Biochem. 118:1889–1899. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Huang T, Wang J, Zhou Y, Zhao Y, Hang D
and Cao Y: LncRNA CASC2 is up-regulated in osteoarthritis and
participates in the regulation of IL-17 expression and chondrocyte
proliferation and apoptosis. Biosci Rep. 39:BSR201824542019.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chu P, Wang Q, Wang Z and Gao C: Long
non-coding RNA highly up-regulated in liver cancer protects tumor
necrosis factor-alpha-induced inflammatory injury by
down-regulation of microRNA-101 in ATDC5 cells. Int
Immunopharmacol. 72:148–158. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yamamoto M, Sato S, Hemmi H, Uematsu S,
Hoshino K, Kaisho T, Takeuchi O, Takeda K and Akira S: TRAM is
specifically involved in the Toll-like receptor 4-mediated
MyD88-independent signaling pathway. Nat Immunol. 4:1144–1150.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ying H, Wang Y, Gao Z and Zhang Q: Long
non-coding RNA activated by transforming growth factor beta
alleviates lipopolysaccharide-induced inflammatory injury via
regulating microRNA-223 in ATDC5 cells. Int Immunopharmacol.
69:313–320. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Tang LP, Ding JB, Liu ZH and Zhou GJ:
LncRNA Tug 1promotes osteoarthritis-induced degradation of
chondrocyte extracellular matrix via miR-195/MMP-13 axis. Eur Rev
Med Pharmacol Sci. 22:8574–8581. 2018.PubMed/NCBI
|
|
103
|
Meyerovich K, Violato NM, Fukaya M, Dirix
V, Pachera N, Marselli L, Marchetti P, Strasser A, Eizirik DL and
Cardozo AK: MCL-1 is a key antiapoptotic protein in human and
rodent pancreatic beta-cells. Diabetes. 66:2446–2458. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li X, Yu M, Chen L, Sun T, Wang H, Zhao L
and Zhao Q: LncRNA PMS2L2 protects ATDC5 chondrocytes against
lipopolysaccharide-induced inflammatory injury by sponging miR-203.
Life Sci. 217:283–292. 2019. View Article : Google Scholar
|
|
105
|
Collange O, Charles AL, Bouitbir J,
Chenard MP, Zoll J, Diemunsch P, Thaveau F, Chakfe N, Piquard F and
Geny B: Methylene blue protects liver oxidative capacity after gut
ischaemia-reperfusion in the rat. Eur J Vasc Endovasc Surg.
45:168–175. 2013. View Article : Google Scholar
|
|
106
|
Zheng J and Li Q: Methylene blue regulates
inflammatory response in osteoarthritis by noncoding long chain RNA
CILinc02. J Cell Biochem. 120:3331–3338. 2019. View Article : Google Scholar
|
|
107
|
Li Z, Chao TC, Chang KY, Lin N, Patil VS,
Shimizu C, Head SR, Burns JC and Rana TM: The long noncoding RNA
THRIL regulates TNFα expression through its interaction with
hnRNPL. Proc Natl Acad Sci USA. 111:1002–1007. 2014. View Article : Google Scholar
|
|
108
|
Liu G, Wang Y, Zhang M and Zhang Q: Long
non-coding RNA THRIL promotes LPS-induced inflammatory injury by
down-regulating microRNA-125b in ATDC5 cells. Int Immunopharmacol.
66:354–361. 2019. View Article : Google Scholar
|
|
109
|
Xiang S, Li Z, Bian Y and Weng X:
Identification of changed expression of mRNAs and lncRNAs in
osteoarthritic synovium by RNA-sequencing. Gene. 685:55–61. 2019.
View Article : Google Scholar
|
|
110
|
Zhao Y and Xu J: Synovial fluid-derived
exosomal lncRNA PCGEM1 as biomarker for the different stages of
osteoarthritis. Int Orthop. 42:2865–2872. 2018. View Article : Google Scholar : PubMed/NCBI
|